The Neumann and Dirichlet problems for elliptic operators

By Hisako WATANABE

(Received July 23, 1991)

1. Introduction.

Let D be a bounded C^1 -domain in \mathbb{R}^d . In [3] E.B. Fabes, M. Jodeit JR. and N.M. Rivière proved that, for every $f \in L^P(\partial D)$ satisfying $\int f d\sigma = 0$, there exists a function u which is harmonic in D, and $\langle \nabla u(X), N_P \rangle$ converges to f(P) with an exception of a set of surface measure zero as X tends to P nontangentially. The corresponding results have been obtained even for a Lipschitz domain D in the case 1 (cf. [4], [2]).

On the other hand it is well-known that in \mathbf{R}_{+}^{d+1} the Poisson integral of the Bessel potential $G_{\alpha}*f$ of each $f \in L^p(\mathbf{R}^d)$ converges not only nontangentially but also tangentially except for a set of an appropriately dimensional Hausdorff measure zero (cf. [1]).

In [7], for a bounded $C^{1,\alpha}$ -domain D, we have studied the boundary behavior of the derivatives of solutions for the above Neumann problem, not up to an exception with a set of surface measure zero, but up to an exception with a set of β -dimensional Hausdorff measure zero for β satisfying $0 < \beta < d-1$.

In this paper we will consider the corresponding boundary behaviors of solutions of the Dirichlet and Neumann problems for uniformly elliptic differential operators.

Let L be a differential operator on \mathbf{R}^d $(d \ge 3)$ defined by

(1.1)
$$L = \sum_{j, k=1}^{d} D_j(a_{jk}D_k),$$

where $D_j = \partial/\partial x_j$ and a_{jk} are of class $C^{1,\alpha}$ with $a_{jk} = a_{kj}$. Moreover L is assumed to be uniformly elliptic. This means that there exists a positive real number $\lambda > 1$ such that

$$|\lambda^{-1}|\xi|^2 \leq \sum_{i,k=1}^d a_{ik}(X)\xi_i\xi_k \leq \lambda |\xi|^2$$

for all X, $\xi = (\xi_1, \dots, \xi_d) \in \mathbb{R}^d$.

Let D be a bounded $C^{1,\alpha}$ -domain in \mathbb{R}^d and $0 < \beta < d-1$. To classify functions defined on ∂D , we use, as in [7], a countably sublinear functional γ_{β} and

a function space $\mathcal{L}(\gamma_{\beta}, C(\partial D))$, instead of the L^p -norm and $L^p(\partial D)$, respectively.

More precisely, let $J(\partial D)$ be the class of the extended real-valued functions on ∂D and define, for $f \in J(\partial D)$,

$$\gamma_{\beta}(f) := \inf\{\sum_{j=1}^{\infty} b_j r_j^{\beta}; b_j \in \mathbb{R}^+, \sum_{j=1}^{\infty} b_j x_{A(P_j, r_j)} \ge |f| \text{ on } \partial D\},$$

where $A(P, r) = B(P, r) \cap \partial D$ and B(P, r) stands for the open ball in \mathbb{R}^d with center P and radius r.

The functional γ_{β} is countably sublinear, i.e., it is a mapping from $J(\partial D)$ to $\mathbb{R}^+ \cup \{+\infty\}$ with the following properties:

- (i) $\gamma_{\beta}(f) = \gamma_{\beta}(|f|)$,
- (ii) $\gamma_{\beta}(bf) = b\gamma_{\beta}(f)$ for each $b \in \mathbb{R}^+$,
- (iii) $f, f_n \ge 0, f \le \sum_{n=1}^{\infty} f_n \Rightarrow \gamma_{\beta}(f) \le \sum_{n=1}^{\infty} \gamma_{\beta}(f_n).$

To simplify the notations, we use $\gamma_{\beta}(E)$ instead of $\gamma_{\beta}(\chi_{E})$ for a subset E of ∂D . A subset E of ∂D is called γ_{β} -polar if $\gamma_{\beta}(E)=0$. We has shown in [7] that, a Borel set E is γ_{β} -polar if and only if it is of β -dimensional Hausdorff measure zero.

We say that a property holds γ_{β} -q.e. on ∂D if it holds on ∂D except for a γ_{β} -polar set. Note that, if $\gamma_{\beta}(f) < +\infty$, then $|f| < +\infty$ γ_{β} -q.e. on ∂D .

Let us denote by $\mathcal{L}(\gamma_{\beta}, C(\partial D))$ the class of all Borel measurable functions f such that $\gamma_{\beta}(f-f_n)\to 0$ for some sequence $\{f_n\}\subset C(\partial D)$, where $C(\partial D)$ stands for the class of all continuous real-valued functions on ∂D .

Furthermore we denote by $L(\gamma_{\beta}, C(\partial D))$ the family of the equivalent classes relative to the equivalent relation defined by $f = g \gamma_{\beta}$ -q.e. on ∂D . The space $L(\gamma_{\beta}, C(\partial D))$ is a Banach space with norm $||f|| = \gamma_{\beta}(f)$ and it enables us to use the method of layer potentials.

Let $0 < \eta < 1$. The approach region at P is a nontangential region defined by

$$\Gamma_{\eta}(P) := \{X \in D; \langle P - X, N_P \rangle > \eta | X - P | \},$$

where \langle , \rangle is the inner product and N_P is the unit outer normal to the boundary at P.

Using the countably sublinear functional γ_{β} , we can estimate the nontangential maximal functions of 'double layer potentials' and the gradients of 'single layer potentials' by the same method as in the L^p theory, without technical skills.

In §6 the following Neumann problem with boundary data $\mathcal{L}(\gamma_{\beta}, C(\partial D))$ will be proved.

Theorem 1. Let $0 < \alpha < 1$ and D be a bounded $C^{1,\alpha}$ -domain in \mathbb{R}^d . Furthermore, assume that $0 < \beta < d-1$ and $0 < \eta < 1$. Then for each function $f \in$

 $\mathcal{L}(\gamma_{\beta}, C(\partial D))$ such that $\int f d\sigma = 0$ there exists a function u in D and a subset E of ∂D having the following properties:

- (i) E is a set of β -dimensional Hausdorff measure zero,
- (ii) Lu=0 in D.
- (iii) $\lim_{X\to P, X\in \Gamma_{\eta}(P)}\langle A(P)N_P, \nabla u(X)\rangle = f(P)$ for every $P\in\partial D\setminus E$, where A(P) stands for the matrix $(a_{jk}(P))$.

In §7 the following Dirichlet problem with boundary data $\mathcal{L}(\gamma_{\beta}, C(\partial D))$ will be proved.

THEOREM 2. Let $0 < \alpha < 1$ and D be a bounded $C^{1,\alpha}$ -domain in \mathbb{R}^d such that $\mathbb{R}^d \setminus \overline{D}$ is connected. Furthermore, assume that $0 < \beta < d-1$ and $0 < \eta < 1$. Then for each function $f \in \mathcal{L}(\gamma_{\beta}, C(\partial D))$ there exists a function v in D and a subset E of ∂D having the following properties:

- (i) E is a set of β -dimensional Hausdorff measure zero,
- (ii) Lv=0 in D,
- (iii) $\lim_{X\to P, X\in\Gamma_{\eta}(P)} v(X) = f(P)$ for every $P \in \partial D \setminus E$.

We note that, if $\lambda > d-1-\beta > 0$, then $\mathcal{L}(\gamma_{\beta}, C(\partial D))$ contains all functions of the form:

$$P \longmapsto \int \mid P - Q \mid^{\lambda + 1 - d} g(Q) d \, \sigma(Q)$$

for $g \in L^1(\partial D)$ (cf. [7]). Furthermore if $0 < \alpha < d < \alpha + \beta$ and G_{α} be the Bessel kernel with order α , then the restriction of $G_{\alpha} * f$ to ∂D belongs to $\mathcal{L}(\gamma_{\beta}, C(\partial D))$ for every $f \in L^1(\mathbf{R}^d)$ (cf. [8]).

2. The fundamental solution.

In this paper, let D be a bounded $C^{1,\alpha}$ -domain for $0<\alpha<1$. Recall that a domain D in \mathbf{R}^d is called a $C^{1,\alpha}$ -domain if to each point $Q\in\partial D$ there correspond a system of coordinates of \mathbf{R}^d with origin Q and an open ball $B(Q,\rho)$ with center Q and radius ρ such that with respect to this coordinate system

$$D \cap B(Q, \rho) = \{(x, t); x \in \mathbb{R}^{d-1}, t > \phi(x)\} \cap B(Q, \rho),$$

where $\phi \in C_0^{1,\alpha}(\mathbf{R}^{d-1})$ and $\phi(0)=D_j\phi(0)=0$. Note that $C_0^{1,\alpha}(\mathbf{R}^{d-1})$ stands for the space of all functions g in $C_0^1(\mathbf{R}^{d-1})$ with compact support satisfying

$$|D_j g(x) - D_j g(y)| \le M|x - y|^{\alpha}$$

for all x, $y \in \mathbb{R}^{d-1}$ and $1 \le j \le d-1$.

We take a sufficient large number R such that $B(0, R) \supset \overline{D}$. To find a

fundamental solution of the uniformly elliptic operator L defined by (1.1), we consider the differential operator

$$(2.1) L_0 = L - b,$$

where b is a nonnegative function of class $C^{1,\alpha}$ such that

$$b=0$$
 on $B(0, 2R)$, $b=1$ on $\mathbf{R}^d \setminus B(0, 3R)$ and $0 \le b \le 1$.

Denote by A(X) the matrix $(a_{jk}(X))$, by $A^{-1}(X)=(a^{jk}(X))$ the inverse matrix of A(X) and by det A(X) the determinant of A(X). The following function H defined on $\mathbb{R}^d \times \mathbb{R}^d$ is fundamental:

$$H(X, Y) := (d-2)^{-1} \omega_d^{-1} (\det A(Y))^{-1/2} \langle A^{-1}(Y)(X-Y), X-Y \rangle^{(2-d)/2}.$$

The following theorem is well-known (cf. [5, Theorem 20.1]).

THEOREM A. Let L_0 be the differential operator defined by (2.1). Then L_0 has the fundamental solution F in \mathbb{R}^d with the following properties:

- (a) F is continuous outside of the diagonal set $\{(X, X); X \in \mathbb{R}^d\}$, together with first and second derivatives,
 - (b) $|F(X,Y)-H(X,Y)| \le c|X-Y|^{\alpha+2-d}$,

$$\left|\frac{\partial (F-H)}{\partial x_{j}}(X,Y)\right| \leq c |X-Y|^{\alpha+1-d} \quad and \quad \left|\frac{\partial^{2}(F-H)}{\partial x_{j}\partial x_{k}}(X,Y)\right| \leq c |X-Y|^{\alpha-d}$$

for all $X, Y \in B(0, 3R)$.

(c) For each $Y \in \mathbb{R}^d$

$$L_0F(\cdot, Y) = 0$$
 in $\mathbb{R}^d \setminus \{Y\}$.

3. The operators K and K^* .

We begin with the following lemma.

LEMMA A ([7, Lemma 2.6]). If $0 < \beta < d-1$, then

$$\gamma_{\beta}(M_{\sigma}f) \leq c\gamma_{\beta}(f)$$
 for all $f \in \mathcal{L}(\gamma_{\beta}, C(\partial D))$,

where

$$M_{\sigma}f(P) = \sup \left\{ r^{1-d} \int_{A(P,r)} |f| d\sigma; r > 0 \right\}.$$

Now, let us define, for a Borel function $f \in J(\partial D)$ and $P \in \partial D$,

$$Kf(P) = - \int \langle A(Q)N_Q, \nabla_Q F(Q, P) \rangle f(Q) d\sigma(Q)$$

and

$$K*f(P) = -\int \langle A(P)N_P, \nabla_P F(P, Q) \rangle f(Q) d\sigma(Q)$$

if they are well-defined, and Kf(P)=0, K*f(P)=0 otherwise.

The operator K^* has the following properties.

LEMMA 3.1. Let p>1 and $0<\beta< d-1$. Then

- (a) $|K^*f| \le cM_{\sigma}f$ for all Borel measurable functions f in $L^1(\sigma)$,
- (b) K^* is a compact operator on $L^p(\sigma)$,
- (c) K^* is a compact operator on $L(\gamma_{\beta}, C(\partial D))$.

Proof. (a): Note that

$$(3.1) \qquad -\langle A(P)N_P, \nabla_P F(P, Q) \rangle = \langle (A(Q) - A(P))N_P, \nabla_P F(P, Q) \rangle$$
$$+\langle (A(Q)N_P, \nabla_P (H(P, Q) - F(P, Q)) \rangle$$
$$-\langle (A(Q)N_P, \nabla_P H(P, Q) \rangle.$$

Since a_{jk} are of class $C^{1,\alpha}$, it follows from Theorem A that the absolute values of the first and second terms on the right-hand side of (3.1) are dominated by $c_1|P-Q|^{\alpha+1-d}$. Noting that

$$\langle A(Q)N_P, \nabla_P H(P, Q) \rangle$$

= $\omega_d^{-1}(\det A(Q))^{-1/2} \langle A^{-1}(Q)(P-Q), P-Q \rangle^{-d/2} \langle N_P, Q-P \rangle$

and, both of A(Q) and $A^{-1}(Q)$ are uniformly elliptic and that D is a $C^{1,\alpha}$ -domain, we see that the absolute value of the last term is also dominated by $c_2|P-Q|^{\alpha+1-d}$. Therefore we obtain

$$|K^*f(P)| \leq c_3 \int |P-Q|^{\alpha+1-d} |f(Q)| d\sigma(Q) \leq c_4 M_{\sigma} f(P),$$

which shows (a).

(b) and (c): By virtue of (3.2) and Lemma A we see that

$$||K^*f||_p \le c_5 ||f||_p$$
 for all $f \in L^p(\sigma)$

and

$$\gamma_{\beta}(K^*f) \leq c_6 \gamma_{\beta}(f)$$
 for all $f \in \mathcal{L}(\gamma_{\beta}, C(\partial D))$.

Moreover the function $(P, Q) \mapsto \langle A(P)N_P, \nabla_P F(P, Q) \rangle$ is continuous at (P_0, Q_0) if $P_0 \neq Q_0$, and $|\langle A(P)N_P, \nabla_P F(P, Q) \rangle|$ tends to $+\infty$ as $Q \to P$. Therefore, by the same methods as in Theorem 2 in [7], we can prove that K^* is a compact operator on $L^p(\sigma)$ and $L(\gamma_\beta, C(\partial D))$.

LEMMA 3.2. Let p>1 and $0<\beta< d-1$. Then

(a) $|Kf| \le cM_{\sigma}f$ for all Borel measurable functions f in $L^{1}(\sigma)$,

- (b) K is a compact operator on $L^p(\sigma)$,
- (c) K is a compact operator on $L(\gamma_{\beta}, C(\partial D))$.

PROOF. From Lemma 3.1 and

$$\begin{split} & -\langle A(Q)N_Q, \, \nabla_Q F(Q, \, P) \rangle \\ & = \langle (A(P) - A(Q))N_Q, \, \nabla_Q F(Q, \, P) \rangle + \langle A(P)(N_P - N_Q), \, \nabla_Q F(Q, \, P) \rangle \\ & - \langle A(P)N_P, \, \nabla_Q F(Q, \, P) \rangle \end{split}$$

we deduce

(3.3)
$$|Kf(P)| \leq c_1 \Big\{ \int |P - Q|^{\alpha + 1 - d} |f(Q)| d\sigma(Q) + |K^*f(P)| \Big\}$$

$$\leq c_2 \Big\{ |P - Q|^{\alpha + 1 - d} |f(Q)| d\sigma(Q),$$

which leads to (a). One can prove (b) and (c) by the same method as in Lemma 3.1.

4. Single layer potentials.

Let us define the single layer potential u_f for a Borel measurable function $f \in L^1(\sigma)$ by

$$u_f(X) = -\int F(X, Q) f(Q) d\sigma(Q)$$

if it is well-defined, and by $u_f(X)=0$ if otherwise. Moreover, set

$$\begin{split} \varPhi_f(X,P) := \langle A(P)N_P, \, \nabla_X u_f(X) \rangle &= - \int \langle A(P)N_P, \, \nabla_X F(X,Q) \rangle f(Q) d\, \sigma(Q), \\ \varPhi_{f,\delta}^*(P) := \sup \{ | \varPhi_f(X,P) | \; ; \; X \in \Gamma_n(P), \; |X-P| < \delta \} \end{split}$$

and

$$\Phi_{f,\delta}^{**}(P) := \sup\{|\Phi_f(X,P)|; X \in \Gamma_{\eta}^e(P), |X-P| < \delta\}$$

where

$$\Gamma_{\eta}^{e}(P) := \{X \in \mathbf{R}^{d} \setminus D; \langle X - P, N_{P} \rangle > \eta | X - P| \}.$$

LEMMA 4.1. Assume that p>1, $0<\beta< d-1$ and $0<\eta<1$. Then there exist positive real numbers c, δ with the following properties:

- (a) $\Phi_{f,\delta}^*(P) \leq c M_{\sigma} f(P)$ and $\Phi_{f,\delta}^{**}(P) \leq c M_{\sigma} f(P)$ for every Borel measurable function f in $L^1(\sigma)$.
 - (b) $\|\Phi_{f,\delta}^*\|_p \le c \|f\|_p$ and $\|\Phi_{f,\delta}^{**}\|_p \le \|f\|_p$ for every $f \in L^p(\sigma)$,
 - (c) $\gamma_{\beta}(\Phi_{f,\delta}^*) \leq c\gamma_{\beta}(f)$ and $\gamma_{\beta}(\Phi_{f,\delta}^{**}) \leq c\gamma_{\beta}(f)$ for every $f \in \mathcal{L}(\gamma_{\beta}, C(\partial D))$.

PROOF. Recall that

$$F(X, Q) = H(X, Q) + G(X, Q),$$

where H is the function defined in §2 and

$$|\nabla_X G(X, Q)| \leq c_1 |X - Q|^{\alpha + 1 - d}$$
.

Since

$$\begin{split} &-\langle A(P)N_P,\, \nabla_X H(X,\,Q)\rangle \\ &=\langle (A(Q)-A(P))N_P,\, \nabla_X H(X,\,Q)\rangle + \langle A(Q)(N_Q-N_P),\, \nabla_X H(X,\,Q)\rangle \\ &-\langle A(Q)N_Q,\, \nabla_X H(X,\,Q)\rangle, \end{split}$$

we have

$$\begin{aligned} &|-\langle A(P)N_P, \nabla_X H(X, Q)\rangle| \\ &\leq c_2\{|P-Q|^{\alpha}|X-Q|^{1-d}+|X-Q|^{-d}|\langle X-Q, N_Q\rangle|\}. \end{aligned}$$

Assume that $\phi \in C_0^{1,\alpha}(\mathbf{R}^{d-1}), |\nabla \phi| \leq \eta/6$,

$$\partial D \cap B(P, r) = \{(z, \phi(z)); z \in \mathbb{R}^{d-1}\} \cap B(P, r).$$

If $FX=(x, t)\in \Gamma_{\eta}(P)\cap B(P, r)$ and $P=(y, \phi(y))$, then $t-\phi(y)>(5\eta/6)|x-y|$. Therefore, if $Q=(z, \phi(z))\in \partial D$ and $3|x-y|\geq |y-z|$, then we have

$$|X-Q| \ge |t-\phi(z)| \ge t-\phi(y)-|\phi(y)-\phi(z)|$$

$$\ge (5\eta/6)|x-y|-(\eta/6)|y-z| \ge (\eta/9)|y-z| \ge (\eta/18)|P-Q|.$$

By the same method as in the proof of Theorem 1.3 in [3] we can choose positive real numbers δ , c_4 , c_6 , independent of f, such that

$$\begin{split} \sup \left\{ & \int |X-Q|^{-d} |\langle X-Q, N_Q \rangle| \, |f(Q)| \, d\sigma(Q); \ X \in \Gamma_{\eta}(P), \ |X-P| < \delta \right\} \\ & \leq c_3 \Big\{ M_{\sigma} f(P) + \int |P-Q|^{\alpha+1-d} \, |f(Q)| \, d\sigma(Q) \Big\} \leq c_4 M_{\sigma} f(P) \end{split}$$

and

$$\begin{split} \sup \left\{ & \int \!\! (|X \! - \! Q|^{\alpha + 1 - d} \! + |P \! - \! Q|^{\alpha} |X \! - \! Q|^{1 - d}) |f(Q)| \, d\, \sigma(Q) \, ; \, X \! \in \! \varGamma_{\eta}(P), \, |X \! - \! P| \! < \! \delta \right\} \\ & \leq c_{\delta} \! \int \!\! |P \! - \! Q|^{\alpha + 1 - d} |f(Q)| \, d\, \sigma(Q) \leq c_{\delta} M_{\sigma} f(P). \end{split}$$

Thus we have the estimate of $\Phi_{f,\delta}^*$. Similarly the estimate of $\Phi_{f,\delta}^{**}$ is also obtained.

The estimates of (b) are easy consequences of (a). The estimates of (c) are deduced from (a) and Lemma A. \Box

Using Green's formula, we can easily show the following properties of H. LEMMA 4.2.

(a) For $X \in D$

$$\int \langle A(X)N_Q, \nabla_Q H(Q, X) \rangle d\sigma(Q) = -1,$$

(b) For $X \in B(0, R) \setminus \overline{D}$

$$\int \langle A(X)N_Q, \nabla_Q H(Q, X) \rangle d\sigma(Q) = 0,$$

(c) For $P \in \partial D$

$$\int \langle A(P)N_Q, \nabla_Q H(Q, P) \rangle d\sigma(Q) = -1/2.$$

LEMMA 4.3. Let $P \in \partial D$. Then

(4.1)
$$\lim_{X \to P, X \in \Gamma_n(P)} \Phi_1(X, P) = K^*(1) - 1/2$$

and

(4.2)
$$\lim_{X\to P, X\in \Gamma_{\eta}^{e}(P)} \Phi_{1}(X, P) = K^{*}(1) + 1/2.$$

PROOF. Note that

$$\begin{split} &-\langle A(P)N_P,\, \nabla_X F(X,\,Q)\rangle \\ &=-\langle (A(P)-A(Q))N_P,\, \nabla_X F(X,\,Q)\rangle -\langle A(Q)(N_P-N_Q),\, \nabla_X F(X,\,Q)\rangle \\ &-\langle A(Q)N_Q,\, \nabla_X (F(X,\,Q)-H(X,\,Q))\rangle \\ &-\{\langle A(Q)N_Q,\, \nabla_X H(X,\,Q)\rangle +\langle A(X)N_Q,\, \nabla_Q H(Q,\,X)\rangle\} \\ &+\langle A(X)N_Q,\, \nabla_Q H(Q,\,X)\rangle. \end{split}$$

The absolute value of each term, except for the last term, on the right-hand side is dominated by $c|X-Q|^{\alpha+1-d}$ and the integral of the last term over ∂D takes the value -1 by Lemma 4.2. Therefore we have

$$\begin{split} &\lim_{X\to P,\ X\in \varGamma_\eta(P)}\varPhi_1(X,\,P)\\ &=-\int \langle (A(P)-A(Q))N_P,\,\nabla_P F(P,\,Q)\rangle d\,\sigma(Q)\\ &-\int \langle A(Q)(N_P-N_Q),\,\nabla_P F(P,\,Q)\rangle d\,\sigma(Q)\\ &-\int \langle A(Q)N_Q,\,\nabla_P (F(P,\,Q)-H(P,\,Q))\rangle d\,\sigma(Q)\\ &-\int \{\langle A(Q)N_Q,\,\nabla_P H(P,\,Q)\rangle +\langle A(P)N_Q,\,\nabla_Q H(Q,\,P)\rangle \} d\,\sigma(Q)-1 \end{split}$$

$$= -\int \langle A(P)N_P, \nabla_P F(P, Q) \rangle d\sigma(Q) - \int \langle A(P)N_Q, \nabla_Q H(Q, P) \rangle d\sigma(Q) - 1$$

$$= K^*(1) - 1/2.$$

Similarly the relation (4.2) is also obtained.

LEMMA 4.4. Let $0 < \beta < d-1$, $0 < \eta < 1$. If $f \in \mathcal{L}(\gamma_{\beta}, C(\partial D))$, then there exists a γ_{β} -polar set E such that

(4.3)
$$\lim_{X \to P, X \in \Gamma_n(P)} \Phi_f(X, P) = (K^* - (1/2)I)f(P)$$

and

(4.4)
$$\lim_{X \to P, X \in \Gamma_n^{\varrho}(P)} \Phi_f(X, P) = (K^* + (1/2)I)f(P)$$

for every $P \in \partial D \setminus E$.

PROOF. Let δ be a positive real number satisfying (a) and (c) in Lemma 4.1. For $f \in \mathcal{L}(\gamma_{\beta}, C(\partial D))$ and a positive real number b we put

$$E_{f,b} = \{P \in \hat{o}D; \Phi_{f,\delta}^*(P) > b\}.$$

By the aid of Lemma 4.1 we have

$$\gamma_{\beta}(E_{f,\delta}) \leq b^{-1}\gamma_{\beta}(\Phi_{f,\delta}^*) \leq cb^{-1}\gamma_{\beta}(f).$$

Especially, let f be a function of C^1 class on ∂D . From Lemma 4.3 we deduce

$$\lim_{X \to P, X \in \Gamma_{\eta}(P)} \Phi_{f}(X, P)$$

$$= -\lim_{X \to P, X \in \Gamma_{\eta}(P)} \left(\langle A(P)N_{P}, \nabla_{X}F(X, Q) \rangle (f(Q) - f(P)) d\sigma(Q) \right)$$

$$+\lim_{X\to P, X\in\Gamma_n(P)} f(P)\Phi_1(X, P)$$

$$= - \int \langle A(P)N_P, \nabla_P F(P,Q) \rangle (f(Q) - f(P)) d\sigma(Q) + K*(1)f(P) - (1/2)f(P)$$

$$= K*f(P) - (1/2)f(P).$$

On the other hand the space $C^1(\partial D)$ is uniformly dense in $C(\partial D)$ and hence it is dense in $L(\gamma_{\beta}, C(\partial D))$. Therefore Theorem A in [7], which is a generalized Fatou type theorem with respect to a countably linear functional, leads to (4.3). Similarly one can also show (4.4).

LEMMA 4.5. Let p>1 and $0<\eta<1$. Then for every $f\in L^p(\sigma)$ there exists a set $E\subset\partial D$ such that $\sigma(E)=0$ and, (4.3) and (4.4) hold for every $P\in\partial D\setminus E$.

PROOF. The operator K^* is bounded in $L^p(\sigma)$ and (4.3) holds for every $f \in C^1(\partial D)$. On account of (b) in Lemma 4.1 we conclude that (4.3) holds at every point $P \in \partial D$ except for a set of surface measure 0.

5. Double layer potentials.

In this section we prepare some lemmas corresponding to Lemmas in § 4 to solve the Dirichlet problem. Let us define, for Borel measurable function f in $L^1(\sigma)$, the double layer potential Ψ_f defined by

$$\varPsi_{f}(X) := - \int \langle A(Q)N_{Q}, \, \nabla_{Q}F(Q, \, X) \rangle f(Q) d\, \sigma(Q)$$

at $X \in \mathbb{R}^d \setminus \partial D$. We also define, for $P \in \partial D$,

$$\Psi_{f,\delta}^*(P) := \sup\{|\Psi_f(X)|; X \in \Gamma_\eta(P), |X-P| \leq \delta\},$$

$$\Psi_{f,\delta}^{**}(P) := \sup\{|\Psi_f(X)|; X \in \Gamma_{\eta}^{e}(P), |X-P| \leq \delta\}.$$

Then we have the corresponding lemma to Lemma 4.1.

LEMMA 5.1. Assume that p>1, $0<\beta< d-1$ and $0<\eta<1$. Then there exist positive real numbers c, δ having the following properties:

(a)
$$\Psi_{f,\delta}^*(P) \leq c M_{\sigma} f(P)$$
, $\Psi_{f,\delta}^{**}(P) \leq c M_{\sigma} f(P)$

for every Borel measurable function f in $L^1(\sigma)$ and for every $P \in \partial D$,

(b)
$$\|\boldsymbol{\varPsi}_{f,\delta}^*\|_p \leq c\|f\|_p$$
 and $\|\boldsymbol{\varPsi}_{f,\delta}^{**}\|_p \leq c\|f\|_p$ for every $f \in L^p(\sigma)$,

(c)
$$\gamma_{\beta}(\Psi_{f,\delta}^*) \leq c\gamma_{\beta}(f)$$
 and $\gamma_{\beta}(\Psi_{f,\delta}^{**}) \leq c\gamma_{\beta}(f)$.

PROOF. Noting that

$$\begin{split} &-\langle A(Q)N_Q,\,\nabla_Q F(Q,\,X)\rangle\\ &=\langle (A(X)-A(Q))N_Q,\,\nabla_Q F(Q,\,X)\rangle -\langle A(X)N_Q,\,\nabla_Q (F(Q,\,X)-H(Q,\,X))\rangle\\ &-\langle A(X)N_Q,\,\nabla_Q H(Q,\,X)\rangle, \end{split}$$

we obtain

$$|\Psi_f(X)|$$

$$\leq c_1 \Big\{ \int |X - Q|^{\alpha + 1 - d} |f(Q)| d\sigma(Q) + \int |X - Q|^{-d} |\langle X - Q, N_Q \rangle| |f(Q)| d\sigma(Q) \Big\}.$$

By the same method as in the proof of Lemma 4.1 we have

$$\Psi_{f,\delta}^*(P) \leq c_2 M_{\sigma} f(P).$$

Similarly we have also the estimate of $\Psi_{f,\delta}^{**}$. The estimates of (b) and (c) follow from (a) and Lemma A.

The following lemma can be proved by the same method as in Lemma 4.4.

LEMMA 5.2. Let
$$0 < \beta < d-1$$
 and $0 < \eta < 1$. Then for every $f \in \mathcal{L}(\gamma_{\beta}, C(\partial D))$

there exists a γ_{β} -polar set E such that

(5.1)
$$\lim_{X \to P, X \in \Gamma_n(P)} \psi_f(X) = (K + (1/2)I)f(P)$$

and

(5.2)
$$\lim_{X \to P, X \in \Gamma_n^{\varrho}(P)} \psi_f(X) = (K - (1/2)I)f(P)$$

for each $P \in \partial D \setminus E$.

Using (b) of Lemma 5.1, we can prove the following lemma.

LEMMA 5.3. Let p>1 and $0<\eta<1$. Then for each $f\in L^p(\sigma)$ there exists a subset of ∂D such that $\sigma(E)=0$ and (5.1), (5.2) hold at every point $P\in\partial D\setminus E$.

6. The Neumann problem.

Before the proof of Theorem 1 we prepare a lemma.

LEMMA 6.1. Let p>1 and set

$$S_p := \{ f \in L^p(\sigma); \int f d\sigma = 0 \}.$$

Then $K^*-(1/2)I$ is invertible on S_p .

PROOF. Let $f \in S_p$. Noting that

$$|K^*f(P)| \le c \int |P-Q|^{\alpha+1-d} |f(Q)| d\sigma(Q),$$

we see that K^*f is continuous or it belongs to $L^s(\sigma)$ for the positive real number s such that $1/p-\alpha/(d-1)=1/s$. By repeating this, we conclude that f belongs to $L^t(\sigma)$ for every t>1.

Let $(K^*-(1/2)I)f=0$. Set

$$u(X) = -\int F(X, Q)f(Q)d\sigma(Q).$$

Then u is continuous everywhere. On account of the uniform ellipticity and Lemma 4.5 we obtain

$$\begin{split} \int_{D} |\nabla u(X)|^{2} dX & \leq \lambda \int_{D} \sum_{j,k=1}^{d} a_{jk}(X) \frac{\partial u(X)}{\partial x_{j}} \frac{\partial u(X)}{\partial x_{k}} dX \\ & = \lambda \int_{\partial D} (K^{*} - (1/2)I) f(Q) u(Q) d\sigma(Q) = 0. \end{split}$$

Therefore u is a constant c on D and hence on \overline{D} . Assume that $c \ge 0$. Noting that $L_0 u = 0$ in $\mathbb{R}^d \setminus \overline{D}$ and $\lim_{|X| \to \infty} u(X) = 0$, we see by the maximum principle that u takes the maximum at every point $P \in \partial D$. Therefore, as X converges to P along the nontangential region $\Gamma^e_{\eta}(P)$, the function: $X \mapsto \langle A(P)N_P, \nabla u(X) \rangle$

is nonnegative. But this is equal to $(K^*+(1/2))f=f$ σ -a.e., whence f is nonnegative σ -a.e., on ∂D . Noting that $\int f d\sigma = 0$, we see that f=0 σ -a.e. Similarly we can also show that f=0 σ -a.e. in the case c<0. Thus we see that the operator $K^*-(1/2)I$ is injective on the closed subspace S_p of $L^p(\sigma)$. Since K^* is compact on S_p by Lemma 3.1, $K^*-(1/2)I$ is invertible on S_p .

LEMMA 6.2. Set

$$S_{\beta} := \{ f \in L(\gamma_{\beta}, C(\partial D)); \int f d\sigma = 0 \}$$

Then $K^*-(1/2)I$ is invertible on S_{β} .

PROOF. Let f be a function in $\mathcal{L}(\gamma_{\beta}, C(\partial D))$ such that $\int f d\sigma = 0$ and $(K^* - (1/2)I)f = 0$ γ_{β} -q.e.. Noting that $f \in L^p(\sigma)$ for $p = (d-1)/\beta$, we see by Lemma 6.1 that $K^*f = (1/2)f$ σ -a.e. and hence f = 0 σ -a.e.. Therefore $K^*f = 0$ and hence f = 0 γ_{β} -q.e.. Thus $K^* - (1/2)I$ is injective on the closed subspace S_{β} of $L(\gamma_{\beta}, C(\partial D))$. Since K^* is compact on S_{β} by Lemma 3.1, $K^* - (1/2)I$ is invertible on S_{β} .

Next, we prove Theorem 1.

PROOF OF THEOREM 1. Let f be a function in $\mathcal{L}(\gamma_{\beta}, C(\partial D))$ such that $\int f d\sigma = 0$. By the aid of Lemma 6.2 we can choose a function $g \in \mathcal{L}(\gamma_{\beta}, C(\partial D))$ such that

$$(K^*-(1/2)I)g = f \gamma_{\beta}$$
-q. e..

By Lemma 4.4 we see that the single layer potential u_s of g is the desired function.

Similarly, using Lemmas 4.5 and 6.1 we can prove the following theorem.

Theorem 3. Let $0 < \alpha < 1$ and D be a bounded $C^{1,\alpha}$ -domain in \mathbf{R}^d . Furthermore, assume that p > 1 and $0 < \eta < 1$. Then for each function $f \in L^p(\sigma)$ satisfying $\int f d\sigma = 0$ there exists a function u in D and a subset E of ∂D having the following properties:

- (i) $\sigma(E)=0$,
- (ii) Lu=0 in D,
- (iii) $\lim_{X\to P, X\in \Gamma_{\eta}(P)} \langle A(P)N_P, \nabla u(X) \rangle = f(P)$ for every $P \in \partial D \setminus E$.

7. The Dirichlet problem.

Let L be the differential operator in § 1. Let us find, for $f \in \mathcal{L}(\gamma_{\beta}, C(\partial D))$, a function v defined on D such that Lv=0 on D and v converges nontangentially to $f(\gamma_{\beta}, q)$, e. on ∂D .

We begin with the following lemma.

LEMMA 7.1. Assume that $\mathbf{R}^{d} \setminus \overline{D}$ is connected. Then the operator $K^*+(1/2)I$ is injective on $L^{q}(\sigma)$ for every q>1 and K+(1/2)I is also injective on $L^{p}(\sigma)$ for every p>1.

PROOF. Suppose that $(K^*+(1/2)I)f=0$ σ -a.e. for $f \in L^q(\sigma)$. Set

$$u(X) := -\int F(X, Q) f(Q) d\sigma(Q).$$

As in the proof of Lemma 6.1 we see that u is continuous everywhere. Noting that

$$\langle A(P)N_P, \nabla u(X)\rangle = -\int \langle A(P)N_P, \nabla_Q F(Q, P)\rangle d\sigma(Q),$$

we deduce from Lemma 4.5

$$\int_{\mathbb{R}^{d}\setminus\overline{D}} |\nabla u(X)|^{2} dX \leq \lambda \int_{\mathbb{R}^{d}\setminus\overline{D}} \sum_{j,k=1}^{d} a_{jk}(X) \frac{\partial u(X)}{\partial x_{j}} \frac{\partial u(X)}{\partial x_{k}} dX$$

$$= \lambda \int_{\partial D} (K^{*} + (1/2)I) f(Q) u(Q) d\sigma(Q) = 0,$$

which shows that u is constant on $\mathbb{R}^d \setminus \overline{D}$. Since $\lim_{|X| \to \infty} u(X) = 0$, we see that u = 0 on $\mathbb{R}^d \setminus \overline{D}$ and hence u = 0 on ∂D . By the aid of the maximum principle u is also equal to 0 on D. Noting that

$$(K^*-(1/2)I)f(P)=\lim_{X\to P,\ X\in \varGamma_\eta(P)}\langle A(P)N_P,\ \nabla u(X)\rangle=0 \qquad \sigma\text{-a. e.}$$

and $(K^*+(1/2)I)f(P)=0$ σ -a.e., we conclude that f=0 σ -a.e. on ∂D and hence $K^*+(1/2)I$ is injective on $L^q(\sigma)$.

Let p be the positive real number such that 1/p+1/q=1. Since K (resp. K^*) is compact on $L^p(\sigma)$ (resp. $L^q(\sigma)$) and $K^*+(1/2)I$ is an adjoint operator of K+(1/2)I, the operator K+(1/2)I is also injective on $L^p(\sigma)$.

We have also the following lemma in the space $L(\gamma_{\beta}, C(\partial D))$.

LEMMA 7.2. Let $0 < \beta < d-1$ and assume that $\mathbf{R}^d \setminus \overline{D}$ is connected. Then K+(1/2)I is invertible on $L(\gamma_{\beta}, C(\partial D))$.

PROOF. It suffices to show that K+(1/2)I is injective on $L(\gamma_{\beta}, C(\partial D))$ because it is a compact operator by Lemma 3.1. Assume that (K+(1/2)I)f=0

 γ_{β} -q.e. on ∂D . Since $f \in L^p(\sigma)$ for $p = (d-1)/\beta$, we see by Lemma 7.1 that f = 0 σ -a.e. and hence Kf = 0 on ∂D . Therefore it must be concluded that f = 0 γ_{β} -q.e. on ∂D .

PROOF OF THEOREM 2. Let f be a function in $\mathcal{L}(\gamma_{\beta}, C(\partial D))$. Using Lemma 7.1, we can choose a function $g \in \mathcal{L}(\gamma_{\beta}, C(\partial D))$ such that (K+(1/2)I)g=f γ_{β} -q. e. on ∂D . By the aid of Lemma 5.2 we see that the function Ψ_g defined in § 5 is the desired function.

References

- [1] P. Ahern and A. Nagel, Strong L^p estimates for maximal functions with respect to singular measures: with applications to exceptional sets, Duke Math. J., 53 (1986), 359-393.
- [2] B. E. J. Dahlberg and C. E. Kenig, Hardy spaces and the Neumann problem in L^p for Laplace's equation in Lipschitz domains, Ann. Math., 125 (1987), 437-465.
- [3] E.B. Fabes, M. Jodeit JR. and N.M. Rivière, Potential techniques for boundary value problems on C¹-domains, Acta Math., 141 (1978), 165-186.
- [4] D.S. Jerison and C.E. Kenig, The Neumann problem on Lipschitz domains, Bull. Amer. Math. Soc., 4 (1981), 203-207.
- [5] C. Miranda, Partial differential equations of elliptic type, Springer, Berlin-Heidelberg-New York-Tokyo, 1970.
- [6] H. Watanabe, Countably sublinear functionals and Hausdorff measures, Atti Sem. Mat. Fis. Univ. Modena, 39 (1991), 447-456.
- [7] H. Watanabe, The Neumann problem and Hausdorff measures, Proceedings of the International Conference of Potential Theory, Nagoya 1990, 345-356.
- [8] H. Watanabe, Boundary behavior of harmonic functions in Lipschitz and C¹-domains, Natur. Sci. Rep. Ochanomizu Univ., 42 (1991), 1-13.

Hisako WATANABE
Department of Mathematics

Ochanomizu University Bunkyō-ku, Tokyo 112

Japan