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1. Introduction.

Let D be a bounded C'-domain in R? In [3] E.B. Fabes, M. Jodeit JR.
and N.M. Riviére proved that, for every f< LP(@D) satisfying S fdo=0, there

exists a function u which is harmonic in D, and <Vu(X), Np) converges to
f(P) with an exception of a set of surface measure zero as X tends to P non-
tangentially. The corresponding results have been obtained even for a Lipschitz
domain D in the case 1<p<2+e¢ (cf. [4], [Z]).

On the other hand it is well-known that in R¢*' the Poisson integral of
the Bessel potential G,xf of each f& L?(R?%) convergés not only nontangentially
but also tangentially except for a set of an appropriately dimensional Hausdorff
measure zero (cf. [L]).

In [7], for a bounded C"“*-domain D, we have studied the boundary be-
havior of the derivatives of solutions for the above Neumann problem, not up
to an exception with a set of surface measure zero, but up to an exception
with a set of S-dimensional Hausdorff measure zero for 8 satisfying 0<f<d—1.

In this paper we will consider the corresponding boundary behaviors of
solutions of the Dirichlet and Neumann problems for uniformly elliptic differ-
ential operators.

Let L be a differential operator on R? (d=3) defined by

(1.1) L =34 -1Dja;Dy),

where D;=d/0x; and a;, are of class C"* with a;,=a:;. Moreover L is
assumed to be uniformly elliptic. This means that there exists a positive real
number 4>1 such that

AHEP £ 2 k-1a5(X)EE = 2IE]°

for all X} E:(SI’ tty sd)ERd-
Let D be a bounded C**-domain in R* and 0<B8<d—1. To classify func-
tions defined on @D, we use, as in[7], a countably sublinear functional 75 and
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a function space .L(7s, C(@D)), instead of the L?-norm and L?(dD), respectively.
More precisely, let J(6D) be the class of the extended real-valued functions
on 6D and define, for f< J(@D),

75(f):= inf{2?=1bj7’§; b, R", 2;9=1bij(Pj,Tj) = |f| on oD},

where A(P, r)=B(P, r)NoD and B(P,r) stands for the open ball in R? with
center P and radius r.

The functional 75 is countably sublinear, i.e., it is a mapping from /(D)
to RT\U{+ o} with the following properties:

(1) 1s(H=1s1fD,

(ii) 75bf)="0brs(f) for each beR",

(i) f, fa20, f=Z0afa=7(f) = 250=175(fn)

To simplify the notations, we use 75(E) instead of 75(Xz) for a subset E of
0D. A subset E of oD is called 7s-polar if 75(E)=0. We has shown in
that, a Borel set E is 7s-polar if and only if it is of B-dimensional Hausdorff
measure Zero.

We say that a property holds 74-q.e. on 9D if it holds on dD except for a
7s-polar set. Note that, if 75(f)<4oo, then |f|<+co 75-q.e. on oD.

Let us denote by .L(7g, C(0D)) the class of all Borel measurable functions
f such that 75(f—f.)—0 for some sequence {f.}CC(@D), where C(@D) stands
for the class of all continuous real-valued functions on oD.

Furthermore we denote by L(7s, C(dD)) the family of the equivalent classes
relative to the equivalent relation defined by f=g 75-q.e. on dD. The space
L(rs, C(0D)) is a Banach space with norm | f||=73(f) and it enables us to use
the method of layer potentials.

Let 0<n<1. The approach region at P is a nontangential region defined by

I'y(P):={XeD; <P—X, Npp>n|X—P|},

where <{,> is the inner product and N, is the unit outer normal to the boun-
dary at P.

Using the countably sublinear functional 73, we can estimate the nontan-
gential maximal functions of ‘double layer potentials’ and the gradients of
‘single layer potentials’ by the same method as in the L? theory, without tech-
nical skills.

In §6 the following Neumann problem with boundary data £(7g, C(6D))
will be proved.

THEOREM 1. Let 0<a<1 and D be a bounded C**-domain in R*. Further-
more, assume that 0<B8<d—1 and 0<n<l. Then for each function f=
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L(rs, C(@D)) such that Sfdon there exists a function u in D and a subset E

of 0D having the following properties:

(i) E is a set of B-dimensional Hausdorff measure zero,

(ii) Lu=0 in D.

(iii) limX_.P'XeFﬂ(P)<A(P>ATP, Vu(X)>=f(P) for every P=0D\E,
where A(P) stands for the matrix (a;z(P)).

In §7 the following Dirichlet problem with boundary data .£(ys, C(0D))
will be proved.

THEOREM 2. Let 0<a<1 and D be a bounded C*%-domain in R* such that
R\D is connected. Furthermore, assume that 0<B<d—1 and 0<%<l1l. Then
for each function f<.L(rs, C(D)) there exists a function v in D and a subset E
of dD having the following properties:

(i) E is a set of B-dimensional Hausdor[f measure zero,

(ii) Lv=0 in D,

(iii) lim){_.P.Xe]"n(p)U(X):f(P> for every P=o0D\E.

We note that, if A>d—1—8>0, then .L(rp, C(@D)) contains all functions

of the form:

P SIP—QI““dg(Q)do(Q)

for g L*@D) (cf. [7]). Furthermore if 0<a<d<a+p and G, be the Bessel
kernel with order a, then the restriction of G,xf to 6D belongs to L(75, C(0D))

for every fe L'(R%) (cf. [8].

2. The fundamental solution.

In this paper, let D be a bounded C"*domain for 0<<a<l. Recall that a
domain D in R? is called a C"*domain if to each point Q<o0D there corre-
spond a system of coordinates of R? with origin @ and an open ball B(Q, p)
with center @ and radius p such that with respect to this coordinate system

DN B, p)= {(x, 8); x€R*, t>¢(x)} N BQ, p),

where ¢=Ci*(R%') and ¢(0)=D;¢(0)=0. Note that C}“(R%™') stands for the
space of all functions g in C{(R?"') with compact support satisfying

|D;g(x)—D;g(y)] < M|{x—y|*

for all x, yeR%* and 1<;<d—1.
We take a sufficient large number R such that B0, R)DD. To find a
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fundamental solution of the uniformly elliptic operator L defined by we
consider the differential operator

(2.1) Ly=L—-b,

where b is a nonnegative function of class C** such that

b=0 on B(,2R), b=1on R\B(0,3R) and 0<b<1.

Denote by A(X) the matrix (a;,(X)), by A~%(X)=(a’*(X)) the inverse matrix
of A(X) and by det A(X) the determinant of A(X). The following function H
defined on R?x R? is fundamental :

H(X,Y):=(d—2)"w3(det AY )2 A (Y YX-Y), X=Y -z,

The following theorem is well-known (cf. [5, Theorem 20.1]).

THEOREM A. Let L, be the differential operator defined by (2.1). Then L,
has the fundamental solution F in R® with the following properties:

(a) F is continuous outside of the diagonal set {(X, X); X R}, together
with first and second derivatives,

() [F(X,Y)—HX, Y)|=c|X-Y|***¢,

o(F—H) v latiod 0¥ F—H)
Py X, | £c|X-Y| and ————axjaxk
for all X,Y < B(0, 3R).
(¢) For each Y €R¢

(X, V)| SclX=Y]|*"

LF(-,Y)=0 in R{Y}.

3. The operators K and K*.
We begin with the following lemma.

LEMMA A ([7, Lemma 2.6]). If 0<B8<d—1, then

7s(Mof) < c15(f)  for all f€.L(r5 C@DY),
where

M, f(P) = sup {r“dg | flda; r>0}.

A(P,
Now, let us define, for a Borel function f< J(@D) and P=dD,

Kf(P) = —[<AQ)Ne, ToF(Q, P f(@)da(Q)

and
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K*f(P)= —S<A(P2)Np, VeF(P, Q) f(Q)da(Q)
if they are well-defined, and Kf(P)=0, K*f(P)=0 otherwise.
The operator K* has the following properties.

LEMMA 3.1. Let p>1 and 0<B<d—1. Then

(@) |K*f|<cM,f for all Borel measurable functions f in L' (o),
(b) K* is a compact operator on LP(a),

() K* is a compact operator on L(rs, C(0D)).

PRrROOF. (a): Note that
Q.1 —<A(P)Np, VpF(P, Q)) = {(AQ)— A(P))Np, VpF(P, Q)>
+L(AQ)Np, Ve(H(P, Q)—F(P, Q))
—<(A(Q)Np, VpH(P, Q).

Since a;; are of class C" ¢, it follows from Theorem A that the absolute values
of the first and second terms on the right-hand side of are dominated by
¢i|P—Q|**'-%, Noting that

CA(Q)Np, VNpH(P, Q)
= wz'(det A(Q)) M ANQNP—Q), P—Q>~**Np, Q—P>

and, both of A(Q) and A-Y(Q) are uniformly elliptic and that D is a C*2-
domain, we see that the absolute value of the last term is also dominated by
¢ | P—-Q|%*t-¢, Therefore we obtain

(3.2) |K*f(P)] = csSIP—QI“"dIf(Q)IdG(Q) = oM, f(P),

which shows (a).
(b) and (c): By virtue of and Lemma A we see that

IK*fllp < csl fll,  for all f€LP(a)
and
Ts(K*f) < carp(f)  for all feL(rs, C@D)).

Moreover the function (P, Q)—<{A(P)Np, VpF(P, Q)> is continuous at (P, Q,)
if Py#=Q,, and |<A(P)Np, VpF(P, Q)>] tends to +o as Q-—»P. Therefore, by
the same methods as in in [7], we can prove that K* is a compact
operator on L”?(¢) and L(7s, C(aD)). 0

LEMMA 3.2. Let p>1 and 0<B<d—1. Then
(@) |Kf|<cM,f for all Borel measurable functions f in L'(0o),
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(b) K is a compact operator on LP(g),
(¢c) K is a compact operator on L(rg, C(@D)).
ProoF. From and
—(A(Q)Ng, VoF(Q, P)>
= ((A(P)— A(Q)Nq, VoF(Q, P)>+<A(P)XNp—Ng), VoF(Q, P);
—<A(P)Np, VoF(Q, P))

we deduce

3.3) KFP) = e[ I1P=@17=¢1 £(@) 1 dot@+ 1 K* (P}

< cleP—Ql"‘“'dIf(Q)ldG(Q),

which leads to (a). One can prove (b) and (c) by the same method as in
3.1. O

4. Single layer potentials.

Let us define the single layer potential u, for a Borel measurable function
fe LYe) by

u,(X) = = |F(X, QF(Q)da(@)
if it is well-defined, and by u(X)=0 if otherwise. Moreover, set
(X, P):=CA(P)Np, Vxu (X)) = —S<A(P)Np, VxF(X, Q) f(Q)da(Q),

Q% 5(P):=sup{| DX, P)|; XeI',(P), | X—P| <4}
and
O¥H5(P):= sup{| @ (X, P)|; XeI'y(P), | X—P| <o}
where
I'yP):= {XeR*\D; {X—P, Np)>n|X—P|}.

LEMMA 4.1. Assume that p>1, 0<B<d—1 and 0<9<1. Then there exist
positive real numbers ¢, 0 with the following properties:

(@) 0% (P)ScM,f(P) and O¥%P)<cM,f(P) for every Borel measurable
function f in L'(o).

(b) D%, =clfl, and 19¥51,<1f 1, for every f=L¥(a),

(©) 71(DF a)=crs(f) and 75(DFH<crs(f) for every f&L(rs, COD)).

PROOF. Recall that



The Neumann problems 447

F(X, Q)= H(X, Q)+G(X, Q),
where H is the function defined in §2 and

IVXG(X, Q)] < cl‘X_QlaH-d.

Since
= (A(Q)—A(P)Np, VxH(X, Q)>+<AQXNo—Np), VxH(X, Q)
~<A(Q)NQ) VXH(X: Q)>:
we have

| —CA(P)Np, VxH(X, Q)|
< {|P=Q1% X—Q '+ | X—Q|~*<{X—Q, Np>l}.
Assume that ¢=C§*(R%™Y), |Vo| <9/6,
0DNB(P, )= {(z, ¢(2)); z=R*'}N\B(P, r).

fFX=(x, el (P)YNB(P,r) and P=(y, ¢(»)), then t—¢(y)>(579/6)|x—yl.
Therefore, if Q=(z, ¢(z))=0D and 3|x—y|=|y—=z|, then we have

[ X=Q| = [t—¢(2)| = t—¢(3)—16(3)—d(2)]
= 69/6)x—y1—(0/6)|y—z| = (n/Dly—z| = (9/18)| P—Q].

By the same method as in the proof of Theorem 1.3 in we can choose
positive real numbers J, ¢,, ¢, independent of f, such that

sup {{1 X—Q1-¢1<X—0, N> 1 £(@)1d0(@); X=T'(P), |X—PI <3}

< oM. AP+ 1P-Q1-¢ (@)1 do(@)} < euM, 1(P)
and

sup {[(1 X~ Q1=+ | P=Q|“| X—Q|"-9)| /(@) | d0(Q); X&I'(P), | X—P| <3}

< csglP——Ql“““ilf(QH da(Q) < ¢sM, f(P).

Thus we have the estimate of @%,; Similarly the estimate of @%% is also
obtained.

The estimates of (b) are easy consequences of (a). The estimates of (c)
are deduced from (a) and Lemma Al O

Using Green’s formula, we can easily show the following properties of H.

LEMMA 4.2.
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(@) For XeD
[<ACONG, ToH@Q, X)da@) = -1,
(b) For X=B(0, R\D
[cacxing, vom@, X)pda@) =0,
(¢) For P=oD

§<A<P>NQ, Vo H(Q, P)yda(Q) = —1/2.

LEMMA 4.3. Let P=0D. Then

4.1) limX—-P, Xer,?(P)(Dx(X, P)= K*(1)—1/2
and
4.2) limy.p, xErgm‘Dl(X, P)= K*(1)+1/2.

PROOF. Note that
—<A(P)Np, VxF (X, Q))
= —(AP)—A(Q))Np, VxF (X, Q)>—<CAQXNp—Ny), VxF(X, Q)
—CA(Q)Ng, Vx(F(X, Q)—H(X, Q)
—{{A(Q)Ng, VxH(X, Q)>+<A(X)Ny, Vo H(Q, X))}
+<{A(X)Ng, VoH(Q, X)>.

The absolute value of each term, except for the last term, on the right-hand
side is dominated by ¢| X—Q|**'-¢ and the integral of the last term over 0D
takes the value —1 by Lemma 4.2l Therefore we have

limx-.P, Xel"v(P)@l(X) P)

= —{«aPr-2@Q)Nz, WP, Q1 da@)
—{<aQNe—No), W (P, Q1do(Q)
~{ca@ng, Tor P, @—HP, @ do(@

{CAQINg, VeH(P, Q))+<A(P)Nq, VoH(Q, P)}do(Q)—1
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= —[<APINE, Vo F(P, Q1 d (@~ [<APING, ToHQ, PYda(@)—1
= K*(1)—1/2.
Similarly the relation [(4.2) is also obtained.

LEMMA 4.4. Let 0<B<d—1, 0<y<l. If fe.L(rs C@D)), then there
exists a ¥g-polar set E such that

4.3) limy.p, XGFﬂ(P)Qf(:X; P) = (K*—(1/2)1)f(P)
and
(4.4) limy_p, Xeff](P)¢f(/Y7 P) = (K*+(1/2)1)f(P)

for every P€oD\E.

PROOF. Let J be a positive real number satisfying (a) and (c) in]Lemma
4.1. For fe.L(rs C@D)) and a positive real number b we put

E; = {PsdD; @F {(P)>b}.
By the aid of we have
T8(Es ) 07 75(DF 5) < cb™'15(f).
Especially, let f be a function of C*class on dD. From we deduce

limx_p, rer > (X, P)
= —limz-r,rer o [CACPINp, TxF(X, QUAQ)—f(P)do(Q)
Hlim xp, xer ;0 [(PYOLX, P)
= —[CAPINz, W2 F(P, Q) (F(Q)— f(PYAa(@)+ KD f(P)—(1/2)(P)

= K*f(P)—(1/2)f(P).

On the other hand the space C*(0D) is uniformly dense in C(0D) and hence
it is dense in L(75, C(6D)). Therefore Theorem A in [7], which is a generalized
Fatou type theorem with respect to a countably linear functional, leads to [(4.3).
Similarly one can also show [4.4). O

LEMMA 4.5. Let p>1 and 0<n<l. Then for every f& L?(c) there exists
a set ECAD such that ¢(E)=0 and, (4.3) and (4.4) hold for every P<dD\E.

PrOOF. The operator K* is bounded in L?(¢) and holds for every
feC'@D). On account of (b) in we conclude that holds at
every point P=oD except for a set of surface measure 0. |
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5. Double layer potentials.

In this section we prepare some lemmas corresponding to Lemmas in §4 to
solve the Dirichlet problem. Let us define, for Borel measurable function f in
L'(o), the double layer potential ¥ ; defined by

U0 = —[CAQINe, TeF(Q, XS (@da(Q)
at Xe R*\9D. We also define, for P<dD,

Fo(P):=sup{|T(X)|; XeI'y(P), | X—P|<d},

FH(P) = sup{|¥ (X)|; XeI'y(P), | X—P|<6}.
Then we have the corresponding lemma to Lemma 4.1

LEMMA 5.1. Assume that p>1, 0<f<d—1 and 0<7n<1. Then there exist
positive real numbers ¢, 0 having the following properties:

@) ¥FoP)< cM,f(P), Ti(P) < cM,f(P)
for every Borel measurable function f in L'(e¢) and for every P=aD,
®) 1Ftsl, =clfll, and |TF5l, <clfl,  for every f=L™o),
©) 7:5FF) S crp(f) and 7TF5) = crp(f).
PrOOF. Noting that
—CA(Q)Ng, VoF (Q, X))
= {(A(X)—A(Q)Ng, VoF(Q, X)) —C(A(X)Ng, Vo(F(Q, X)—H(Q, X)),
—CA(X)Ng, VoH(Q, X)),
we obtain
| (XD
< af {1 X-Q1 ¢ (@1 do(@+ (1 X-Q1-¢ |<X—Q, N 11£(@)1do(@)} .
By the same method as in the proof of we have
7.o(P) = M, f(P).

Similarly we have also the estimate of ¥¥%. The estimates of (b) and (c) fol-
low from (a) and Lemma Al N

The following lemma can be proved by the same method as in Lemma 4.4.

LEMMA 5.2. Let 0<f<d—1and 0<9n<1. Then for every feL(rs, C(D))
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there exists a 7g-polar set E such that

6.1 limx.p, xer, e (X) = (K+(1/2)I) f(P)
and
(5.2) limx_.P, Xel‘f} (P)¢f(X) = (K*(l/Z)])f(P)

for each PEOD\E.
Using (b) of Lemma 5.1, we can prove the following lemma.

LEMMA 5.3. Let p>1 and 0<n<1. Then for each f<LP(a) there exists
a subset of 0D such that o(E)=0 and (5.1), (5.2) hold at every point P=6D\E.

6. The Neumann problem.
Before the proof of we prepare a lemma.
LEMMA 6.1. Let p>1 and set

S, = {feLp(a); ~(;fcz(;:o}.
Then K*—(1/2)1 is invertible on S,.
PrROOF. Let f&S,. Noting that
[K*£(P)] < ¢ [P=QI*~*| AQ)ldo(Q),

we see that K*f is continuous or it belongs to L*(¢) for the positive real num-
ber s such that 1/p—a/(d—1)=1/s. By repeating this, we conclude that f
belongs to L%(c) for every ¢>1.

Let (K*—(1/2)I)f=0. Set

u(X) = —[F(X, QA(Q)a(@).

Then u is continuous everywhere. On account of the uniform ellipticity and

we obtain

[ 170012 5 2 3 10,0000 20 4

0x,

dX

= A, (K —1/2DAQUQaQ) = 0.

Therefore u is a constant ¢ on D and hence on D. Assume that ¢=0. Noting
that Lou=0 in R\D and lim, x,..#(X)=0, we see by the maximum principle
that u takes the maximum at every point P=gD. Therefore, as X converges
to P along the nontangential region I'i(P), the function: X—<{A(P)Np, Vu(X))
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is nonnegative. But this is equal to (K*+(1/2))f=f o¢-a.e., whence f is non-
negative o¢-a.e, on dD. Noting that Sfd(f:O, we see that f=0 ¢-a.e.. Simi-

larly we can also show that f=0 o¢-a.e. in the case ¢<<0. Thus we see that
the operator K*—(1/2)] is injective on the closed subspace S, of L?(g). Since
K* is compact on S, by Lemma 3.1, K*—(1/2)] is invertible on S,.

LEMMA 6.2. Set

Ss1={feLrs, CEDY; Sfdo=0}.
Then K*—(1/2)1 is invertible on Sg.

PROOF. Let f be a function in L(7s, C(@D)) such that \fde=0 and
B

(K*—(1/2)I)f=0 71s-q.e.. Noting that f&LP(g) for p=(d—1)/8, we see by
that K*f=(1/2)f o-a.e. and hence f=0 g-a.e.. Therefore K*f=0
and hence f=0 7g-q.e.. Thus K*—(1/2)I is injective on the closed subspace S;
of L(ys, C(@D)). Since K* is compact on Sz by [Lemma 3.1, K*—(1/2)] is
invertible on Sj. O

Next, we prove [Theorem 1.

PROOF OF THEOREM 1. Let f be a function in L(ys, C(@D)) such that
Sfda:O. By the aid of we can choose a function g= L(75, C(0D))

such that
(K*—(1/2))g = f 1s-q.e..

By we see that the single layer potential u, of g is the desired
function. 0

Similarly, using Lemmas 4.5 and we can prove the following theorem.

THEOREM 3. Let 0<a<1l and D be a bounded C"*-domain in R®. Further-
more, assume that p>1 and 0<n<1. Then for each function f<L?(c) satisfy-
ing SfdazO there exists a function u in D and a subset E of 0D having the
following properties:

(i) a(E)=0,

(ii) Lu=0in D,

(iii) limx.p, Xe['v(P)<A(P)NP, Vu(X)>=f(P) for every P=oD\E.
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7. The Dirichlet problem.

Let L be the differential operator in §1. Let us find, for f=L(rs, C@D)),
a function v defined on D such that Lv=0 on D and v converges nontangentially
to f 7s-q.e. on aD.

We begin with the following lemma.

LEMMA 7.1. Assume that R®\D is connected. Then the operator K*+(1/2)1
is injective on L%a) for every ¢>1 and K+(1/2)] is also injective on LP(a) for
every p>1.

PROOF. Suppose that (K*+(1/2)I1)f=0 o¢-a.e. for f& L% g). Set
u(X):=—|F(X, Q)f(Q)da(Q).

As in the proof of we see that u is continuous everywhere. Noting
that

CA(P)Np, Vu(X)) = -—S<A(P)Np, Vol (Q, P)da(Q),

we deduce from

ou(X) ou(X

)
0x; 0x, dX

TG oI P EP | Jh NG o

- lSaD(K *+(1/2)D) f(Q)u(Q)da(Q) = 0,

which shows that u is constant on R“\D. Since lim, x ..#(X)=0, we see that
u=0 on R*D and hence =0 on dD. By the aid of the maximum principle
u is also equal to 0 on D. Noting that

(K*—1/2)D)f(P) = limx_p xer ,>{A(P)Np, Vu(X)) =0  o-a.e.

and (K*+(1/2)I)f(P)=0 o¢-a.e., we conclude that f=0 ¢-a.e. on 9D and hence
K*++(1/2)1 is injective on L%o).

Let p be the positive real number such that 1/p+1/¢=1. Since K (resp.
K*) is compact on L?(g) (resp. L%¢)) and K*+4(1/2)I is an adjoint operator of
K4(1/2)1, the operator K+4-(1/2)I is also injective on L?(¢). O

We have also the following lemma in the space L(7s, C(0D)).

LEMMA 7.2. Let 0<B8<d—1 and assume that R\D is connected. Then
K+(1/2)I is invertible on L(7g, C(0D)).

PrOOF. It suffices to show that K+4(1/2)] is injective on L(7g, C(0D)) be-
cause it is a compact operator by Lemma 3.1. Assume that (K+(1/2)I)f=0
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7s-q.e. on oD. Since feL?(a) for p=(d—1)/B, we see by that
f=0 o¢-a.e. and hence Kf=0 on 0D. Therefore it must be concluded that
f=0 75-q.e. on aD. O

PROOF OF THEOREM 2. Let f be a function in .L(75, C(6D)). Using Lemmal
7.1, we can choose a function g=.£(75, C(0D)) such that (K+(1/2))g=f 7s-q.e.
on 0D. By the aid of we see that the function ¥, defined in §5
is the desired function. 0
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