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1. Introduction.

Let $H^{\infty}$ be the space of bounded analytic functions on the open unit disc
D. $H^{\infty}$ becomes a Banach algebra with the supremum norm. We denote by
$M(H^{\infty})$ the maximal ideal space of $H^{\infty}$ with the weak*-topology. We identify
a function in $H^{\infty}$ with its Gelfand transform. For points $x$ and $y$ in $M(H^{\infty})$ ,

the pseudo-hyperbolic distance is defined by

$\rho(x, y)=\sup\{|h(x)| ; h\in ball(H^{\infty}), h(y)=0\}$ ,

where ball $(H^{\infty})$ stands for the unit closed ball of $H^{\infty}$ . For $z$ and $w$ in $D$ , we
have $\rho(z, w)=|z-w|/|1-\overline{z}w|$ . A sequence $\{x_{j}\}_{j}$ in $M(H^{\infty})$ is called interpolat-
ing if for every bounded sequence $\{a_{j}\}_{j}$ there is a function $f$ in $H^{\infty}$ such that
$f(x_{j})=a_{j}$ for every $j$ . It is well known (see [2, p. 283]) that for a sequence
$\{z_{j}\}_{j}$ in $D,$ $\{z_{j}\}_{j}$ is interpolating if and only if

$infff\prod_{\neq kjk}\rho(z_{j}, z_{k})>0$ .

For a sequence $\{z_{j}\}_{j}$ in $D$ with $\Sigma_{j=1}^{\infty}1-|z_{j}|<\infty$ , a function

$b(z)= \prod_{f=1}^{\infty}\frac{\overline{z}_{j}}{|z_{j}|}\frac{z_{J^{-Z}}}{1-\overline{z}_{j}z}$ $(z\in D)$

is called a Blaschke product with zeros $\{z_{j}\}_{j}$ , and $\{z_{j}\}_{j}$ is called the zero
sequence of $b$ . If $\{z_{j}\}_{j}$ is interpolating, we call $b$ interpolating. For a function
$f$ in $H^{\infty}$, put $Z(f)=\{x\in M(H^{\infty});f(x)=0\}$ . For a subset $E$ of $M(H^{\infty})$ , we
denote by cl $E$ the weak*-closure of $E$ in $M(H^{\infty})$ .

For a point $x$ in $M(H^{\infty})$ , the set $P(x)=\{y\in M(H^{\infty});\rho(y, x)<1\}$ is called
a Gleason part of $x$ . If $P(x)\neq\{x\},$ $P(x)$ is called nontrivial. $D$ is a typical
nontrivial part. We set

$G=$ { $x\in M(H^{\infty});x$ is nontrivial}.

Hoffman [5] proved that for a point $x$ in $G$ , there is an interpolating sequence
$\{z_{j}\}_{j}$ such that $x$ is contained in cl $\{z_{j}\}_{j}$ , and there is a continuous map $L_{x}$

from $D$ onto $P(x)$ such that $f\circ L_{x}\in H^{\infty}$ for every $f\in H^{\infty}$ , where $L_{x}$ is given
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by $L_{x}(z)= \lim_{\alpha}(z_{j_{\alpha}}-z)/(1-\overline{z}_{j_{\alpha}}z)$ for a net $\{z_{j}\}_{a}$ in $\{z_{j}\}_{j}$ with $z_{j} \frac{>}{}x$ . When $L_{x}$

is a homeomorphism, $P(x)$ is called a homeomorphic part.
Our problem is; if $\{x_{j}\}_{j}$ is an interpolating sequence in $G$ , is there an in-

terpolating Blaschke product $b$ such that $Z(b)\supset\{x_{j}\}_{j}^{p}$ Generally the converse
is not true. For, let $b$ be an interpolating Blaschke product with zeros $\{z_{n}\}_{n}$

in $D$ and let $x$ be a cluster point of $\{z_{n}\}_{n}$ . Put $\{x_{j}\}_{j}=\{z_{n}\}_{n}\cup\{x\}$ . Then it
is not difficult to see that $\{x_{j}\}_{j}$ is not interpolating and $Z(b)\supset\{x_{j}\}_{j}$ . In [3]

and [6], they independently proved that if $P$ is a homeomorphic part and
$\{x_{j}\}_{j}\subset P$, then $\{x_{j}\}_{j}$ is interpolating if and only if $\{x_{j}\}_{j}=Z(b)\cap P$ for an in-
terpolating Blaschke product $b$ . In this paper, we study an interpolating
sequence whose elements are contained in distinct parts in $G$ . Our theorem is
the following.

THEOREM. Let $\{x_{j}\}_{j}$ be a sequence in $G$ such that $P(x_{k})\cap c1\{x_{j}\}_{j\neq k}=\dot{\varphi}$ for
every $k$ . Then the following conditions are equivalent.

(i) There is an interpolating Blaschke product $b$ such that $Z(b)\supset\{x_{j}\}_{j}$ .
(ii) $\{x_{j}\}_{j}$ is an interpolating sequence.

The idea to prove our theorem is basically the same as in [6]. The differ-
ence between them is; let $h$ be a function in $H^{\infty}$ with $h(x_{1})\neq 0$ and $h(x_{j})=0$

for $j\geqq 2$ and let $B$ be a Blaschke factor of $h$ . If $\{x_{j}\}_{j}$ is contained in the same
part, then $B(x_{1})\neq 0$ and $B(x_{j})=0$ for $j\geqq 2$ , but under the assumption of our
theorem we can not say anything about $B$ . Previous paper’s problem is how
to construct an interpolating subProduct $b$ of $B$ such that $b(x_{j})=0$ for $J\geqq 2$ ,

but this paper’s problem is how to construct an interpolating Blaschke product
$b$ such that $b(x_{j})=0$ for $J\geqq 2$ using the function $h$ . Therefore this paper is a
little bit complicated more than the previous one. The main part of this paper
is to prove $(ii)\Rightarrow(i)$ . In Section 2, we give eight lemmas. Using them, we
prove our theorem in Section 3.

2. Blaschke subproducts.

For an interpolating Blaschke product $b$ with zeros $\{z_{j}\}_{j}$ , put

$\delta(b)=\inf_{kj}\prod_{\neq k}\rho(z_{j}, z_{k})$ .

By Hoffman [ $i^{r})$ p. 82], we have the following lemma.

LEMMA 1. Let $x\in M(H^{\infty})$ and let $b$ be an interPolating Blaschke product
with $b(x)=0$ . If $0<\delta<1$ , then there is a subproduct $b_{1}$ of $b$ such that $b_{1}(x)=0$

and $\delta(b_{1})>\delta$ .

We use the same idea to prove the following lemmas 2, 4 and 5, but these
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situations are different, so we shall give these detail proofs. Lemma 6 is a
summary of these results. Let $\{x_{j}\}_{j}$ be an interpolating sequence. Then by

the open mapping theorem, there is a universal constant $M$ such that for every
sequence $\{a_{j}\}_{j}$ with $|a_{j}|$ Sl for every $j$ , there is a function $f$ in $H^{\infty}$ with
$||f||\leqq M$ and $f(x_{j})=a_{j}$ for every $j$ . The constant $M$ is called an interpolation
constant for $\{x_{j}\}_{j}$ .

LEMMA 2. Let $\{x_{j}\}_{j}$ be a sequence in $G$ and let $\{b_{j}\}_{j}$ be a sequence of in-
terpolating Blaschke products with $b_{j}(x_{j})=0$ . Let $h$ be a function in ball $(H^{\infty})$

with $Z(h)\cap D=\phi$ and $Z(h)\supset\{x_{j}\}_{j}$ . If $x$ is a point in $M(H^{\infty})$ with $h(x)\neq 0$ , then

for each $r$ with $0<r<1$ there is a Blaschke product $\Pi_{j=1}^{\infty}\psi_{j}$ such that
$(i)$ $\psi_{j}$ is a subproduct of $b_{j}$ with $\psi_{j}(x_{j})=0$ ; and

(ii) $|( \prod_{j=1}^{\infty}\psi_{j})(x)|>r$ .

PROOF. Let $\{z_{j,k}\}_{k}$ be the zero sequence of $b_{j}$ . Since $b_{j}(x_{j})=0$ , by [4, $p$ .
205], $x_{j}\in c1\{z_{j,k}\}_{k}$ . Let $M_{j}$ be an interpolation constant for $\{z_{j.k}\}_{k}$ . Take a
sequence $\{r_{j}\}_{j}$ such that

$0<r_{j}<1$ and $\prod_{J=1}^{\infty}r_{j}>r$ .

Then take a sequence $\{\epsilon_{j}\}_{j}$ such that

(1) $0<\epsilon_{j}<1$ and $\prod_{j=1}^{\infty}\frac{r_{j}-M_{j}\epsilon_{j}}{1+M_{j}\epsilon_{j}}>r$ .
Put

(2) $E=\{\zeta\in D ; |h(\zeta)|>|h(x)|/2\}$ .
By the corona theorem (see [2, p. 318]), $x$ is contained in cl $E$ .

Fix $j$ arbitrary. Then there is a positive integer $n$ , depending on $j$ , such
that

(3) $r_{j}^{n}<|h(x)|/2$ .
Let $\psi_{j}$ be a subproduct of $b_{j}$ with zeros $F_{j}=\{z_{j,k} ; |h(z_{j.k})|<\epsilon_{j}^{n}\}$ . Since $h(x_{j}\rangle$

$=0$ and $x_{j}\in c1\{z_{j,k}\}_{k}$ , we have $x_{j}\in c1F_{j}$ , so that $\psi_{j}(x_{j})=0$ . Since $Z(h)\cap D=\phi$ ,
we may consider that $h^{1/n}$ is a function in bal1 $(H^{\infty})$ . Since $|h^{1/n}|<\epsilon_{j}$ on $F_{j}$

and the interpolating sequence $F_{j}$ has $M_{j}$ as an interpolation constant, there is
a function $f$ in $H^{\infty}$ such that

$||f||\leqq M_{j}\epsilon_{j}$ and $f(z_{j.k})=h^{1/n}(z_{j.k})$ for every $z_{j.k}\in F_{f}$ .

Then there is a function $g$ in $H^{\infty}$ such that

$f-h^{1/n}=\psi_{j}g$ .
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Here we have $||g||\leqq 1+M_{J}\epsilon_{j}$ . Consequently we get

(4) $|h^{1/n}(z)|-M_{j}\epsilon_{j}\leqq|(f-h^{1/n})(z)|\leqq(1+M_{j}\epsilon_{f})|\psi_{f}(z)|$

for every $z\in D$ . Therefore for $\zeta\in E$ we get

$r_{j}<(|h(x)|/2)^{1/n}$ by (3)

$<|h^{1/n}(\zeta)|$ by (2)

$\leqq(1+M_{j}\epsilon_{j})|\psi_{j}(\zeta)|+M_{J}\epsilon_{J}$ by (4).
Hence

$\frac{r_{j}-M_{j}\epsilon_{j}}{1+M_{j}\epsilon_{j}}<|\psi_{j}(\zeta)|$

Consequently we have

$r< \prod_{j\Rightarrow 1}^{\infty}\frac{r_{j}-M_{j}\epsilon_{j}}{1+M_{f}\epsilon_{j}}$

$<|( \prod_{f=1}^{\infty}\psi_{f})(\zeta)|$

Since $x\in c1E$ , we get $r<|( \prod_{j=1}^{\infty}\psi_{j})(x)|$ .

for every $\zeta\in E$ .

by (1)

for every $\zeta\in E$ .

The following lemma comes from [5, Theorem 5.2].

LEMMA 3. Let $B$ be a Blaschke product with zeros $\{w_{j}\}_{j}$ . Then there are
subfactors $B_{1}$ and $B_{2}$ of $B$ such that $B=B_{1}B_{2}$ and $B_{1}=B_{2}=0$ on $Z(B)\backslash c1\{w_{j}\}_{j}$ .

LEMMA 4. Let $\{x_{j}\}_{j}$ be a sequence in $G$ and $\{b_{j}\}_{j}$ be a sequence of interpolat-
ing Blaschke products with $b_{j}(x_{j})=0$ . Let $B$ be a Blaschke product with zeros
$\{w_{k}\}_{k}$ such that $Z(B)\supset\{x_{j}\}_{j}$ and $x_{j}\not\in c1\{w_{k}\}_{k}$ for every $j$ . If $x$ is a point in
$M(H^{\infty})$ with $B(x)\neq 0$ , then for each $r$ with $0<r<1$ there is a Blaschke product
$\Pi_{j=1}^{\infty}\psi_{j}$ such that

$(i)$ $\psi_{j}$ is a subproduct of $b_{j}$ with $\psi_{j}(x_{j})=0$ ; and

(ii) $|( \prod_{j=1}^{\infty}\psi_{j})(x)|>r$ .

PROOF. Take $\{z_{j,k}\}_{k},$ $\{M_{j}\}_{j},$ $\{r_{j}\}_{j}$ , and $\{\epsilon_{j}\}_{j}$ as in the proof of Lemma 2.
Put

$E=\{\zeta\in D;|B(\zeta)|>|B(x)|/2\}$ .

Then $x\in c1E$ . Fix $j$ arbitrary. There is a positive integer $n$ such that $r_{j}^{n}<$

$|B(x)|/2$ . Applying Lemma 3 succeedingly $n$ -times for $B$ and its subfactors,
we get

$B=B_{1}B_{2}\cdots B_{n}$ and $B_{i}=0$ on $Z(B)\backslash c1\{w_{k}\}_{k}$

for every $1\leqq i\leqq n$ . For each $i,$ $1\leqq i\leqq n$ , let $\psi_{j}$ . be a subproduct of $b_{j}$ with
zeros
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$F_{j.i}=\{z_{j.k} ; |B_{i}(z_{j.k})|<\epsilon_{j}\}$ .

Since $B_{i}(x_{J})=0$ and $x_{J}\in c1\{z_{j.k}\}_{k}$ , we have

$\bigcap_{i=1}^{n}F_{j.i}\neq\phi$ and $x_{j} \in c1\bigcap_{i=1}^{n}F_{j.i}$ .

Let $\psi_{j}$ be a subproduct of $b_{j}$ with zeros $\bigcap_{i=1}^{n}F_{j.i}$ . Then $\psi_{j}(x_{j})=0,$ $|\psi_{j.i}|\leqq|\psi_{J}|$

on $D$ for every $i$, and $|B_{i}|<\epsilon_{j}$ on $F_{j,i}$ . Since the interpolating sequence $F_{j.i}$

has $M_{j}$ as an interpolation constant, there is a function $f_{i}$ in $H^{\infty}$ such that

$||f_{i}||$ :EI $M_{j}\epsilon_{j}$ and $f_{i}(z_{j.k})=B_{i}(z_{f,k})$ for $z_{j.k}\in F_{j.i}$ .

Then there is a function $g_{i}$ in $H^{\infty}$ such that

$f_{i}-B_{i}=\psi_{j.i}g_{i}$ .
Since $||g_{i}||\leqq 1+M_{j}\epsilon_{j}$ , we have

$\frac{|B_{i}(z)|-M_{f}\epsilon_{j}}{1+M_{j}\epsilon_{j}}\leqq|\psi_{j.i}(z)|$ for $z\in D$ and l$i\leqq n

$\leqq|\psi_{J}(z)|$ .
Let $\zeta\in E$ . Since

$\prod_{i=1}^{n}|B_{i}(\zeta)|=|B(\zeta)|>|B(x)|/2>r_{j}^{n}$

we have $|B_{i}(\zeta)|>r_{f}$ for some $i$, where $i$ depends on $\zeta$ . Hence

$\frac{r_{j}-M_{j}\epsilon_{j}}{1+M_{j}\epsilon_{j}}\leqq|\psi_{j}(\zeta)|$

Consequently for every $\zeta\in E$ we have

for every $\zeta\in E$ .

$r< \prod_{j=1}^{\infty}\frac{r_{j}-M_{j}\epsilon_{j}}{1+M_{j}\epsilon_{j}}\leqq|(\prod_{j=1}^{\infty}\psi_{j})(\zeta)|$ .

Since $x\in c1E$ , we get $r<|(\Pi_{j=1}^{\infty}\psi_{j})(x)|$ .

LEMMA 5. Let $\{x_{j}\}_{j}$ be a sequence in $G$ such that $x_{k}$ is not contained in
cl $\{x_{j}\}_{j\neq k}$ for every $k$ . Let $\{b_{j}\}_{j}$ be a sequence of interpolating Blaschke products
with $b_{j}(x_{j})=0$ . Let $B$ be a Blaschke product with zeros $\{w_{k}\}_{k}$ such that $\{x_{f}\}_{j}\subset$

cl $\{w_{h}\}_{k}$ . If $x$ is a point in $M(H^{\infty})$ such that $|B(x)|>\delta$ , then there is a Blaschke
product $\Pi_{j=1}^{\infty}\psi_{j}$ such that

$(i)$ $\psi_{j}$ is a subproduct of $b_{j}$ with $\psi_{j}(x_{j})=0$ ; and

(ii) $|( \prod_{f=1}^{\infty}\psi_{j})(x)|>\delta$ .

PROOF. Take $\{z_{j.k}\}_{k}$ and $\{M_{j}\}_{j}$ as in Lemma 2. Take $\sigma$ as $\delta<\sigma<|B(x)|$ .
Take a sequence $\{\epsilon_{j}\}_{j}$ such that $\epsilon_{j}>0$ and
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(5) $\sigma\prod_{j=1}^{\infty}\frac{1-M_{j}\epsilon_{j}\sigma^{-1}}{1+M_{j}\epsilon_{j}}>\delta$ .

Put

(6) $E-\{\zeta\in D;|B(\zeta)|>\sigma\}$ .

Then $x\in c1E$ . By our assumption on $\{x_{j}\}_{j}$ , there is a sequence of disjoint
open subsets $\{U_{j}\}_{j}$ of $M(H^{\infty})$ such that $x_{j}\in U_{j}$ for every $J$ . Let $B_{j}$ be the
Blaschke Product with zeros $\{w_{k}\}_{k}\cap U_{j}$ . Then $\Pi_{J=1}^{\infty}B_{j}$ is a subProduct of $B$ and

(7) $|B_{j}|>\sigma$ on $E$ .

Since $x_{j}\in c1\{w_{k}\}_{k},$ $B_{j}(x_{j})=0$ .
Fix $j$ arbitrary. Let $\psi_{j}$ be the subproduct of $b_{j}$ with zeros $F_{j}=\{z_{j,k}$ ;

$|B_{j}(z_{j.k})|<\epsilon_{j}\}$ . Since $x_{j}\in c1\{z_{j.k}\}_{k}$ and $B_{j}(x_{j})=0$ , we have $\psi_{J}(x_{j})=0$ . By the
same way as Lemma 2 (replace $h^{1/n}$ by $B_{j}$ ), we have

(8) $\frac{|B_{j}(z)|-M_{j}\epsilon_{j}}{1+M_{j}\epsilon_{j}}\leqq|\psi_{J}(z)|$ for every $z\in D$ .

Therefore for $\zeta\in E$ we have

$|( \prod_{j=1}^{\infty}\psi_{j})(\zeta)|=\prod_{j=1}^{\infty}|\psi_{f}(\zeta)|$

$\geqq\prod_{j=1}^{\infty}|B_{j}(\zeta)|\prod_{J=1}^{\infty}\frac{1-M_{j}\epsilon_{j}|B_{j}(\zeta)|^{-1}}{1+M_{j}\epsilon_{j}}$ by (8)

$\geqq|B(\zeta)|\prod_{j=1}^{\infty}\frac{1-M_{j}\epsilon_{j}\sigma^{-1}}{1+M_{j}\epsilon_{j}}$ by (7)

$\geqq\sigma\prod_{j=1}^{\infty}\frac{1-M_{j}\epsilon_{j}\sigma^{-1}}{1+M_{j}\epsilon_{f}}$ by (6)

$>\delta$ . by (5)

Since $x\in c1E$ , we get $|(\Pi_{j=1}^{\infty}\psi_{j})(x)|>\delta$ .

The following lemma is a summary of Lemmas 2, 4 and 5.

LEMMA 6. Let $\{x_{j}\}_{j}$ be a sequence in $G$ such that $x_{k}$ is not contained in
cl $\{x_{j}\}_{j\neq k}$ for every $k$ . Let $\{b_{j}\}_{j}$ be a sequence of interpolating Blaschke products
with $b_{j}(x_{j})=0$ . Let $x\in M(H^{\infty})$ . If $|f(x)|>\delta$ for some function $f$ in ball $(H^{\infty})$

with $Z(f)\supset\{x_{j}\}_{j}$ , then there is a Blaschke product $\Pi_{j=1}^{\infty}\psi_{j}$ such that
(i) $\psi_{j}$ is a subproduct of $b_{j}$ with $\psi_{j}(x_{j})=0$ ; and

(ii) $|( \prod_{j=1}^{\infty}\psi_{j})(x)|>\delta$ .

PROOF. Let $f=Bh$ , where $B$ is a Blaschke factor of $f$ and $Z(h)\cap D=\phi$ .
Let $\{w_{k}\}_{k}$ be a zero sequence of $B$ . Put
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$\{x_{1.j}\}_{j}=$ { $x_{i}$ ; $B(x_{i})=0$ and $x_{i}\in c1\{w_{k}\}_{k}$ };

$\{x_{2.j}\}_{j}=$ { $x_{i}$ ; $B(x_{i})=0$ and $x_{i}\not\in c1\{w_{k}\}_{k}$ }; and

$\{x_{3.j}\}_{j}=\{x_{\ell}\}_{i}\backslash (E_{1}\cup E_{2})=\{x_{i} ; B(x_{i})\neq 0\}$ .

Note that $|B(x)|>\delta$ and $h(x)\neq 0$ . We devide $\{b_{j}\}_{j}$ into three parts $\{b_{1,j}\}_{j}$ ,
$\{b_{2.j}\}_{j}$ and $\{b_{3,j}\}_{j}$ such that

$b_{k,j}(x_{k,j})=0$ for $k=1,2,3$ and $j=1,2,$ $\cdots$

Take $\delta_{1}$ such that $\delta<\delta_{1}<|f(x)|$ , and take $r$ such that

$0<r<1$ and $\delta<\delta_{1}r^{2}$ .

We apply Lemma 5 for $\{x_{1.j}\}_{j}$ and $\{b_{1.j}\}_{j}$ . Then there is a subproduct $\psi_{1.j}$ of
$b_{1,j}$ such that $\psi_{1,j}(x_{1.j})=0$ and $|(\Pi_{j=1}^{\infty}\psi_{1,j})(x)|>\delta_{1}$ . We apply Lemma 4 for
$\{x_{2,j}\}_{j}$ and $\{b_{2,j}\}_{j}$ . Then there is a subproduct $\psi_{2.j}$ of $b_{2.j}$ such that $\psi_{2.f}(x_{2.j})$

$=0$ and $|(\Pi_{j=1}^{\infty}\psi_{2.f})(x)|>r$ . Since $Z(h)\supset\{x_{3.j}\}_{j}$ , we can apply Lemma 2 for
$\{x_{3,j}\}_{j}$ and $\{b_{3,j}\}_{j}$ . Then there is a subproduct $\psi_{s.j}$ of $b_{3,j}$ such that $\psi_{3,j}(x_{3,j})$

$=0$ and $|(\Pi_{j=1}^{\infty}\psi_{3,j})(x)|>r$ . Consequently, we have a desired Blaschke product
$\Pi_{i=1}^{s}\Pi_{j=1}^{\infty}\psi_{i.j}$ .

LEMMA 7. Let $x\in G$ and let $b$ be an interpolating Blaschke product with
$b(x)=0$ . If $b_{1}$ and $b_{2}$ are subproducts of $b$ with $b_{1}(x)=b_{2}(x)=0$ , then $x$ is contained
in the closure of the intersection of zero sequences of $b_{1}$ and $b_{2}$ .

PROOF. Suppose not. Let $\{z_{j}\}_{j}$ and $\{w_{j}\}_{j}$ be the zero sequences of $b_{1}$ and
$b_{2}$ respectively. Put $W=\{z_{j}\}_{j}\cap\{w_{j}\}_{J}$ . Then $x$ \’ecl $W$ , so that $x\in c1(\{z_{j}\}_{j}\backslash W)$

and $x\in c1(\{w_{j}\}_{j}\backslash W)$ . Since disjoint subsets in an interpolating sequence have
disjoint closures, we get a contradiction.

LEMMA 8. Let $x\in G$ and let $E$ be a closed subset of $M(H^{\infty})$ with $P(x)\cap E$

$=\emptyset$ . If $b$ is an interpolating Blaschke product with $b(x)=0$ and $0<r<1$ , then
there is a subProduct $\psi$ of $b$ such that $\psi(x)=0$ and $|\psi|>r$ on $E$ .

PROOF. For each $y\in E$ , since $\rho(x, y)=1$ there is a function $h_{y}$ in bal1 $(H^{\infty})$

such that $h_{y}(x)=0$ and $|h_{y}(y)|>r$ . As a special case of Lemma 6, there is a
subproduct $b_{y}$ of $b$ such that $b_{y}(x)=0$ and $|b_{y}(y)|>r$ . Put

$U_{y}=\{\zeta\in M(H^{\infty});|b_{y}(\zeta)|>r\}$ .

Then $\cup\{U_{y} ; y\in E\}\supset E$ . Hence there is a finite set $\{y_{1}, \gamma_{2}, , y_{n}\}$ in $E$ such
that $\cup\{U_{y_{i}} ; 1\leqq i\leqq n\}\supset E$ . Let $\psi$ be an interpolating Blaschke product with
zeros $\bigcap_{\iota=1}^{n}Z(b_{y_{i}})\cap D$ . By Lemma 7, we have $\psi(x)=0$ . Since $|\psi|\geqq|b_{y_{i}}|$ on $D$,

we have

$| \psi(y)|\geqq\max$ { $|b_{y_{i}}(y)|$ ; l$i\leqq n} $>r$
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for every $y\in E$ .

3. Proof of Theorem.

PROOF. $(i)\Rightarrow(ii)$ Let $b$ be an interpolating Blaschke product with zeros
$\{z_{k}\}_{k}$ such that $Z(b)\supset\{x_{j}\}_{j}$ . Since $x_{j}\not\in c1\{x_{k}\}_{k\neq j}$ for every $j$ , there is a sequence
of disjoint open subsets $\{U_{j}\}_{j}$ of $M(H^{\infty})$ such that $x_{j}\in U_{j}$ . Since $x_{j}$ is a cluster
point of $\{z_{k}\}_{k},$ $\{z_{k}\}_{k}\cap U_{j}$ is an infinite set for each $j$ . For a bounded sequence
$\{a_{j}\}_{j}$ , there is a function $h$ in $H^{\infty}$ such that $h(z_{i})=a_{j}$ for every $z_{i}\in\{z_{k}\}_{k}\cap U_{j}$ .
Since $x_{j}\in c1\{z_{k}\}_{k}\cap U_{j}$ , we have $h(x_{j})=a_{j}$ for every $j$ . Therefore $\{x_{j}\}_{j}$ is an
interpolating sequence.

(ii)O(i) Suppose that $\{x_{j}\}_{j}$ is an interpolating sequence. Since $x_{j}\in G$ ,

there is an interpolating Blaschke product $b_{j}$ such that $b_{J}(x_{j})=0$ . By the open
mapping theorem, there is a positive number $\delta$ such that

$(\#)$ $\inf_{k}\sup$ { $|h(x_{k})|$ ; $h\in bal1(H^{\infty}),$ $h(x_{j})=0$ for $j\neq k$ } $>\delta$ .
Let $h_{1}$ be a function in ball $(H^{\infty})$ such that $|h_{1}(x_{1})|>\delta$ and $h_{1}(x_{j})=0$ for $j\neq 1$ .

By Lemma 6 (consider as $x=x_{1}$ and $f=h_{1}$ ), there is a Blaschke product $B_{1}=$

$\Pi_{j=2}^{\infty}b_{1.j}$ such that $|B_{1}(x_{1})|>\delta$ and $b_{1.j}$ is a subproduct of $b_{J}$ with $b_{1.j}(x_{j})=0$ for
$j\geq 2$ .

Let $\{r_{f}\}_{j}$ be a sequence of numbers such that

$0<r_{j}<1$ and $\prod_{j=1}^{\infty}r_{j}>\delta$ .
By Lemma 8 (consider as $x=x_{1},$ $b=b_{1}$ and $E=c1\{x_{i}\}_{\iota\neq 1}$ ), there is an interpola-
ting Blaschke subproduct $\psi_{1}$ of $b_{1}$ such that $\psi_{1}(x_{1})=0$ and $|\psi_{1}(x_{i})|>r_{1}$ for $i\neq 1$ .
By Lemma 1, we may assume that $\delta(\psi_{1})>\delta$ . Since $|B_{1}(x_{1})|>\delta$ , there is a
subsequence $\{z_{1,i}\}_{i}$ of the zero sequence of $\psi_{1}$ such that $|B_{1}(z_{1.i})|>\delta$ for every
$i$ . Then $x_{1}\in c1\{z_{1.i}\}_{i}$ . Let $\phi_{1}$ be the interpolating Blaschke product with zeros
$\{z_{1,i}\}_{t}$ . Then $\phi_{1}$ is a subproduct of $b_{1},$ $\delta(\phi_{1})>\delta,$ $\phi_{1}(x_{1})=0$ , and $|\phi_{1}(x_{i})|>r_{1}$ for
$i\neq 1$ .

By induction, we shall construct a sequence of Blaschke products $\{B_{j}\}_{j\geqq 2}$

and sequences of interpolating Blaschke products $\{\phi_{j}\}_{j\geqq 2}$ and $\{b_{j.t}\}_{t>j}$ such that:
(a) $B_{j}=\Pi_{t=j+1}^{\infty}b_{j.t}$ is a subproduct of $B_{j-1}=\Pi_{t=j}^{\infty}b_{j-1,t}$ such that $|B_{j}(x_{j})|>\delta$ ;
(b) $b_{j.t}$ is an interpolating Blaschke subproduct of $b_{j-1.t}$ such that $b_{j.t}(x_{t})$

$=0$ for $t\geqq j+1$ ;
(c) $\phi_{j}$ is a subproduct of $b_{j-1.j}$ with zeros $\{z_{j,i}\}_{i}$ and $\delta(\phi_{j})>\delta$ ;
(d) $|B_{j}(z_{j.i})|>\delta$ for every $i$ ;
(e) $\phi_{j}(x_{j})=0$ and $|\phi_{j}(x_{i})|>r_{j}$ for $i\neq j$ ; and
(f) $|\phi_{s}(z_{j.i})|>r_{s}$ for every $s<j$ and $i$ .

Our induction works on $k$ . If we put $b_{0,t}=b_{t}$ , tben $B_{1},$ $\phi_{1}$ and $\{b_{1,t}\}_{t>1}$ satisfy
all conditions $(a-f)$ for $k=1$ .

Suppose that $\{B_{j}\}_{j<k},$ $\{\phi_{j}\}_{j<k}$ and $\{b_{j.t}\}_{t>j}(j<k)$ are already chosen. By
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$(\#)$ and Lemma 6 (consider as $x=x_{k}$ and $\{b_{j}\}_{J}=\{b_{k-1.t}\}_{t\geqq k+1}$ ), there is a sub-
product $B_{k}=\Pi_{t=k+1}^{\infty}b_{k.t}$ of $B_{k- 1}$ such that $|B_{k}(x_{k})|>\delta$ and $b_{k,t}$ is an interpola-
ting Blaschke subproduct of $b_{k- 1.t}$ such that $b_{k,t}(x_{t})=0$ for $t\geqq k+1$ . Thus we
get (a) and (b).

By Lemma 8 (consider as $x=x_{k},$ $b=b_{k- 1.k}$ and $E=c1\{x_{j}\}_{j\neq k}$ ), there is an
interpolating Blaschke subproduct $\psi_{k}$ of $b_{k-1,k}$ such that $\psi_{k}(x_{k})=0$ and $|\psi_{k}(x_{i})|$

$>r_{k}$ for $i\neq k$ . By Lemma 1, we may assume that $\delta(\psi_{k})>\delta$ . Since $|B_{k}(x_{k})|>\delta$,

there is a subsequence $\{z_{k.i}\}_{i}$ of the zero sequence of $\psi_{k}$ such that $|B_{k}(z_{k.i})|>\delta$

for every $i$ . Then we get (d) and $x_{k}\in c1\{z_{k.i}\}_{i}$ .
Let $\phi_{k}$ be the interpolating Blaschke product with zeros $\{z_{k,t}\}_{i}$ . Then

$\phi_{k}(x_{k})=0$ . Since $\phi_{k}$ is a subproduct of $\psi_{k}$ , we get (c) and (e).

Since $|\phi_{s}(x_{k})|>r_{s}$ for $s<k$ by (e), moreover we may assume that $\{z_{k.i}\}_{i}$

satisfies $|\phi_{s}(z_{k.i})|>r_{s}$ for every $s<k$ and $i$ . Thus we get (f). This completes
the induction.

Put $b=\Pi_{k=1}^{\infty}\phi_{k}$ . By (e), we have $Z(b)\supset\{x_{J}\}_{j}$ . We shall prove that $b$ is an
interpolating Blaschke product. We note that $\{z_{k.j}\}_{k.j}$ is the zero sequence of
$b$ . We have

$\inf_{(k.i)}\prod_{(t.s)\neq(k.i)}\rho(z_{t.\epsilon}, z_{k.i})$

$= \inf_{(k.i)}[\prod_{t\neq k}s=1\rho(z_{t,S}, z_{k.i})][\prod_{s\neq i}\rho(z_{k.s}, z_{k.i})]$

$\geqq\inf_{(k.i)}[\prod_{t\neq k}|\phi_{t}(z_{k.i})|]\delta(\phi_{k})$ by (c)

$\geqq\delta\inf_{(k.i)}[\prod_{t<k}|\phi_{t}(z_{k.i})|][\prod_{t>k}|\phi_{t}(z_{k,i})|]$ by (c)

$\geqq\delta\inf_{(ki)}[\prod_{t<k}r_{t}]|B_{k}(z_{k.i})|$

$\geqq\delta^{2}\prod_{t\Rightarrow 1}^{\infty}r_{t}$

$\geqq\delta^{3}$ .

by (a), (b), (c), (f)

by (d)

Hence $b$ is an interPolating Blaschke Product. This comPletes the proof.

REMARK. By the proof of $( i)=\ni(ii)$ , for a sequence $\{x_{k}\}_{k}$ such that $Z(b)\supset$

$\{x_{k}\}_{k}$ for some interPolating Blaschke Product $b,$ $\{x_{k}\}_{k}$ is interPolating if and
only if $x_{j}\not\in c1\{x_{k}\}_{k\neq j}$ for every $j$ .

4. Comments.

A closed subset $E$ of $M(H^{\infty})$ is called an interpolation set for $H^{\infty}$ if for
every continuous function $f$ on $E$ there is a function $g$ in $H^{\infty}$ such that $g|_{E}=f$ .
In [7], Lingenberg proved that if $E$ is an interpolation set such that $E\subset G$

then there is an interpolating Blaschke product $b$ such that $Z(b)\supset E$ . If $E$ is
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an interpolation set, then $E$ is $\rho$ -separating, that is,

$\inf\{\rho(x, y);x, y\in E, x\neq y\}>0$ .
Recently Lingenberg and the author showed that if $E$ is a closed $\rho$-separating
subset of $M(H^{\infty})$ with $E\subset G,$ $E$ is an interpolation set. Since every closed
subset of $Z(b)$ , where $b$ is an interpolating Blaschke product, is $\rho$ -separating,
the following conditions for closed subsets $E$ of $M(H^{\infty})$ are equivalent:

(i) $E$ is an interpolation set and $E\subset G$ ;
(ii) $E$ is $\rho$ -seParating and $E\subset G$ ; and
(iii) there is an interpolating Blaschke product $b$ such that $Z(b)\supset E$ .

The closedness of $E$ is an unremovable condition in the above assertion.
NOW let $\{x_{n}\}_{n}$ be an interpolating sequence in $M(H^{\infty})$ . If $\{x_{n}\}_{n}$ is contained

in $D$ , then cl $\{x_{n}\}_{n}\subset G$ by [5]. We have a following conjecture.

CONJECTURE. If $\{x_{n}\}_{n}$ is an interpolating sequence in $G$ , then cl $\{x_{n}\}_{n}\subset G$ .

If this conjecture is affirmative, we may discuss as follows. Let $\{y_{n}\}_{n}$ be a
sequence in $M(H^{\infty})$ . We put

$\{y_{1.n}\}_{n}=\{y_{n}\}_{n}\cap M(L^{\infty})$ ;

$\{y_{2.n}\}_{n}=\{y_{n}\}_{n}\cap[M(H^{\infty})\backslash (M(L^{\infty})’G)]$ ; and
$\{y_{s.n}\}_{n}=\{y_{n}\}_{n}\cap G$ .

If $\{y_{n}\}_{n}$ is interpolating, then each $\{y_{k.n}\}_{n}$ is interpolating. We see the con-
verse assertion is also true. Since $M(L^{\infty})$ is closed, cl $\{y_{1.n}\}_{n}\subset M(L^{\infty})$ . Since
$\{y_{2,n}, y_{3.n}\}_{n}$ is a countable subset of $M(H^{\infty})\backslash M(L^{\infty})$ , by [8] we have cl $\{y_{2.n}$ ,
$y_{3.n}\}_{n}\cap M(L^{\infty})=\phi$ . Since $G$ is an open subset of $M(H^{\infty})$ [5], $c1\{y_{2,n}\}_{n}\subset$

$M(H^{\infty})\backslash G$ . Suppose that each $\{y_{k.n}\}_{n}$ is interpolating. Then cl $\{y_{3,n}\}_{n}\subset G$

(if our conjecture is true), and cl $\{y_{k,n}\}_{n},$ $k==1,2,3$ , become mutually disjoint
interpolation sets. Moreover

$\rho$ ( $c1\{y_{k.n}\}_{n}$ , cl $\{y_{f.n}\}_{n}$ ) $=1$ for $k\neq j$ .

Hence by [9], $\bigcup_{k=1}^{3}$ cl $\{y_{k,n}\}_{n}$ is an interpolation set. Then $\{y_{n}\}_{n}=b_{k=1}^{13}\{y_{k,n}\}_{n}$

becomes an interpolating sequence.
Hence to determine whether $\{y_{n}\}_{n}$ is interpolating or not it is sufficient to

study three sequences independently. Hoffman (unpublished note) proved that
$\{y_{1.n}\}_{n}$ is interpolating if and only if $y_{j}\not\in c1\{y_{1,n}\}_{n\neq j}$ for every $j$ . If $\{y_{3.n}\}_{n}$

is interpolating, then cl $\{y_{3.n}\}_{n}$ is an interpolation set with cl $\{y_{3,n}\}_{n}\subset G$ (if our
conjecture is true) and $y_{j}\not\in c1\{y_{3,n}\}_{n\neq j}$ for every $j$ . The converse is also true.
For, by the first paragraph, there is an interpolating Blaschke product $b$ such
that $Z(b)\supset\{y_{3.n}\}_{n}$ . By the remark in Section 3, $\{y_{3.n}\}_{n}$ is interPolating.

But we do not know anything when $\{y_{2.n}\}_{n}$ is interpolating.
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