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On affine hypersurfaces with parallel nullity

By Katsumi NOMIZU® and Barbara OPOZDA**

(Received Nov. 8, 1991)

Affine differential geometry for hypersurfaces in the classical sense of
Blaschke is based on the hypothesis that the given hypersurface is nondegen-
erate; quote from [B, p. 104]: Fiir parabolisch gekriimmte Fldchen (“Torsen”,
LN—M?*=0) versagt die Grundform. In relative geometry (for example, see
[S] and in the study of affine immersions [N-PI], [N-P2], the nondegeneracy
condition is often important, although a few results (for example, Berwald’s
theorem [N-P2], Radon’s theorem [0]) have been established under a some-
what weaker assumption on the rank of the fundamental form h.

In this paper, we examine a general condition weaker than nondegeneracy
under which geometry of a given hypersurface can be reduced to the classical
situation. We start with an immersion f: M"*—R®*. For an arbitrary choice
of a transversal vector field &, consider the condition that the kernel T® of h be
parallel relative to the connection N induced by & It turns oul that this condi-
tion is independent of lhe choice of & Under this condition of parallel nullity
and under a completeness assumption which is also intrinsic, we shall show
that f is globally a cylinder immersion of the form M"=M"XL, f=f,Xf,,
where f,: M™—>R"*! is a nondegenerate hypersurface, L is a leaf of T° and
fo is a connection-preserving map of L onto R"~", where R™*! and R* " are
affine subspaces in R"*' that are mutually transversal. Such a representation
is unique up to equiaffine transformation. Thus the geometry of M™ is com-
pletely determined by that of a profile nondegenerate hypersurface M”™ in R7+!
that is itself uniquely determined up to equiaffine equivalence. For later appli-
cations we include additional information on transversal vector fields.

1. Preliminaries.

Let f: M*—R"* be a connected hypersurface immersed in the affine space
R+ provided with a fixed determinant function (volume element). Around

*) The work of the first author is supported by an Alexander von Humboldt research
award at Technische Universitit Berlin and Max-Planck-Institut fiir Mathematik, Bonn.
**) The work of the second author is supported by an Alexander von Humboldt
research fellowship at Universitidt zu Koéln and Max-Planck-Institut fiir Mathematik, Bonn.



694 K. Nomizu and B. Opozpa

each point of M™ let & be an arbitrarily chosen transversal vector field. As
usual, we write

(D) Dxf«(Y)= f+(NxY)+h(X, V)&
and
(1) Dxé = — f«(SX)+12(X)E,

where X, Y are vector fields on M™, V¥V is the induced connection on M®, h the
affine fundamental form, S the shape operator, and = the transversal connection
form, all depending on the chosen & The following lemma is standard.

LEMMA 1. If we change & to another transversal vector field E=(f+Z+&)/A,
where Z is a certain veclor field on M™ and 2 a posilive function, then the in-
duced connection, the affine fundamental form, the transversal connection form,
and the shape operator change as follows:

ey h=2h;
2) TxY =YY —h(X, VZ;
3) T =r1+9—d(log 1),

where ) is the 1-form such that p(X)=h(X, Z) for all X;
4) SX=[SX—TxZ+o(X)Z+NWX, Z2)Z]/A.

By virtue of (1) we see that the rank of 7 at a point x is the same as
that of A at x. We call it the rank of f at x. We also see that the null
space {X: h(X, Y)=0 for all Y} at x is the same as the null space of h at x.
This null space of 4 is denoted by T°x). We shall say that 7T° is parallel
relative to V if, for any curve from x to y, parallel translation along the curve
maps T°x) onto T°(y). In this case, the dimension of 7°x) remains constant
on M™. In general, it is known that a differentiable distribution, say T°, is
parallel if and only if for any vector field Y =T° we have VY &T° for every
vector field X.

LEMMA 2. The condition that T° is parallel relative to N is independentJof
the choice of transversal vector field.

PROOF. Suppose T° is parallel relative to V. For any curve x;, 0<t<1,
and for any V-parallel Y,=T° we have by (2)

vt:Yt = VzYz—h(Xt, YO)U=VY,=0,

where X, is the tangent vector field of x,. Thus Y, is V-parallel. This means
that 7° is V-parallel.
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From now on, we assume that our hypersurface satisfies the condition of
parallel nullity (that is, 7° is parallel relative to V). The distribution 7° being
parallel, it is integrable and totally geodesic. We say that T° is complete if
each leaf L of T° is complete relative to V, that is, every V-geodesic in L
extends infinitely for its affine parameter. In this regard we have

LEMMA 3. On each leaf L of T° the induced connection N is the same for
any choice of & In particular, the property that T is complete is independent
of the choice of &.

Proor. If X, Y are vector fields on L, then we have VzY =VyY —h(X, YU
=VxY. Thus two connections V and ¥ coincide on L.

From (I), we easily get

LEMMA 4. For every leaf L of T° f(L) is a totally geodesic submanifold
in R**'. If T° is complete, then f(L) is an entire affine subspace of dimension
s=dim T°; f actually gives a connectlion-preserving diffeomorphism of L onto the
affine subspace f(L). Moreover, for two distinct leaves L, and L, of T°, f(L,)
and f(L,) are affine subspaces which are D-parallel in R™*.

REMARK 1. If the connection V induced by some transversal vector field &
is complete and if T° is parallel, then T° is complete.

REMARK 2. If an affine hypersurface f: M"—R"*! has the property that
Vh=0 for some choice of transversal vector field, then it obviously satisfies the
condition of parallel nullity.

REMARK 3. For an affine hypersurface f: M"—R"*!, the Gauss equation
implies that for each point x&M™ we have

TO(JC) C mX.YETx(M"') ker R(X, Y) .

The two subspaces coincide if the rank of Sis >1 at x. If rank S>1 every-
where and if VR=0, then it follows that T° is parallel.

We add the following facts for later use. Assume that two transversal
vector fields & and € coincide mod T°, that is, £=&- f«(Z), where Z=T°. Then
from we see that

S=SmodT® and ¥ =VYmodT°,

thatis, VxY —VxY &T° for all vector fields X, Y. Now using these facts it is
easy to establish the following.

LEMMA 5. Assume that E=&mod T°. Then we have
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(&) NYh=Vh,
(6) R = Rmod T°,

that is, R(X, YYW—R(X, Y)WeT® for all X, Y, W.
Moreover, if & satisfies ST°CT®, then

) YS =V9S mod T°,
) VR =YR mod T°.

2. Global cylinder representation of a hypersurface M™.
We now prove the following theorem.

THEOREM. Lel f: M™R™? be a connected hypersurface such that its ajfine
Jundamental form h has parallel kernel T°. Assume that T° is complete. Then
we can express f:M"—>R" as follows: M"=M"XL, f=fiXf, where
f1: MT™—R™ is a connected nondegenerate hypersurface and f, is a connection-
preserving map of a leaf L of T® onio R™ ", and R"™'=R"™XR"". Such a
represeniation is unique up 1o equiaffine transformation of R"*' so that a non-

degenerate profile hypersurface M™ is determined uniquely up io equiaffine trans-
formation of R™*.

PROOF. Let x, be an arbitrary but fixed point of M™. For the leaf L
through x, of Ty, f(L)is an entire affine subspace of dimension s=n—r through
o=f(x,) in R™', C(Call it R*. For any point p=R"*' we denote by R*(p) the
s-dimensional affine subspace through p that is parallel to R°. Again from
we know that if x=M™, then the image by f of the leaf L(x)
through x coincides with R*(f(x)). Let us choose an affine subspace of dimen-
sion r-+1, say, R™*!' through f(x,) that is transversal to R*. The mapping
f:M"—R"! is then transversal to R”**. In fact, for any x&M" such that
p=f(x)=R™*' we have T ,(R*)=T,(R™™)+ f«(T(M™)), because f«(T (M™))
contains R*(p)=f(L(x)), where L(x) is the leaf of T° through x. By a well-
known theorem (for example, see [H, p. 22]), it follows that M"={xesM":
f(x)&R7'} is an r-dimensional submanifold of M®. We see that the restric-
tion of f:M"—R"" to M™ gives rise to a hypersurface f,: M"—R"*'; we
shall show in a moment that M" is connected. In the case where the original
immersion f: M"—R"* is an imbedding, we may think of M" as the inter-
section of M™ with R™*!,

Now we define a one-to-one map @ : M*—M"x L as follows. We consider
o=f(x,) as the origin of R™*', R® and R"*!, whenever we need a reference
point in each of these affine spaces. Now for any x&M", we define
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Dx)=(y,2)e M"XL,,

where v, z are determined as follows. Consider p=f(x). For the leaf L(x) of
T° through x, f(L(x)) is the affine subspace R*(p), which meets R"*' at a
certain unique point, say, ¢g. Since f is one-to-one on L(x), there is a unique
point yeL(x)CM" such that f(y)=¢g. This means y=M7". On the other
hand, the vector from ¢ to p is parallel to the vector from o to z, where z is
a certain uniquely determined point of R®. It is now easy to find the inverse
map M™X L—M" of @. Since @ is differentiable, the existence of the projec-
tion M"—M7™ shows that M7 is connected. So we get a cylinder representa-
tion of M™ with a profile hypersurface MT.

We have yet to prove the uniqueness of such a representation. For this
purpose we use the following lemma in analytic geometry that is easy to prove.

LEMMA 6. Let R® be a fixed affine subspace of the affine space R™*'. Sup-
pose R7*' and R7+' are two affine subspaces that are iransversal to R*. We
define a map F, of R onto R™*'as follows: for each point x<R™*, lel R%(x)
denote the affine subspace through x thal is parallel to R°. We let % be the uni-
quely determined point of intersection with R™*' and set Fy(x)=ZX. Then Fy is
an affine transformation of R™*' onto R™*'. Moreover, F, is equiaffine (that is
volume-preserving) if we fix a delerminant function (parallel volume element) @y,
on R™*' and a determinant function ws on R*, and further define determinant
functions ., and &, on R™ and R7+1 yrespectively, such that @,s1=®r+1/\®s
=Wr11 N\ Ws.

Now suppose @ : M**'>M7xL is another cylinder representation, where
fi: M™—R7+ is nondegenerate hypersurface of R"*!' and f,: L—R*® is a con-
nection-preserving map of a leaf L of T° onto an affine subspace R*® transversal
to R™*!. We may assume, without loss of generality, that L=L, R*=R*, and
fo=F.. Then we get an equiaffine transformation F,: R"*'»R"*! in the manner
of Cemma 6. Combining this with the identity map: R*—R*® we get an equi-
affine transformation, denoted by F, of R™*! onto itself. It is now clear that
F(M™)=M" and @=F-®. This completes the proof of the theorem.

COROLLARY. Under the assumption of the theorem, we can find a unique
iransversal vector field & for M™ with the following properlies:

1) & is D-parallel in the direction of T°; the affine shape operator vanishes
on T°.

2) The restriction of & to a profile hypersurface M"™ coincides with the affine
normal of the nondegeneraie hypersurface M".

Such & is unigue once a profile hypersurface is chosen.

REMARK 4. If we do not assume the completeness for T° then for any
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point x, of M™ we can get a local cylinder decomposition of a neighborhood U
of x, in the form V XW, where U is a nondegenerate hypersurface in R"*' and
W is an open subset of R°.

We add some more information on the relationship between the geometry
of M™ and that of M". Continuing the notation in the proof of the theorem,
we define a distribution 7! by

T!= fex Y (R™Y for each xeM™®,

where R"*! is now considered as the vector subspace instead of the affine space
R7™*' through f(x,). This distribution is obviously integrable. We denote by
n the projection of the vector space R™*' onto R™*' (parallel to the subspace
R®). We also denote by the same symbol the projection of TM onto T* parallel
to T° so that fuem=n-fyx. Let & be a transversal vector field to f. We
define E=z-&. Then & is also transversal to f and equal to & mod T°. By the
formulas preceding and by those in we have

PROPOSITION.
h=h zt=r¢, S==r-S, Tx¥Y ==T4%Y)
R(X, Y)W = =n(R(X, W),

TS)Y) = a(VxS)Y),
and

WwRXX, Y)W = a(TwRXX, Y)V),

where X, Y, V, W are vector fields belonging to T*; for the last lwo identities
we need to assume that & satisfies the condition ST°CT® in Lemma 5. Moreover,
the same relations hold if N is considered the comneclion on M7 (that is, the re-
striction to MT).

REMARK 5. If & is assumed to be equiaffine, then certainly all the identities
in hold. Moreover, & is parallel relative to D along T°.

Combining Remarks 3, 5 and the last identity in the proposition we obtain

COROLLARY. Assume & is an equiaffine transversal vector field to a hyper-
surface f: M™—R™*" such that the induced connection satisfies VR=0. If rank
S>1 everywhere, then M™ is locally a cylinder M™XR® and NV on MT™ is locally
symmetric.
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