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Introduction.
In “Algébre locale. Multiplicités” [20], Serre conjectured :

CONJECTURE. Let X be a connected regular scheme and Y, Z closed irre-
ducible subschemes of X. Then, for each irreducible component W of Y NZ,

(S1) codim (W, X)<codim (Y, X)+codim(Z, X),

(82) if codim (W, X)<codim (Y, X)+codim (Z, X), then

; (=1)oy, (Tordw. X(Ow,y, Ow.2)) =0,

(83) if codim (W, X)=codim (Y, X)+codim (Z, X), then
; (—Doy, o (Tor?w. x(Ow, v, Ow,2)) > 0.

In Serre proved (S1) in general and (S2), (S3) in the case where the
regular local ring Oy, x is unramified, i.e., either Oy, x contains a field or the
square of its maximal ideal does not contain p, where p>0 is the characteristic
of the residue class field O, y/Mw, x. Furthermore Roberts [17], Gillet and
Soulé [9] independently solved (S2) affirmatively. (Roberts proved (S2) under
a weaker condition ([15], [16], [17] using the intersection theory. Dutta,
Hochster and MacLaughlin [6] constructed the following important example:

Put A=Fk[[x, v, z, w]]/(xy—zw) (k is a field), and M=A/(x, z). Then
there exists an A-module N such that [(4(N)=15, pd,N=3 and .(—1)°
[4(Tord(M, N))=—1.

We can explain this phenomenon in terms of localized Chern characters as in
Example 18.3.14 in [8].)

(S1) is a remarkable result which enables us to estimate the minimum of
the dimension of the intersection of two closed irreducible subschemes when
they actually intersect. It is expected that such an inequality holds even under
a weaker condition. (By the intersection theorem due to Roberts [18], we have

dim M+depth N < depth 4

for any Noetherian local ring A and any finitely generated A-modules M and
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N such that [,(MQ4N)<co and pd N<oo.)
When G. (resp. H.) is the minimal Oy, y-free resolution of Oy, y (resp. Ow, 2),
it follows from the argument in that

? (=D, y(TordW.X(Ow. v, Ow,2))

= ch§8ec 8w 13 (H.Qoy,, xOw. v)N[Spec (Ow. v)]
= chee 8% 23(G.Roy,. xOw. z)N\[Spec (Ow, 2)]

in the case of codim (W, X)=codim (Y, X)+codim(Z, X), where ch¥(x) is the
localized Chern character and [Spec (Ow,y)] and [Spec(Ow,z)] are cycles in the
Chow groups. So, in order to prove (S3), it seems to be crucial to calculate
chgeeciD oy (F.)N[Spec (A)] for a Noetherian local ring (4, m) and a bounded A-
free complex F. which is exact except for {m}. Such an invariant is called the
Dutta multiplicity (see [4], [15], [16], [18], [19]), which is the main theme of
the present paper. The Dutta multiplicity is a natural generalization of the
usual multiplicity (see and Remark 2.5).

The next section is devoted to defining the Dutta multiplicity and discussing
its basic properties. In section 3 we will prove (S3) in a special case using
some results on the Dutta multiplicity and give an algebraic description to this
multiplicity in the case where the dimension of the given local ring is less than
or equal to 3. Section 4 is devoted to arguing the difference between the
Dutta multiplicity and the alternative sum of the lengths of the homology
modules of a given perfect complex. Furthermore we will prove

THEOREM 4.3. Let (A, m) be a Noetherian local ring of dimension d and F.
a perfect A-complex of length d with support {m}. Suppose that one of the fol-
lowing conditions is satisfied :
0) (A, m) is a Gorenstein ring.
(1) d=2 and A is equi-dimensional.
(2) (A, m) is normal with d <4 and the canonical class cl(K,) is torsion in
the divisor class group Cl(A).
(3) d=3 and A,_,Spec(A)RQzQ=(0).
(4) There exists a regular local ving (S, n) and a finite free S-complex G.
such that A is a homomorphic image of S and G.RsA is isomorphic to F..
Then ZE (=1 H4(H(F )= (=1 4(H;(F *[—d])) holds.

We also give an example satisfying )&, (—1) L (H,(F.)# & (—1)i(
H(F.*[—d])). The last section is devoted to proving

THEOREM 5.2. Let (A, m) be a normal Noetherian local ring of dimension
3, and
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dg dg d1
F.:0 F3 Fz Fl Fo 0

a minimal self-dual perfect A-complex with support {m}. Assume the following
three conditions.

(T1) rank,F,=1.

(T2) pa(l(dy)=rank,F,.

(T3) All the Koszul relations of d, are contained in d.(F,).
Then, Dy(F.)=[,(Hy(F.)—(H,(F.)>0.

The idea for proving this is to use the structure theorem of Gorenstein
ideals of codimension 3 due to Buchsbaum and Eisenbud [2]. (When we show
the positivity of the Dutta multiplicity of the perfect complex F. of length 3,
we may assume that F. is self-dual by Remark 3.6.)

The author thanks the referee for ssveral advice.

2. Definition and basic properties.

Throughout this paper we assume that all Noetherian local rings are homo-
morphic images of regular local rings and p denotes a prime integer. For an
A-module M, [,(M) (resp. pd4(M)) denotes the length (resp. the projective
dimension) of M.

This section will be devoted to defin'ng the Dutta multiplicity (see [4] in
the case of characteristic p and in the general case) and arguing basic
properties on the Dutta multiplicity.

Let (A, m) be a Noetherian local r'ng of dimension d.

DEFINITION 2.1. A complex F. is said to be perfect when all F,’s are
finitely generated free modules such that F,#0, F;=0 for /<0 and 7>0. For
a perfect complex F., we define the support of F. by

\iJ supp (H;(F.)) < Spec (A4)

and denote it by supp(F.). F. is called a perfect complex of /ength n when it
is perfect with n=max {z|F;#0}.

REMARK 2.2. Let (A4, m) be a Noetherian local ring of dimension d and

F.:0 F, F, 0

a perfect complex with support {m}. Then the new intersection theorem (Ro-
berts [18]) guarantees the inequality n=d.

When A is Cohen-Macaulay and n is equal to d, H,(F.) vanishes for every
:>0. In general, for any minimal perfect complex
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F.: 0 Fa F, 0,

with support {m} such that F,+=0 (minimal means that all the boundary maps
of F.®4A/m vanish), the property so-called the depth sensitivity holds ([3]), i.e.,
for any finitely generated A-module M,

depth M = n—max{{| H{(F.KQM) + 0}.

DEFINITION 2.3. For a Noetherian local ring (A4, m) of dimension 4 and a
perfect A-complex F. with support {m}, the rational number

chgges () (F.)N[Spec (4)]

is called the Dutta multiplicity of F. and denoted by D,(F.). (See Roberts [18].)

(The map ch§eesid),,(F.): A, Spec (A)q—A4 Spec(A/m)e=Q is the localized

Chern character determined by F. (see Fulton [8]) and A.(—)e is the rational

Chow group. Furthermore [Spec(A4)] is an element of A, Spec(A), defined by
[Spec(A)]= X [4,(A)-[Spec(A/M],

r&Spec(4)
dimd/?=d

where the above sum runs over all prime ideals of coheight d.)
In order to calculate the intersection multiplicities of modules, it is very

crucial to investigate the Dutta multiplicities of perfect complexes. For example,

see Roberts [157, [17].

REMARK 2.4. Let (4, m) be a Noetherian local ring of dimension ¢ and F.
a perfect A-complex with support {m}. Since localized Chern characters are
compatible with proper push-forwards (see Fulton [8]), we have
ch3pee () (F)NISpec (A/p)] = cheetdin (F.QuA/9) N [Spec (A/0)]
for any prime ideal p. So, it holds

D (F.) = ch§sestd)my(F.)N[Spec (A)]

= 3 l4,(Ay)- (Ch$ee{m (F.)N[Spec (A/p)])

dim 4/p=d

= 2 [a,(A)-(ch§etdn (F.Q4 A/p)M[Spec (A/v)])

dim 4/;=d

= 23 14,(4) - Da(F.Q4 A/) .

dimd4/;:=d

We note that F.®, A/p is a perfect A/p-complex with support {m/p}.
Therefore, when we calculate the Dutta multiplicity, we may assume that
the given ring (4, m) is an integral domain like the usual multiplicity.

The next remark implies that the notion of the Dutta multiplicity is a
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natural generalization of the usual multiplicity.

REMARK 2.5. Let x,, ---, x; be a system of parameters of a Noetherian
local ring (A, m). enote by K.(x, A) the Koszul complex determined by
Xy, -+, Xxq. By Corollary 18.1.2 and Example 18.3.12 in [8], we have

D(K.(x, A)) = chgpet{d)m (K.(x, A))N[Spec(A4)]
= D (=D La(H( K (x, A))

- €(£)<A> ’

where e(,;(A4) is the usual multiplicity of A along the parameter ideal (x)=
(x4, -, xg). So, when {x;, ---, x4} is a minimal reduction of m, the Dutta
multiplicity D,(K.(x, A)) coincides with the usual multiplicity e,(A4). Further-
more if {x,, ---, x4} is a minimal reduction both of m and m/p for any prime

ideal p of coheight d, then we obtain the following famous formula on the
usual multiplicity :

em(A) = chetiDm (K.(x, A))N[Spec(A4)]

= X LAy (ch§eedind (K.(x, A/p)N[Spec(4/9)])

dim A/p=d

= 2 lAp(A;)) “ensp(A/p) .

dim A/p=d

In order to calculate the Dutta multiplicity, we may assume that the given
local ring (A, m) is complete and the residue class field A/m is algebraically
closed as follows.

PROPOSITION 2.6. Let C—D be a faithfully flat extension of regular local
rings such that dim C=dimD. Suppose that A=C/I is a Noetherian local ring
with the maximal ideal m. Then for a perfect A-complex F. with support {m},
Dy 10(F. Q4 D/ID)=D4(F.)-lp;1p(D/mD).

PrROOF. First note that F.(X, D/ID is a perfect D/ID-complex such that
its support is only at the maximal ideal of D/ID and [p;;p(D/mD)<oco.

For the simplicity of notation we put B=D/ID. Though A—B and A/m
—B/mB are not necessarily of finite type, we can define the flat pull-backs
Ay Spec (B)—A, Spec(A) and A, Spec(B/mB)—AySpec(A/m). (Generalize the
results of Section 1.7 in [8].) Then the diagram
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(4)
Chgggg(A/m)(F-)

A Spec (A)q A, Spec(A/m),

ch§Bee(B) vy (F.®4B)
A Spec (B)g > A, Spec(B/mB)g

is commutative. (Generalize Theorem 18.1 in [8].)
So, we have Dp(F.Q4B)=D,(F.)-(z(B/mB). Q. E.D.

Therefore, when we investigate the Dutta multiplicities of perfect complexes
such that their supports are at the maximal ideal of a given Noetherian local
ring, we may assume that the given ring is a complete local domain such that
its residue class field is algebraically closed.

In the case of positive characteristic, we can express the Dutta multiplicity
by a purely algebraic method (see Dutta [4]) as follows.

REMARK 2.7. Let (A, m) be a d-dimensional complete local domain of
characteristic »>0, and assume that its residue class field A/m is algebraically
closed. Then for a perfect complex F. with support {m}, it is known (see

Roberts [18]) that
.1 .
D(F) = lim —; 3 (~D'L(H(F- @A),

where ‘A=A is an A-module via the e-th iteration of the Frobenius map. (The
invariant like the right hand side of the above equation was first discovered
by Dutta [4]. An elementary proof of the rationality of the right hand side
was given by Seibert [21].)

The next remark enables us to assume the normality of a given local ring
when we calculate the Dutta multiplicity.

REMARK 2.8. Let (A, m) be a complete local domain with residue class
field A/m algebraically closed. Since A is excellent henselian, the normalization
A—A is finite and A is a complete local domain with residue class field A/m.
(See and [14].) Let F. be a perfect A-complex with support {m}. By the
compatibility of localized Chern characters with proper push-forwards, we have

D (F.) = ch$se () m(F.)N[Spec (A)]
= chgzee® 5 (F.Q,A)N[Spec(A)]
=Di(F.Q4A).
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3. Perfect complexes of the minimal length.

Let (A, m) be a Noetherian local ring of dimension d and F. a perfect
complex with support {m}. The new intersection theorem (Roberts [18]) im-
plies that the length of F. is at least d. (Note that the Koszul complexes of
parameter ideals are perfect complexes of length d with support {m}.) Consider
the following :

CONJECTURE 3.1. Let (A, m) be a Noetherian local ring of dimension d.
Suppose that F. is a minimal perfect A-complex of length d with support {m}.
Then D4(F.)>0.

REMARK 3.2. The previous conjecture is true when F. is the Koszul com-
plexes of parameter ideals because their Dutta multiplicities coincide with the
usual multiplicities along the parameter ideals. If A is complete intersection,
then it is known that the above conjecture is true (see Corollary 18.1.2 in
and Remark 2.2). Furthermore this conjecture is affirmative when (A4, m) con-
tains a field of positive characteristic (Roberts [18]). In the case where (A4, m)
is a local ring essentially of finite type over a field of characteristic zero, we
can reduce this case to the case of positive characteristic. Therefore this con-
jecture is true when (A, m) is a local ring essentially of finite type over a field.

The following is an immediate corollary of some results about the positivity
of the Dutta multiplicities.

PROPOSITION 3.3. Let (A, m) be complete intersection, and M, N finitely
generated A-modules of finite projective dimension such that [4(MRN)<oco,
dim M+dim N=dim A and dim M=depth M. Suppose that one of the following
conditions is satisfied.

® A is essentially of finite type over a field.

® p"N=0 for an integer n, where p>0 is the characteristic of the residue

class field A/m.
Then 23;(—1)'4(Tord(M, N))>0 holds. (A part of this proposition was proved by
Dutta [5].)

PrROOF. Put s=dim M, t=dim N and d=dim A. Then t=d—s is equal to
the projective dimension of M by the Auslander-Buchsbaum formula. Let I=
anny,(M) and J=anny(N). Furthermore let F. (resp. G.) be the minimal A-
free resolution of M (resp. N). Set {p,, ---, p}={p=supp(N)|dim A/p=t}. It
follows from the argument in the proof of the vanishing theorem of intersec-
tion multiplicities due to Roberts that
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. l
2 (=D"u(Tori(M, N))= P Ly (N, ) chE I (F.4 A/ J)N[Spec (A/p;)]
l
= El Lay,(Np) - ch§peelad) (F. Q4 A /D) M[Spec (A /)]

= 3 Ly (Vo) D, (F-DaA /).

(In fact, the assumption that A is complete intersection implies Tspeccsy([A])=
[Spec(A)] by Corollary 18.1.2 and Theorem 18.3 (5) in [8]. Therefore 3, (—1)
Lo(Tord(M, N))=che{my(F.QaG )N Tspeccar([AD=ch (F.Q4G.)N\[Spec (4)] by
the Riemann-Roch formula (see Example 18.3.2 in [8]), where tspeccsr: KoAg—
A4 Spec(A)g is the Riemann-Roch map defined in Section 18 of [8]. (Recall
that, for a scheme X, a closed subscheme Y of X, and a bounded locally free
complex H. over X which is exact except for Y, ch,(Hl.): AxX¢—ALY ¢ is the
map defined by chy(H.)|a,xo= Pr-:(Chf|a, xy), Where p, i AY o —A. Yq is
the projection [8].) Then chy(F.QuG.)=i.j=q chi(F.Q4A/])-chj(G.)=3i1j-a
ch;(G.Q4A/I)-chy(F.) holds by Example 18.1.5 in [8]. Since dim A/I=s=d—¢,
ch,(F)N[Spec(A)]=0 when ¢<¢. Similarly, ch;(G.)"[Spec(A)]=0 when j<s.
On the other hand, we have ch(F.QuA/J) ch(G.)=chj(G.Q4A/I)-ch;(F.) for
any ¢ and j by the commutativity of the localized Chern characters (Roberts
[17]. Therefore we get chy(F.Q4G.)N[Spec (A)]=ch,(F.QR4A/])N(chs(G.)N
[Spec(A)]). By Example 18.3.2 in [8], we obtain rspeccass»([N])=ch&ei4) s (G.)
N Tspeccar([A]) = chPeetd)»(G.) N [Spec(A)].  Therefore, p,eTspeccassns([N]) =
chy(G)N[Spec (A)] holds, where p,: Ay Spec(A/J)q—A,Spec(A/J)q is the pro-
jection. By Theorem 18.3 (5) in [8], p:oTspeccarrs([N]) coincides with i,
l Avj(Np ;- [Spec (A/p ;1. Therefore

chy(F.Q4G.)N[Spec (A)] = chy(F.Q4A/ )N (PioTspeccarsr([N]))
= B F- @A/ lay (Vs [Spec(A/p)])

is satisfied.)

Then F.Q4A/p; is a perfect A/p;-complex of length t=dim A/p; with sup-
port {m/p,;} for each ;. Hence, if one of the conditions in this proposition is
satisfied, the Dutta multiplicities Dy, (F.®4A/b;) are positive for every j (see
Remark 3.2). Therefore the intersection multiplicity >3,(—1)*4(Tor4(M, N))
must be positive. Q. E.D.

In the rest of this section we will give an algebraic description to the Dutta
multiplicities of perfect complexes in the case where dim A<3.

PROPOSITION 3.4, Let (A, m) be a Noetherian local ring and F. a perfect
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A-complex with support {m}.
1. If dimA<1, then Dy(F)=3,(—1 (H,(F.)).
2. If dim A=2 and A is equi-dimensional, then D (F.)=3);(—1)"(H;(F.)).
3. If dim A=3 and A is normal, then

DLF) = 3{S D LHED+D D LHEE 3D}

= ’21—{4? (_l)i[A(Hi(FJ)_I—; (—l)ilA(Hi(F,(g)AKA))} ’

where K4 1s the canonical module of A, F.*is the dual complex whose component
of degree t is Hom (F_,, A) and F.*[—3] is the shifted complex, i.e., (F.*[—3]);
=F%*,,.. (Recall that A is assumed to be a homomorphic image of a regular local
ring. Therefore A has the canonical module K,.)

Before proving this proposition, we should investigate Tspecca>([Kal)-
For a Noetherian local ring A of dimension d, we set

Tspec)(LAT) = ta(lAD+7a-2([AD+ - +7o(LAD),

where 7,(LA])e A, Spec (A)q. Note that 7,([A]) is equal to [Spec(A)] by Theo-
rem 18.3 (5) in [8].

LEMMA 3.5. Let A be a Noetherian normal local domain of dimension d.

1) 7speccr([Kul)=7a(LAD—74-1([AD+7a-2([A]) mod(DEzFA; Spec(A)g).

(2) Put Cl(A)g=Cl(A)RXR2Q, where CI(A) is the divisor class group of A.
Then Cl1(A)q s naturally isomorphic to A,-,Spec(A)g.

(3 cl(K)=2-74-1([A]) in Cl(A)q=Aqs_,Spec(A)q, where cl(K,) stands for
the canonical class.

Proor. Take a regular local ring S and its prime ideal p satisfying S/p
=A. Put n=htsp. Let G. be the minimal S-free resolution of A. Then we
obtain K =Ext3}(4, S)=H,Homs(G.*[—n], S)).

First we will prove (1). If A is Cohen-Macaulay, then G.*[—n] is the
minimal S-free resolution of K,. Therefore

Tspecen([Kal) = ch§e(B(G *[—n])N[Spec(S)]
= t4([AD—7a-1([AD+7e-o([AD— -+ +(— Dz ([AD+ -

in this case (see Example 18.1.2 in [8]). Assume that A4 is not Cohen-Macaulay.
Then d=3, because A is normal. We get dimH;(G.*[—n])<d—3 for i#0, be-
cause A, is Cohen-Macaulay for every prime ideal q such that ht,q<2. By
Example 18.1.2 in [8] we obtain
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ta([AD—te-s([AD+7a-2[AD— -+ +(=D're-o([AD+ -
= ch$e(B (G *[—nDN[Spec(S)]

= %:1 (—1D*rspeccarHi(GF[—n]))

= tspeccr([K4]) mod (DI A;Spec(A)g).

(Recall that Tspeccay(LM]) is contained in Bi_,A;Spec(A) when dim M<; by
Theorem 18.3 (5) in [8].)

It is easy to check that Cl(A)q=A,_,Spec(A), by sending a divisorial ideal
J of A to [Spec(A/)]=7a«(LA/JD.

Let J be a divisorial ideal isomorphic to K,. Then there exists an exact

sequence
0 KA A A/] A 0 .

Therefore TSpec(A)([A/j:l):TSpeC(A)(I:A])—‘TSpec(A)([KA]> holds. Hence, from (1),
cl(K)=r4_1([A/J])=2-74-1([A]) in Cl(A)q=A,;-.Spec(A)q. Q. E.D.

PrOOF OF PROPOSITION 3.4. If A is Artinian, we have
; (=D LaH(F.)) = ch@eetd)m (F)NTspeccar([AD)
= chett)m (F.)N[Spec (4)]
= D,(F.).

If dimA>=1, then A,Spec(A)q=(0). So, we have rspeccr([AD=7([AD=
[Spec(A)] when dim A=1.
Assume that dim A=2 and A is equi-dimensional. Then we have
2 (= DU AH(F.)) = ch&ectdm (F)NTspeccar([AD)
= Dy(F.)+ch(F.)Nt([A])

because 7,([A])=0. Since dim A—dimsupp(F#.)=2 and A is equi-dimensional,
ch,(F.)=0 by the vanishing theorem of the first localized Chern character [16].

Next assume that dim A=3 and A is normal. Suppose that A=S/[l and S
is a regular local ring of dimension n. Let G. be a minimal S-free resolution
of A. Then we have

Tspeccr([A]) = ch§ee((G.)N[Spec (S)]
by definition of the Riemann-Roch map zspeccsy. Since A is normal, we have

Tspecy([Kal) = 75(LAD —7.([AD+7,([A])
by the previous lemma and the fact that A,Spec(A),=(0). Therefore,
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1 . )
D D LHE D+ (D LEHF. QLKD)

1
= 5 {ch8pectd) iy (F.)NTspeccar([A]) +ch8Bes {4y (F )N Tspeccas (LK 4D}
= D,(F.)+ch,(F)Nr, ([A]) .

Furthermore by the vanishing theorem of the first localized Chern character,
we have ch,(F.)=0.
Furthermore, we get

S (=D LH(F.Q4K)
= chy(F.)Nto([A]) —cho(F)NTo([AD) +chy(F)N7 ([A])
= 2 (DL HEFEF[-3]) .
Q.E.D.

REMARK 3.6. Let (A, m) be a normal Noetherian local ring of dimension d
and F. a perfect A-complex of length d with support {m}. From
3.4, we have D (F.)=[,(H,(F.))>0 when d<2. So, Conjecture 3.1 is true when
d<2 by Remark 2.4, Proposition 2.6 and Remark 2.8.

Next suppose d=3. Then we have

DA(F) = 5| (- DL HE D+ (- DULHEF -3}

]‘ i
= {2 vLEEeF-3)}

1
= 5 DAF.QF*[—3)),
because the perfect complex F.GF.*[—3] is self-dual. So, in order to prove
Conjecture 3.1 in the case of d=3, we may assume that A is normal and the
given complex F. is self-dual. Furthermore, in this case, D(F.)=[,(H,(F.))—
[4(H,(F.)) by the depth sensitivity (see Remark 2.2).

REMARK 3.7. Let (A, m) be a normal local domain of dimension 3 and F.
a self-dual perfect A-complex of length 3 with support {m}. Assume that A
has a maximal Cohen-Macaulay module M, i.e., finitely generated module with
depth M=3. Then we obtain

LaH(F.QM)) = A?a (—DUHH,(F.QM))
= chgeeed)my(F )N Tspeccay([LM 1)

= rank,M-D,(F.)+ch,(FoNt,(LM 1) 4ch(F.)Nz ([M]),
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since 73([M])=rank,M-75([A]). By the self-dualness of F., ch,(F.)=0 by Ex-
ample 18.1.2 in [8]. The vanishing theorem of the first localized Chern character
implies that ch,(F.)=0. Hence D,(F.)>0 in this case.

The author does not know whether the existence of maximal Cohen-Macaulay
module guarantees Conjecture 3.1 in general.

4. The difference between the Dutta multiplicity
and the alternative sum.

This section is devoted to investigating the difference between the Dutta
multiplicity and the alternative sum of the lengths of homology modules.

First of all, we give an example satisfying 3, (—1)*/,(H,(F.))<0, where F'.
is a perfect complex of length d with support {m} over a Noetherian local ring
(A, m) of dimension d.

EXAMPLE 4.1. Put R=Fk[x, v, 2z, W]z, 42 w>/(xy—2zw) (k is a field) and M=
R/(x, z). By there exists an R-module N such that [z(N)=15, pd,N=3
and

LZ(—l)ilA(Torg‘(M, N)=-1.

Let ¢t be a non-negative integer and A the idealization of M' (see [14]). Note
that A is an R-algebra and isomorphic to REHM? as an R-module. Let F. be
the minimal free R-resolution of N and put G.=F.®RrA. It is easy to check
that A is a Noetherian local ring of dimension 3 and G. is a perfect A-complex
of length 3 with support {m}, where m is the maximal ideal of A. Then we
have

2 (=DLHEG)

w

I

) (=1 H(G)

i

= S (= DHaMH(F)+t Z(— D (F.@aM)
= 15—¢.

Therefore 23, (—1)¥,H,;(G.)<0 for t>15.
On the other hand, D,(G.)>0 is satisfied since A is essentially of finite
type over a field £ (see Remark 3.2).

Next we argue about the dual complex.

REMARK 4.2. Let (A, m) be a Noetherian local ring of dimension d and F.
a perfect A-complex of length n with support {m}. By Example 18.1.2 in [§],
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we have
D,(F.) = (—=1)" D (F *[—n]).

In particular, D (F.)=D4(F.*[—d]) when n=d.

Let (A, m) be a Noetherian local ring of dimension d and F. a perfect A-
complex of length d with support {m}. In general 33%&,(—1){,(H,(F.)) does not
coincide with )&, (—D(H;(F.*[—d])) even if A is Cohen-Macaulay normal
as in Example 4.5. The next theorem guarantee &, (—DU,H;(F.)=
S (=D 4H(F*[—d]) in some special cases.

THEOREM 4.3. Let (A, m) be a Noetherian local ring of dimension d and F.
a perfect A-complex of length d with support {m}. Suppose that ome of the
following conditions is satisfied :
(0) (A, m) is a Gorenstein ring.
(1) d<2 and A is equi-dimensional.
2) (A, m) is normal with d<4 and the canonical class cl(K4) is torsion in
the divisor class group CI(A).
(3) d=3 and A,_,Spec(A)RzQ=(0).
(4) There exists a regular local ving (S, n) and a finite free S-complex G.
such that A is a homomorphic image of S and G.RsA is isomorphic to F'..
Then o (—DUaMH(F )= (=DM (F*[—d]) holds.

Before proving this theorems we have:

REMARK 4.4. With notation as above, put M=H,(F.). When A is Cohen-
Macaulay, we have

d .
igo (=DM H(F.) = [(M)
d -
g()(—l)l[A(Hi(F.*[-d])) = [,(Exti(M, A) = [,(MR.K,)
by the local duality theorem ([10]) and the depth sensitivity (Remark 2.2).

PROOF OF THEOREM 4.3. By Remark 4.4, it is obvious that )& (=1 (H,(F.))
is equal to )&, (—DH,;(F.*[—d])) when A is a Gorenstein ring.

Suppose d 2.

[t is trivial when 4=0.

We can prove {,(Ho(F.)—l,(H(F)=[,H,/F.*[—1)—,H(F.*[—-1])) by an
elementary method in the case of d=1 (for example, see Appendix A in [8]).

Next assume d=2. Then

éo (—l)ilA(Hi(l“J)~é‘0 (=) (H(F*[—2]) = 2-chy(F)N7,([A]).
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By the vanishing theorem of the first localized Chern characters, we get ch,(F.)
=0 since A is equi-dimensional.
When A is normal, we obtain

cl(Ky) =2-74.1([A]) € Ay_,Spec(A)q = Cl(A)q

by Cemma 3.5. Suppose (A, m) is a normal local ring of dimension 3. Then
we obtain
3

(— D LMH(F)— 2 (~ DL HF.A[—3])

2

= 2-chy(F)NT([AD+2-ch(F.)N7o([A]) .

0

It is obvious that 7,([A])=0 since A, Spec (A)q=(0). Therefore &, (— 1) (H,(F.))
=3¢ (=D H(F*[—d])) if the canonical class cl(K,) is torsion in Cl(A).
Next supposs (A, m) is a normal local ring of dimension 4. Then

4 4

2 (DU MHF)— 2 (=D H(FA[—4])

i=0 i=0
= 2-chy(F.)Nty([AD+2-chy(F)NT,([A])

holds. By the assumption that z,({A])=0 and the vanishing theorem of the
first localized Chern character [16], we get i, (—1)*L(H,(F.)=>2%_,(—1)"
{4H(F.*[—4])) immediately.

In the case where d<3 and A,_,Spec(A),=(0), we can prove the equality
as in the same way as in the case of (1) or (2).

Lastly assume that the condition (4) is satisfied. Since supp (G.)N\Spec (A)

={m}, dim Spec (A)+dim supp (G.) < dim Spec (S) holds by [20]. For ;<
dim Spec (A4), we obtain

ch;(F.) = ch;(G.QsA) =0
by since 7<dim Spec (S)—dim supp (&.). Therefore

S (CDULHF )~ 3 (D ULHEA—dD)

= 2{chqs(F)N7te-([AD+ches(F)NT4([AD+ -}

0
is satisfied. Q.E.D.

I

The following example implies that & ,(—1),H,(F.)) does not always
coincide with & (—1D(H,(F.*[—d])) even if (A, m) is a Cohen-Macaulay
normal ring of dimension 3. (Such an example was discovered by Roberts.)

EXAMPLE 4.5. Let %2 be a field and put
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A= (k[xo, X1, X2, Yo, Y11/ (XeX2—%1, XoY1—X1Y0, X1Y1—X2Y0)) 2y 21, 290 vg 1>+

Then there exists a finitely generated A-module M such that pdsM<co and
oo >[4 (M) = [,(Exti(M, A)).

We can prove [,(M)+={,(Ext3(M, A)) by using the example due to Dutta-
Hochster-MacLaughlin [6].

5. A special case of positivity of the Dutta multiplicity.

Let (A, m) be a normal Noetherian local ring of dimension 3, and F. a
perfect A-complex of length 3 with support {m}. We have already known in
Remark 3.6 that we may assume that the given perfect complex is self-dual
when we show D (F.)>0. This section is devoted to proving
which implies the positivity of the Dutta multiplicity in a special case. (Recall
that to prove the positivity of the Dutta multiplicities when the dimension of
the given ring is 3, we may assume that the given local ring is normal by
Remark 2.8.)

Before stating the theorem, we have to define some notation.

DEFINITION 5.1. For a Noetherian ring R and an R-linear map ¢: F—G
between finitely generated free R-modules F and G, we denote by I,(¢) the
ideal of R generated by all ¢ by ¢ minors of ¢. (This ideal does not depend on
the choices of free bases of F and G.) We put rank(¢)=max{t|/,(¢)+0} and
I(P)=Iank (D).

For an R-linear map d: F—R such that F is a finitely generated free R-
module, d(a)b—d(b)asF is called the Koszul relation of the map d determined
by a and b in F. (Obviously the Koszul relations are contained in Ker(d).)

When (R, n) is a Noetherian local ring, for a finitely generated R-module
M, pr(M) is defined to be dimg.M/uM, i.e., the cardinary of any minimal
generat'ng set of M as an R-module.

THEOREM 5.2. Let (A, m) be a normal Noetherian local ring of dimension
3, and

ds de dy
F.: 0 F, F, F, F, 0

a minimal self-dual perfect A-complex with support {m}. Assume the following
conditions.

(T1) rank, F,=1.

(T2) ﬂA(]l(dl))zrankAFl-

(T3) All the Koszul relations of d, are contained in d,(F,).
Then, Dy(F.)=1,Ho(F.)—[,H,(F.))>0.
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REMARK 5.3. With the same notation as in [Theorem 5.2, the condition
(T2) is automatically satisfied if A contains a field. In fact, consider the fol-
lowing complex :

ds ds
F.’:0 Fy F, F, 0.

If (T2) is not satisfied, we may assume d,(e)=0 such that {e} is a part of a
free basis of F,. By the minimality of F., e is not contained in d,(F,). On
the other hand, 0—F;—F,—F, is exact by the depth sensitivity (Lemma 2.2)
and mtecd,(F,) for n>0. But the improved new intersection theorem (for
example, see [7]) implies that such a complex have the length at least 3=dim A.
Contradiction.

The author does not know the example of a minimal self-dual A-perfect
complex of length 3 with support {m} such that the condition (T2) or (T3) is
not satisfied with coefficient ring A normal of dimension 3.

The most essential point of our proof of is the next lemma.
It is a slight generalization of the structure theorem of Gorenstein ideals of
codimension 3 due to Buchsbaum and Eisenbud [2]. The proof of the lemma
is the same as in [2].

LEMMA 5.4. Let (A, m) be a Noetherian local ring and

ds ds d,
F.: 0 F3 Fz F1 Fo 0

a minimal self-dual perfect A-complex such that

(L1) rank,F,=1,

(L2) H(F.)=0 for i=2, 3,

(L3)  palli(dy)=rank,F,,

(L4) all the Koszul relations are contained in d,(Fy).
Then by a suitable choice of free bases of F, and F,, the matrix of d, can be
alternative.

ProoOF. Denote by (G., ds) the tensor complex F.&.F..

At first we construct a chain map m: G.—F. satisfying the following three
conditions.

(Cl) mlr.gr, and m|p er. are isomorphisms.

(C2) For any 7 and j, m(aXb)=(—1)¥m(bXa) holds, where a=F; and b=F;.

(C3) m(c®c)=0 for any c=F,.
By choosing a generator of F,, identify F, and A. Then we have F.QF,=F.
and F,QF.=F.. We define m|r.or, and m|rr. by these identifications. (Then
it is clear that (Cl) and (C2) is satisfied when either 7 or s is equal to 0.) Let
{e,, ---, e;} be a free basis of F, (set t=rank,F,) and put d,(e;)=c;€A for [=
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1, -+, t. Consider the following diagram.

A
F®F, —> N°F, — F\QF,

l d,®1
ds

Fpm—m— Fy

where p (resp. A) is the multiplication (resp. diagonalization), i.e., u(aXb)=
aAb (resp. AlaANb)=aXb—bXa) for a, b&F,. For integers 7 and s such that
1<i<j<t, we have (d,®@1)eA)e; Ae,)=c.e;—c;e;Edo(F,) by the assumption (L4).
So there exists an A-linear map ¢: A?F,—F, which makes the above diagram
commutative, i.e., d,o¢=(d,Q1)-A. Put m|per,=¢°p. Then mod¢lreor,=
dsom| p,or, because
mede(e;Re;) = m(ciQe;—eQc;)

= (;€;—Cje;

= ((d1Q1)°Ae pr)(e:Rey)

= (dsom)(eRe;) .

Furthermore m(c®c)=0 for any c<F, since m|ror, is factored by g: FiQF,
—A?F.. Therefore (C2) and (C3) are satisfied when i=7=1.
For a=F, and b= F,, we have

(m-de)(a®b) = m(ds(a)Rb+aRd (b))
= m(dx(a)Qb)+d.(b)a

(mede)(bPa) = m(d,(b)Qa—bRd,(a))
= dy(b)a—m(bRdy(a))
= m(d:(a)®b)+d.(b)a .

Since H,(F.)=0, we can construct m|r,er, and m|rer, such that dsem=me-d¢
and m(a@b)=m(bRa) for any a<F, and any beF,.

Put m|e,=0 for /=4, 5, 6. Since d, is injective, m is a cham map satisfy-
ing (Cl), (C2) and (C3).

m|g,: Gs—F; consists of the following four maps,

mlrer,: FyQF, — F;
mlryer,: F,QF, —> F;
m|F1®F2: F\QF, — F;

mIFO®F3: F\QF, — F;.



386 K. Kurano

For A-modules L, Mand N, it holds that Hom (L ®,M, N)=Hom,(L,Hom (M, N)).
Hence we obtain the following maps,

ss: Fs —> Hom(F,, F3)
syt Fy —> Homy(F,, Fs)
sy 1 Fy —> Hom,(F,, F3)
So: Fy —> Homy(Fs, F3),

from m|ror, M| rer, Ml rer, and m|rgr, respectively. We will show that
the following diagram is commutative :

ds

F

P

*

d
Hom «(F,, Fy) —> Hom(F,, Fy).

We have only to show that ((s.cds)(@))(b)=((d*¥-s5)(@))(b) in F; for any acF,
and any b F,. Obviously ((d*-s:)(a))(b)=(ss(a))(d,(b))=m(aRd,(b)) by definition
of s;.  Furthermore ((s:ods)(a))(b) = (so(ds(a))(b) = m(ds(a)®b). Since 0=
mede(a@b)=m(d:(a)QRb)—m(aRd (b)), we have got s,eds=d%¥es;.

Since m| p,or, is an isomorphism, so is s;. Next we will show that s, is
also an isomorphism. Consider the following commutative diagram :

d*
Hom(F;, A) «——— Hom (F,, A)
s¥ TS’%‘
)+

HOmA<H0mA(FO) Fa), A)

Hom (Hom(F,, F), A).

We have only to show that s¥ is an isomorphism. From the assumption of the
self-dualness of F. and (L3), both of the following two exact sequences

d%

0 <— Hy(F.) <— Hom(F,, A) <— Homy(F;, A)

ap*

0 «<— H(F.) <— Hom,(Hom4(F,, F3), A)

HomA(HomA(Fl) Fa), A)

are initial parts of the minimal free resolution of H,(F.). So, s¥ must be an
isomorphism.

Fixing a generator of Fj, identify Hom,(F,, F;) and F¥. Since s,: Fy,—F%
is an isomorphism, we can choose a free basis {e,, ---, e;} (resp. {gi, -, &:})
of F, (resp. F,) such that s,(g;)=e* for /=1, ---, t, where {e%, ---, ¢f} is the
dual basis of Ff. Note that e%(d.(g:)=(s:(g))dx(g))=m(g;Qd(g.)) for any i
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and ;. So, for integers ¢ and ; such that /=7, we have
(dsoe¥)(dx(8:)) = (deom)(g,ds(g:))
= m(d(g,)Qdx(g:)
= —m(dx(g)Xd.(g,)
= —(dsoe})(d(g5) -
Since d, is injective, e*(d.(g:)=—e¥(ds(g;). Furthermore, for /=1, -, ¢,
(dsoe?)(do(g)) = m(ds(g:)Qdx(8:) = 0.

So, e¥(dy(g:))=0. Therefore the matrix of d, under the free bases is alter-

native. Q.E.D.
Before proving [Theorem 5.2, we have to recall the properties of pfaffian
ideals.

DEFINITION 5.5. For a 2/ by 2/ alternative matrix M=(m;;), we denote by
pfa(M) the square root of det(A) and it is called the 2/-order pfaffian of M.
(It is well-known that we have

1
pfa(M)= 5T 2 (SEN Mg e Mocat-nocel) »
2 'l! ge@ZL

where the above sum runs over all permutations in the 2/-th symmetric group
©,. Note that the right hand side of the above equation is defined over an
arbitrary commutative ring.) ‘

For an n by n alternative matrix N and a sequence of integers 1<z, < -+
<iuZn, denote by pf.(z, -, 7y) the 2/-order pfaffian of the alternative sub-
matrix of N consists of the 7,-th row, ---, the 7,-th row and the 7,-th column,

- the 7,-th column of N. Denote by Pf,;(N) the ideal

(Pfally, -y ) [ 150, < <dyy=n)
and call it the pfafian ideal of order 2/. (It is well-known that
L(N) < Pfu(N) © ~/Iu(N)
for any integer / and for any alternative matrix N over any commutative ring.)

REMARK 5.6. Let C=(c;;) be a 2[+1 by 2/+1 alternative matrix. Then
for each /=1, ---, 2[+1, we have

21+1 )
2 (—1)]“17][21(1, AR PR 21+1)C“ =0 s
J=1

where pfo(l, -+, 7, -+, 204+1) stands for pfa(l, -+, j—1, j+1, -+, 20+1). They
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are relations on pfaffians of degree 1. (See for the details.)

REMARK 5.7. Let Z be the ring of integers and X=(x,;) the generic 2/+1
by 2{+1 alternative matrix. For the simplicity of notation, we denote by
pfa(k) the 2l-order pfaffian pfn(1, -, k\, <o, 2141, Put R=Z[x)isicisotene
Denote by M the 1 by 2/+1 matrix

(pfa(l) —pfal(2) - (=D 'pfalk) - pfall+D)

and put N='M. Consider the following sequence of R-linear maps:

M

N X
L. : 0 R R21+1 R21+1 R
Lg Lz Ll LO
By Remark 5.6, MX=0 and XN=0. So, L. is a complex. It is known that L.
is the minimal free resolution of R/Pf,(X) ([2]). It is easy to check that
I (X)=0 and [,(M)=I1,(N)=~/I,,(X)=Pf4(X) since Pf,(X) is a prime ideal
(see [12]). So, the complex L. has the depth sensitivity ([3]) with respect to

2041 by 2[-+1 alternative matrices, i.e., for any Noetherian ring A and any
2[4+1 by 2[41 alternative matrix (a;;) over A,

3—max {/ |H;(L.®rA)#0} = grade (Pf.((ay))))

holds, where A is regarded to be an R-algebra by the ring homomorphism
¢: R—A defined by ¢(x;)=a,; for 1</<j<2/+1.

We now start to prove [Theorem 5.2.

PrOOF OF THEOREM 5.2. Put t=rank,(F;,). Then it is easy to see that
rank (ds)=rank (d,)=1, rank(d,)=t—1 and ~/I(d\)=+/I(d,)=+/I(d;)=m because
A is an integral domain. Since A is normal, H;(F.)=0 for /=2, 3. So, by a
suitable choice of free bases of F, and F,, we may assume that the matrix
standing for d, is alternative by Lemma 5.4. Therefore rank(d,) must be even.
Set t=2/+1.

Let (a;;) be the 2/41 by 2/41 alternative matrix corresponding to d,. Then
VI(d)=~Pfu((a;))=m. So, grade(Pf((a;;)))=2. Therefore H;(L.QrA)=0
for /=2, 3 (see Remark 5.7). On the other hand 0—F,—F,—F, is exact. Hence
by a suitable choice of a generator of F,, we may assume that the 2/+1 by 1
matrix standing for ds is ‘(pfa(l) —pfa(2) -+ pfu@l£D). Next consider
F.*, By the same argument as above, we may assume that the 1 by 2/+1
matrix corresponding to d,is (pfa(1l) —pfa(2) -+ pfa(2+1) by a suitable
choice of a generator of F,. Therefore we obtain F.=L.QzrA.
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Let Y'=(y,;) be the 2/+1 by 2/+1 generic alternative matrix over A. Put
B = A[yijl1§i<]'§21+1:|.(m.(yijI1§i<j§2l+1)) .

Since dim B=3+I[(2/4+1) and I=Pf,;((y))-B is a prime ideal of height 3, we
have dimB/I=I(2[+1). (Note that A is universally catenary because it is a
homomorphic image of a regular local ring.)

We give the R-algebra structure to B (resp. B-algebra structure to A) via
¢ : R—B defined by ¢(X)=Y (resp. §: B—A defined by &§Y)=(a;;). Put H=
L.QrB. Note that F.=L.QzA=H.RQsA. By the depth sensitivity ([3]), H. is
the minimal free resolution of B/I.

Let K. be the Koszul complex over B defined by {y;;—a;;|1=i</<20+1}.
It is obvious that K. is the minimal B-free resolution of A.

Consider the following double complex H.QzK. :

H:QKi¢101 —> —> H,QK,
1 : : l
HQKi11 —> —> H,QK,
l : : I
HQKicer — —> H,QK,
! oo A
H@K v —> - —> HRQK,.

Then we have
B (~DUHE) = (=11 (K.QsB/1)

by the argument on the spectral sequences. Since dimB/I=I[(2/+1) and

B/I+ij—ai;11=i<jL204+1)=A/Pf (@), {yi—a;11=5i<j<20+1} is a sys-

tem of parameter of B/I. (y;;—a;; means the image of y,;—a;; in B/I.)
Therefore we obtain

La(Ho(F ) —L4(Hy(F.) = 2 (=D 1(K.Q8B/1) = eqymar;nsi<isucn(B/1)>0.

We have completed the proof of [Theorem 5.2l Q.E.D.
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