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Introduction. ,
Let us consider the following Dirichlet problem on 2={tcR; t>0} X R™.

{ Pu(t, x)= f(t, x) in 2,

0.1
u(-+0, x) = g(x) on 9%2.

Here 02={t=0} xR", and P is an analytic differential operator of order 2 de-
fined on 2=020U32 of the form

0.2) P=D}+At, x, D)D+Ayt, x, D)

with D,=ad/ot, D,=(d/dx,, -+, 0/0x,). We study the problem (0.1) in the space
of hyperfunctions, and thus f(¢, x) and g(x) are hyperfunctions defined on 2
and 02 respectively. Moreover we assume that f(f, x) is mild on ¢=+0.
This means that f(¢, x) belongs to a class of hyperfunctions for which the
boundary values D{f(+0, x) (=0, 1,2, ---) to 02 are well-defined (see §1).
Under this assumption, it follows from the non-charactericity of 02 that every
solution on 2 to the first equation of (0.1) becomes mild, and in particular that
the second equation of (0.1) makes sense.

Let u(¢, x) be a hyperfunction solution to (0.1) in £. Then taking the
canonical extensions #(t, x) and F(#, x) of u(¢, x) and f(#, x) respectively, we
get the identities

(0.3) Pit, x) = ft, x)+g(x)8" (t)+(D.u(+0, x)+ A0, x, D.)g(x))-6(t)
and

(0.4) tPat, x) =t f(t, x)—g(x)0@)  in R, XR™.

Here the correspondence u—# is a well-defined operation on mild hyperfunc-
tions, which is similar to the cut-off operation by the Heaviside function Y(¢).

Conversely, it is easy to see that every hyperfunction solution to with
condition supp #C{t=0} gives a solution to (0.1). Thus we can reduce the
Dirichlet problem (0.1) to studying the local or global cohomology groups of
the complex of sheaves
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tP
(0- 5) 0— Fuzo;(-‘Bz.x) —> F(t;m(-@t.x) —>0.

In other words, we study ker({P) and coker(¢P) in (0.5). Here I'z0( B¢, )
denotes the sheaf of hyperfunctions in (¢, x)=R, X R% supported by {{=0}.

On the other hand, mixed problems are also formulated in a similar manner.
Take another hypersurface H, for example {x,=0}, which is non-characteristic

for P and transversal to 0£2, and pose an initial condition for the solution u to
0.1):

0.6) u®, 0, x") =wvt, x'), D.ut, 0, x")=uv(, x’) on HNQ2.

(Here x'=(x,, -+, x,).) Then we treat u.=u(t, x)Y(+x,) instead of u as be-
fore and get the equations
0.7 Pu. = h.(t, x) in Q.

Here the functions {4.(f, x)} are linear combinations of f({¢, x)Y (% x,),
vot, x')09(x,) (=0, 1) and v,(t, x')0(x,). For example, assume that f=0 and
that v, and v, are mild at t=+4-0. Then wu, is also well-defined and also mild at
t=+0. In this case, however, the authors do not know whether the Dirichlet
data g, :=u.(+0, x) can be determined only by the data f, g, v, and v,. We
know only that

(0.8) g+(x)+g.(x) = g(x) and supp g.(x) C {£x,=20}.

This ambiguity comes from the degeneracy of on {t=0}. By this reason,
we can not expect that #(¢, x) depends analytically on x, at f=x,=0. Thus we
do not know whether (¢, x)Y (% x,) are well-defined.

Nevertheless, once we give a decomposition g.(x) of g(x) satisfying
the solvability of our mixed problem reduces to that of the problems

Pu,(t, x) = h.(, x) in
0.9). u.(+0, x) = g.(x) on of2
supp u.(t, x) C {+x,=20}.

For the uniqueness of solution u(?, x) to (0.1), we need additional conditions on
solutions. For example, it suffices to assume that D,u(+40, x) depends analyti-
cally on x; near {x,=0}, or that u(¢, x) is C? differentiable up to {t=+40}. In
any case, it is important to study the problems (0.9)., and thus we call them
“mixed problems” in this paper.

Since k. and g. in (0.9). are given hyperfunctions on £ and 0Q2 satisfying

supp A.(?, x) C {£x,=0}, supp g.(x) C {£x,=0},

respectively, the problems (0.9). are equivalent to calculating the local or global
cohomology groups of the complexes of sheaves
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tP
(0.10). 0—> P(tzo,izlgo)(-@t.z) — F(tzo,izlgm(gt,x) —>0.

In fact if the above sequence (0.10), is exact at §=(0, 0, '), then the problem
(0.9), localized near § is uniquely solvable. Thus we obtained a cohomological
formulation of mixed problems. Moreover since

Fugo;(—@t.x) = H"m z=m(F(tzm(-‘BtOz»
= Rl im =00 1620/(B:0.))[ 1],

the exactness of (0.10). at § is equivalent to
0.11) Rl iz p20m =0 (F)lg =0.

Here 3,0, is the sheaf of hyperfunctions in (¢, z=x++—1y)eR,XC? depend-
ing holomorphically on z, and ¢ is the complex of sheaves

tP
(0.12) F:0—I't20(8.0.) —> [N120)(8:0,) —> 0.
On the other hand, the condition (0-11) is almost equivalent to
(0.13) SS(RI (y—o)(F)) $ (0,0, 2" ; +dx,).

(The condition (0.13) is stronger than (0.11).) As for the definition of micro-
supports SS(-) of sheaves, refer to §2.1 and Kashiwara-Schapira [9]. Further,
if we have an estimate for SS(&), we can derive an estimate for SS(RI(,-0(F))
by using the formula due to Kashiwara-Schapira (see in §2.1). Hence the
problem finally reduces to estimating the micro-support of &.

We remark here that the complex & is quasi-isomorphic to just a sheaf

(0.14) G =08, Nw-O0u, ), ,

where 0O, , is the sheaf of holomorphic functions of (w, 2)C,XC?, ©F , is the
solution sheaf of the equation P(w, z, D, D,)u(w, z)=0 with value in ©,,,, and

M. = {(w, 2)=C,xC?; Im w=0, Re w=0}.

For the morphism ¢P in (0.12) is surjective, and we can identify ker ({P) with
g as

(0.15) gsu(w, z2) —> u(t, z)-Y()=ker tP).
Therefore ker (tP) and coker (¢P) in (0.10). are respectively isomorphic to

ﬂ?y:(),ixlzm(g) and ﬂf,{J:lo,ixJEO)(g)-

But it is easier to treat the complex & than ¢ because some global cohomology
groups of O,.|x, don’t vanish.
Our result on the micro-support of & is given by
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THEOREM 0.1. Take a point p=G@, #; #dt+Re (Cd2)ST*R,xC?) with E+0
and i=0. Then peSS(F) if

(i) #>0, and a(P)E, 2, 6+%, £)=0 for any 6=vV—1R,
or

(i)  #=0, and the equation a(P)}, 2, 0+2, )=0 in @ has one root
in {Re 08>0} and the other one in {Re §<0}.

REMARK. This theorem will be generalized in to m-th order
operators with general boundary conditions. In that case, we will utilize some
system of equations with (m-+1) generators instead of H=9/9DiP, and we will
need additional conditions of Shapiro-Lopatinski’s type.

REMARK. As seen in (0.14), is almost equivalent to the fol-
lowing problem of Martinez’s type. Let f(w, z) and g(z) be holomorphic re-
spectively on some neighborhoods of

25 = {(w, 2)€CxC™; Im w=0, Re w=0,
lwl+1z—2] <0, ¢(Re w, Re z, Im z)<0}
and
ws = {z&C™; |z—2] <0, ¢(0, Re z, Im z)<0},

for a small 0>>0. Here ¢(t, x, y) is a real valued C® function defined in a
neighborhood of (0, £, ») such that

SD = 0 and (901.‘) SD.Z’ Soy) - (%r Re CO, __Im é)

at (0, £, ). In this situation, our result also claims that for any f(w, z), g(2)
as above, there exists a holomorphic function u(w, z) defined in a neighborhood of
Qs with some positive &' (8'<d) satisfying

{ P(w, z, Dy, D)u(w, 2) = f(w, 2)  on 2

0.16)
u(0, z) = g(2) on wg .

Moreover the difference of two solutions u, u’ of (0.16) extends holomorphically
to (0, 2).

In [15], A. Martinez proves the last statement given above concerning the
uniqueness of solutions by using the method of J. Sjostrand. (He also treated
more general problems under general boundary conditions.)

We prove [Cheorem 0.1l (or [Theorem 1.1l) by reducing the problem of type
(0.16) to an elliptic boundary value problem on real analytic manifold {(¢, x, v);
o, x, y)=0}. More precisely we treat a degenerate elliptic problem, for ex-
ample
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(O 17) { 1P<[; X, Dtr D.z‘)u<t; .X) - f(t) X),
‘ supp u(t, x) C {t=0}.

Here P is an operator of the form (0.2), f(#, x) is a given hyperfunction with
supp fC{t=0}, and P is elliptic on the singular spectrum of f. Then the prob-
lem is to find a condition on ¢(P) for the problem (0.17) to have a unique solu-
tion u(t, x) in some sense locally at a point (¢, x)=(f, ). Easily to see, it
suffices to assume that for any (0, % ; 7%, 9)=SS(f), the equation o(P)Q0, %, 4, %)
=0 in @ has one root in {Re § >0} and the other root in {Re §<0}. This is
the reason why the condition (ii) in appears.

As a direct corollary of and the formula in §2.1 due to
Kashiwara-Schapira [9], we have

THEOREM 0.2. Take points q.=(0, 0, 2’ ; £dx))ceT*(R, X R%). Then
Q¢ % SS(RF(y=Ol(g))

if
(i) o(P) is hyperbolic with respect to x,; that is, for some 06>0,
a(P)t, x, V=1, V—=1np,£1, v—19") + 0
on {0<t<0, | x|+ |x'—2'| <0, r=R, n=(np, p")ER"},
and

(i) the equation a(P)0,0, %', 0, =1,0, ---,0)=0 in 6 has one
positive real root and the other negative real root.

As we explained before, this implies the unique prolongation property across
{x,=0} for solutions of the Dirichlet problem (0.1), and also the unique solva-
bility of the mixed problem (0.9).. Moreover this theorem can be microlocalized
with respect to x by using the microlocalization functor along {y=0} instead
of RI"(;,—,(-). Hence we obtain a unique prolongation theorem for microlocal
solutions to (0.1) and also the solvability of the microlocal mixed problem.

The plan of this paper is as follows: In §1 we state our main theorems,
and at the same time we define the sheaf Cg,.y to formulate microlocally the
well-posedness of mixed problems. This sheaf is a variation of the sheaf of
mild microfunctions. In §2, we prepare and recall some notions and tools
which are indispensable for the proof of main theorems. In particular, we re-
view the theory of microlocal elliptic boundary value problems in §2.4, There
we give related propositions similar to (0.17), which will become crucial later.
We will reduce our problem of vanishings of #0O-solutions complex to those on
a real analytic hypersurface in R;XC? in the course of proof of the main
theorems. To this end, we characterize in § 2.5 the boundary values of sections
of 8,0, to a real analytic hypersurface of the form L={Im z,=¢(¢, Re z, Im 2z’)}
by conditions on hyperfunctions on L. ‘Then we need to pose conditions not
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only on their singular spectrums but also on their second singular spectrums
along an involutive submanifold. This difficulty comes from the degeneracy of
the partial Cauchy-Riemann system g, on {++ —1dt}. In §3, we give the proof
of the main theorems.

1. Statement of the main theorems.

Let M=(—T, T)XN be an open subset of R;XR? with a complexification
X in C,XC? for a small T>0 and an open subset N in R?. We set

M, = {t, x)eM;t=0}.

We often identify N with the boundary {¢t=0}xN. Let P and B; (1=<7<m,)
be differential operators with real analytic coefficients on M of order m and m;
respectively :

P(t, x, Dy, D2) = DI+ S, Ault, x, D.)- Dk

and
Bi(x, D, D)= 3 Ba(x, Do)-Df  (ISj<m.).

Here (D,, D;)=(d/dt, 9/0x), 0<m,=<m, 0<m;<m (=1, ---, my) and A,’s [resp.
B;,’s] are differential operators of order <m—~% [resp. m;—k]. We extend the
definition of Bj, as 0 for m;<k<m-—1.

We consider the boundary value problem for u= 800, T)XN):

{ Pu = f(t, x)

(1.1) .
Bju|t—»+o :gj(x> (I<75my)

where fe 80, T)XN) and g;=8(N) (1<7=m.,), and we assume that f is mild
on {t=+0}. We formulate this problem as illustrated in Introduction. To this
purpose, we put f=0, g;=0 (1<7<m,). Then by the theory of non-charac-
teristic boundary value problems due to Komatsu-Kawai and Schapira [19],
we find that the canonical extension #(¢, x) of any hyperfunction solution
us B0, TYXN) to satisfies the equation

1.2) Pi(t, )= % Qu(x, Di D.)-(Diu(+0, x)-31)),
where

— Dm-k-1 _y (It
(1.3) Qu = Dr” +0§j+l§n-k-2( )l( [

Taking this identity into account, we define a coherent 9y module M with
generators U, U,, ---, U,_, by the relations

)'(a/at)lAj+t+k+1(O, X Dz)D{ .
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PU =QUot - +Qun-1Un-1,
.49 i S Bulx, DL =0  (1Sj<m.),

tU,=0 (0=ks=m—1).
Precisely U corresponds to the canonical extension #(¢, x) of u to M and
(1.5) U, = Dfu(+0, x)-0¢t) (0=<k<m—1).

In the case of Dirichlet problem i.e. Bjx, D;, D,)=D{"* 1<7<m,), M reduces
to Dx/Dxt™ ™+P, Thus the microlocal analysis for has been reduced to
that of R Homg (M, I'y,(By)). For that purpose, we estimate the microsup-
port of the solution sheaves to MM with value in hyperfunctions with holomor-
phic parameters.

To be more precise, we set

(1.6) M=RXxC*NX, M,=I{¢ 2)€M;t=0}
and
(1.7) B0 = RI'#(0x)1],

where the complex in is concentrated in degree 0. (We follow Hartshorne
[2] and Kashiwara-Schapira for the notions of derived categories, derived
functors and micro-supports of sheaves.)

We estimate the micro-support of R Homg (M, I'%,(B0O)) by the following
where M is defined on X as a 9y module.

We take a coordinate system of T*M as (¢, z; tdt+Re({-dz)) with reR
and z=x++—1y, {=&+~—1npeC™

THEOREM 1.1. Take a point po=(, %; tdt+Re (C-dz)ST*M M with E+0.
Assume the condition (Al) in case £>0, and the conditions (Al) and (A2) in case
i=0;

(Al)  H(@)=0cn(P)i, 2, 240, D=0 has m—m, roots with respect to 6 in
{Re 8 >0} and m., roots in {Re 8§<0}.
(A2) Under the assumption (Al), we decompose

H(6) = H.(6)-H.()

so that H.(8)#0 on {Re §<0} and H.(0)+0 on {Re §=0}. Define the Lapa-
tinskii polynomial

(1.8 Rit, £, 00 =5 B2 2, b)-(0+8)

=0, (B)5 0+2,0)  modulo H.(0)

for j=1, ---, m,, and assume
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det (B, e-1(2 %, Oissrgmy # 0.
Then 0o&SS(R Homg (M, ' ,(BOY)).

REMARK. i) When >0, the condition (Al) can be replaced by a weaker
condition that H(0)=a.(P){, 2, #+0, CD):O has no pure imaginary roots with
respect to 0 (see Kashiwara-Kawai [6]).

ii) For 0-th cohomology group, the above theorem corresponds to the
Zerner type theorem for holomorphic boundary value problems due to A.
Martinez [15]. (Refer also to Introduction.)

iii) Inspired by Kashiwara-Kawai [6], we took one parameter ¢ as a real
variable to simplify the problem.

By [Theorem 1.1, we can give theorems concerning hyperfunction solutions
to the hyperbolic mixed problems. [Theorem 1.2 asserts the unique prolongation

of solutions to boundary value problems, and [Theorem 1.3 the unique solvability
of mixed problems in our sense.

THEOREM 1.2. We assume the following conditions (H1) and (H2). We set
#*=(1,0, -, 0)=R":

(H1)  an(P) is hyperbolic with respect to x,, that is
on(P)t, x, 8, V—=1n+ex*) =0

on {0<e<0, 05t<4, [x—-:%1<3, nl<a, 06\/:—1R} for some positive 0.
(H2) The equation H(0)=0c,(P)0, %, 0, 2*)=0 with respect to 6 has m—m.
positive real roots and m, negative real roots. Moreover we assume

det (B, p-1(x++v—1ey, e7, &+ V—ID)igj rsm, =0

on {0<e<d, |x—x|+|n| <8, |E—%*|+|y|-+ 7| <3} for (8;:) defined in (1.8).
Let u be a hyper function solution to

{ P(t) X, Dh Dz)u(t; x) :O

(1.9) .
Bix, Di, D)u(+0, x) =0  (1<j<my)

defined on {(t, x)EM; 0<t<0, |x—%|<0, x,<#x:}. Then u extends uniquely to
{0<t<0’, |x—%|<0"} as a hyper function solution to (1.9) for a small &' >0.

Before stating the further results precisely, we recall the sheaf By,
[resp. Cwyix,] of mild hyperfunctions on N [resp. microfunctions on V=IT*NT].
(Bwxin, [resp. Cyin,] was once denoted as _527’1\,,,‘[4r [resp Cyix,].) Roughly
Byn, is the sheaf of hyperfunctions over {0<t<9d, |x—#%|<6} with trace at
{t=0}, and Cyy, is its microlocalization. See [11], [12], [24], §2.4 and

§ 2.6 of this paper: that is, there are sheaf morphisms o
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@NIM+9f(t) x) > f('+0) x>E$N

Trace: o Df(t, x)—> F(+0, X)=Cy

(1.10)
By, 2@, x)— ft, ) YOy (Bu)l v
Cvi, 2, x)—> f(t, x)-Y(O)Ee(Curl

ext:

)

’—_ICT*M;[N\T?/M)

where ¢: «/—_l(T*M1>K<N\T’1'3A£f)—>V——1T*1V is the projection.

THEOREM 1.3. We assume the same conditions as in Theorem 1.2. Let f(i,x)
and gi{x) A<7=<m,) be hyper functions respectively defined on {0<t<0, |x—%| <0}
and {|x—%|<<0} such that f(t, x) is mild on {t=+0} and that

supp (f) C {x:=%:} and supp(g;) C {x;=%:} (1=7=my).

Then there exists a unique hyper function solution u(t, x) on {0<t<<0’, |x—=%|<<0d’}
to the problem

P, x, D, D)u(t, x) = f(t, x)
(1.11) Bix, D, D)u(+0, x) = gx) (1=;=m.)
supp (u) C {x:1= 14},

for some small &’ >0.

REMARK. The assumptions in is well-known since Sakamoto
in case P and B,s are with constant coefficients. Kajitani-Wakabayashi
obtained a similar result in Gevrey classes.

We microlocalize the results given in [Theorem 1.2 and [Theorem 1.3. To
describe the theorems elegantly, we introduce the sheaf Cg,.y on TXM (see
§2.6). Hereafter we make an identification

TEM _~ (—T, T)X~—IT*N,
through which we regard v—1T*N as {t=0} X v —1T*N. Moreover the triple
M— M— X
induces a projection
b THXNTRX ——— TuM
W U
@, x; V=1(z, P)r—(t, x; V—1x).
Then the sheaf Cp,«y 0f 9Dx-modules associated to the product structure
(=T, T)XN of M can be given as ‘
0 on THMN{t<0}
(1.12) Croxry =1 Cxins on THMN{t=0}
| Zz(CM[%;IX\T}X) on THMN{t>0}.
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For we have a natural 9 y-homomorphism :

Cowimy —> ksb(Cul ey x)| e=0

with the embedding & : THMN{t>0}—>T%M (see (2.10) and recall that Cy xC
Ly%rt,x(Cy) on THXNT%X). The sheaf Cp,.n can be constructed in another
way (see §2.6). Roughly the sheaf Cr, «» gives the cotangential decomposition
with respect to the variable x of hyperfunctions which are mild at {=+0 and
depend analytically on ¢ in {{>0}. Indeed, take an open subset U in M and
a hyperfunction f(¢, x) defined on UN\{¢t>0}. Then if f(¢, x) is mild on UN{t=0}
from t==-+0 and satisfies the condition

SS(HN{E, x; =~ —1dt);t>0, ¢, x)eU} =@,

f@, x) gives a section [f(f, x)] of Cgr,xy On Ux yTEM. In this case, for a
point (f, £)eU with =0,

[ft, 1=0  on TiM| a3
if and only if f(t, x) is analytic at ({, %) (or extends analytically to a full neigh-
borhood of (0, #) in case #=0). Further if we take the canonical extension
f(t, x) of f(t, x), we can write
(1.13) (the support of [f(t, x)] in Cr,.x) = USS(ft, x)NTEX).
In particular, for any hyperfunction solution u(t, x) of we have

(1.14) (the support of [u(?, x)] in Cr,xn)

m~1

= U, x; v=In); (x; v=In=SSDiu(+0, x))}
Ua(SS(ut, xNN{E>0\T%1X).

THEOREM 1.4. We take a real valued C' function (t, x, n) defined in a
neighborhood of (t=0, x=2%, n=9)€RXT*N such that ¢, x, $)=0, dp(0, %, %)
Adt+#0 and that ¢ is homogeneous of order 0 with respect to . We assume the
following conditions (S1) and (S2) with P*dt+ 2*dx+H*dn=dd0, %, 7).

(S There exists a small number 6>0 such that
on(P)2, x+~—Leh*, O+et*, v —1y+ei*) #0

on {0<e<d, 05t<9, |x—2]<9d, |p—71<8, 6 =v—1R},
(82) the equation for 6

on(P)0, 24+ vV —1ef*, O+et*, v—19+ex*) =0

has m—my roots with Re 8 >0 and m. roots with Re <0 for any 0<e<ad.
Moreover
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det (B, i -1(x++/ —1lep*, et*, \/jlﬂ‘*_sx*))lgj.ksm_,_ #0

on {0<e<0, |x—x|+|9—H|<d, | p*—H*|+ | x*—%*|4-[t*—F*| <8} for (Bss)
defined in (1.8).
Let u be any Cr, «n solution to the boundary value problem

P(ty X, Dt) Dx)u(t: x) = O
(1.15) { _
Bix, D, D)u(+0, x) =0  (I=j=m,)
on
{(, x; vV—=1n); ¢@, x, <O, |t|+|x—x|+|9p—%] <3}

Then u extends uniquely to (0, #; v—1%) as a Cyu, solution to (1.15).

REMARK. i) The Dirichlet problem, i.e. B;=Di{™* (j=1, ---, m,), always
satisfies the latter part of (S2) concerning Lopatinskii polynomials,
ii) The uniqueness part in the above theorem is equivalent to Sjostrand’s
result in [28]. Precisely, if a solution u of the equation defined in a
neighborhood W of (0, % ; v/ —1%) vanishes in {¢(¢, x, )<O0} "W, then u vanishes
at (0, 2; v—1%) as a germ of Cg, .y (see (1.14)). Moreover the boundary value
problem

{ P(t, x, D, D,)u = {D}—(~—1t+x,)D%,}u =0

u(+0, x) =0

with ¢, x, )=7: and p,=({=0, £=0; $=(0, 1); dn,) satisfies the assumption
of However it does not belong to the class of Sjéstrand [28]:
recall that our assumptions are concerned with only ¢=0 part.

Finally we give a theorem concerning the solvability of microhyperbolic
mixed problems.

THEOREM 1.5. We take a real valued C' function (¢, x, ) as in Theorem
1.4, and assume the same conditions as in Theorem 1.4. Let f(t, x) [resp.
()% hsisms] be a section of Cgr,xx [resp. Cy*] defined in a neighborhood of
0, %; V—1%) [resp. (£ ; v—14)] satisfying

supp (f) C {¢(¢, x, 9)=0}, supp(g;) C {¢O, x, P=0} (=1, ---, my).

Then there exists a unique section u(t, x) of Cr.xn defined in a neighborhood of
0, %; vV—1%) satisfying

P(t) x; Dtr Dz)u(t; x) = f(t) x)}
(1.16) Bz, D¢, D)u(+0, x) = gx) (A=j<m,),

supp (u) C {¢(¢, x, 7)=0}.
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2. Preliminaries.

2.1. Microlocal study of sheaves. We fix some notation concerning micro-
local study of sheaves due to Kashiwara-Schapira [9], [10]. Let X be a C!
manifold of dimension #. Then D(X) denotes the derived category of com-
plexes of sheaves of modules on X, and D*(X) denotes the subcategory of
D(X) consisting of complexes with cohomologies bounded from below. See
Hartshorne for the notions of derived categories and derived functors.

We recall the notion of microsupport due to Kashiwara-Schapira [9]. Let
FeOb(D+(X)), and p=(#, &-dx)eT*X. Then we give

DEFINITION 2.1. p&SS(F) if one of the following equivalent conditions
(#S1) or (pS2) is satisfied.

(uS1) If there exists an open neighborhood U of p such 'that for any ecM
and any real C! function f defined in a neighborhood of a with
(a;df(a))eU, we have

Rp(f(m;f(a))(F)la =0.

(#S2) If we take a local coordinate system around %, there exist a neigh-
borhood V of %, an ¢>0 and a proper closed convex cone G in R™
with 0=G and G\{0}C{7; <7, £»<0}, such that for

H={x;<{x—%, é>Z—8} and L={x;{x—%, é):_s},
we have
RI(HN\(a+G), F) ~, R['(LN(a+G), F)
for all a=V.

We give some remarks: we may assume in (¢S1) that f is real analytic in
a coordinate system to show p&SS(F). This fact is shown in [9]. Moreover
it can be supposed in (p¢S1) that {f<0} is strictly convex in a neighborhood of
a. Precisely, we fix a local coordinate system x in a neighborhood V' of #
and give

PROPOSITION 2.2. Assume that there exists an open subset U of p such that
for any a€V’ and any real C® and strictly convex function f of x defined in a
neighborhood of a with (a; df(a))eU, we have

RF 2 5can(F)la=0.
Then p&ESS(F) follows.

PROOF. We may assume £=(1,0, -, 0) and #=0. Set x=(x,, x’) with
x'=(xs, =+, X,). Then it suffices to show (¢S2) under the assumption of this
proposition. Putting
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G={x&R"; x,=—0|x'l},
we take small numbers d, e >0 and a neighborhood 7" of 0 in R such that
(2.1) {xiz—eINV+GHX(—=G*)CU.
Here G° denotes the polar set of G. We set H and L as in (pS2).

We define a family of C® functions for ¢>0:
14+t 2|2
P = B G- D I P
with W,=R%* (tz1) and W,={x'eR%*; |x'|?<1/(1—-t)} (0<t<]1). First we
note that ¢,(x’) satisfies the following properties:

on Wt

(i) o(x') = I—Stmz% -(%t——)mds on W,

1—(1—1t)s
ang 1 1—s
—_ _ <
and =, Slz'u‘z4«/t-(1—(1—t)s)3’2ds"20 on We.

.. no 3%, t 12 1§ *
(i) R P PR (l—(l——t)lx’|2> T =%
for (x, &)W, XR"".

Set a family of open subsets of X increasing in ¢:

(. ox'—a’) 0 .
Qa) = {x s al_xl>(s+al)'(/)t( eta, ), 8+a1(x a )EWt}-
We show that the natural morphism
(2.2) RI'(Q(a), Flg) =~ R['(Qa), Flu)

is isomorphic in case t=s>0. Put j,: £.(a)—X. Then applying the argument
similar to (1),—(3) of Theorem 3.1.1 of [9], it is sufficient to show

(2.3) RFX\Qt'(a)(R]'t*]-ZI(F| 1)y =0
for any ye(Z(a) 2, (a))"\H and any ¢>t'=s>>0. Here we put
Zs(a) = s@s(gs'(a>\gs(a)) — a‘Qs(a) .

Moreover it suffices to show in the case t'=s, y€df2,(a)"\H. If y=dfl(a)
NInt H, this comes from [2.I) and the assumption of this proposition. For [2.3)
is equivalent to RI'x\0 o (F)|,=0. Moreover let y=d2,(a)NL. Then remark
that RI"x\0,cay(R7uj7*(Fl 1))y is a direct summand of RI x\o,cay(Rj:j7'F),. This
implies if we keep in mind and the distinguished triangle:

+1
RFX\Qc(a)<F)|y -—> RFX\Qs(a)(F>| y > RFX\Qs(a)(R].t*]‘t_lF)I y >
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Hence we get the isomorphism Finally taking the projective limit of the
isomorphism as t—oo, we deduce the isomorphism

RI((a+Int G), Flg) ~, R['(Q,(a), F| ) for any ¢>0.

Finally the same argument as in Theorem 3.1.1 of leads us to (uS2).
q.e.d.

We denote the canonical 1-form of 7*X as wy. Then dw. induces an iso-
morphism

2.4) (—H) ' : TT*X ~, T*T*X
v—> —dwx(- Av).

When we take a local coordinate system of X as x&R™ and that of T*X as
(x, &-dx) with £=R™, then the isomorphism is written by coordinates as

(2.5) (x,8; %-0/0x+£-0/08) —> (x, §; §-dx—%-dE) .

In case X is a complex manifold, 7*X is endowed with a structure of real
homogeneous symplectic manifolds by a l-form wyxpz=Rewy. Here wy is the
canonical 1-form of T*X. Thus we identify TT*X with T*T*X by (—H%®)™,
(H% is the Hamiltonian isomorphism induced by wx,.) If we take a coordinate
system of T*X as (z, {-dz) with z=x++/—1y, {=&++/—17, this identification
is given explicitly by

(x, 9, & 1 ¥0/0x+30/0y+£3/08-+70/9n)
> (x; Y, E; 77 H édx—ﬁdy—fds‘*‘fdﬂ) .

Let M be a closed submanifold of X. Then for FEOb(D*(X)), we have an
estimate of the microsupport of RI y(F) as

(2.6) SS(RT 3(F)) C Cp ((SS(FN)NT*M .

Here C rj‘,,x(') denotes the normal cone along T%X, which is identified with a
conic closed subset in T*T#%X through

(—H)*: TT%XT*X — T*T%X,

and T*M is identified with a subset of T*T#X through the embedding T*M—
T*T%X induced from T%X—M. See Chapter 1 of Kashiwara-Schapira and
§ 2.2 below for normal cones.

Moreover py(F) denotes Sato’s microlocalization of F along M, which is an
object of D*(T%X). See Chapter 2 of Kashiwara-Schapira [9] for its definition.
We quote an important formula for the microsupport of ugx(F). Explicitly, we
have
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@2.7) SS(pu(F)) < Cry x(SS(F)).

In case M is an open subset of R% with a complex neighborhood X in C7,
take coordinates of T*X [resp. T%X] as (z=x++—1y;{=¢&++/—1n) [resp.
(x, ¥=1n)]. Then (%, v—1%; 2*dx+7*dn)¢& Cry x(SS(F)) if and only if there
exists a positive 0 such that

{(x+v—ley; b+ vV—IneT*X; [x— x|+ |9—7] <9,
| y—9*[+16—2*| <G}NSS(F) = @
for any ¢ with 0<e<a.

2.2. Normal cones. Let X be a C' manifold and M be a closed submani-
fold of X. We take a local coordinate system around g,.=M of X as (t, x)=
REXR™ % so that M={t=0} and ¢,=(0, x,). We take coordinates of T ,X as
(x, -0/01).

For a subset Z in X, vo=(x,, fo)& Cx(Z) if and only if there exists a posi-
tive number J such that

{(ef, x)EX; |x—x,| <0, |F—1,]<0,0<e<OINZ =@ .

See Kashiwara-Schapira [8], [9] for details about normal cones.

2.3. Second microlocal analysis. Let M be a real analytic manifold with
a complexification X, and Y a regular involutive submanifold in T#X. Takea
complexification 4 of X in T*X and set £ as the union of all bicharacteristic
leaves of A passing through 2 which is called a partial complexification of 2.
On ¥ there exists the sheaf C3 of microfunctions along 3, which is isomorphic
to a sheaf of microfunctions with holomorphic parameters through a quantized
contact transformation and defined up to isomorphisms.

M. Kashiwara constructed the sheaf C% of 2-microfunctions along X on
T%5, which satisfies the exact sequences:

0 C3ls B% TzlC3|2e3) —> 0

and
0—> Cyls—> BE.

Here we set 83%=C%|> and #s: T$5—3. Moreover we have a canonical spec-
trum morphism

2. 2=1 2 2 ~
Spy: AT BE —> CEI#4%.

Then we define the second singular spectrum of u along 2 for us 8% (or
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USCyly) by
SS¥(u) = supp (Sp¥(u)) .

Especially when M is an open subset of R} ¢xXR2 (CC2?xC¢) and X is
written as

Y ={{t x; V—1(rdt+&dx))=T%X; E=0},
C% is nothing but the sheaf of microfunctions with holomorphic parameter z.
Moreover C% is given by
C:=ps(CHA].
See Kashiwara-Laurent for details about 2-microfunctions, and also

Bony-Schapira and Kashiwara-Schapira for the relation between second
singular spectrums and micro-characteristic varieties.

2.4. Elliptic boundary value problems. We recall here the microlocal
theory of elliptic boundary value problems due to Schapira and Kataoka
[11], [12].

Let M=(—T, T)XN be an open subset of R, X R? with a complexification
X in C,XC? for some T>0 and an open subset N in R?. We set

M, = {¢, x)eM;t=0}

and identify N with the boundary {t=0}XN.
Following Kashiwara-Kawai [4, 5] and Kataoka [13], we introduce sheaves
Cxix and CM+1X:

— g+l (=1 — grn+l ~1
(2.8) Chix ﬂs,;vx(ﬁzvm@x) v Cupix ﬂsk+x(ﬂM+xx0x)
which are considered as sheaves on 7% X and T% .X respectively. Here

T%X = {(x; 0dw+v—1pdx)=NxCxv—1IR"},
(2.9
T%. X ={@¢ x; 0dw+~v—1pdx)eRX NXCX~v—1R";
1=0, Re §=0, t-(Re §)=0},
which are conic closed subsets of T*X depending only on N and M,. Further

S%X and S%,X are the corresponding sphere bundles. We note that they are
also written as

Cwix = un(Ox)[n+1],
CM+|X = u hom (ZM+, 0X)[n+].] .

by using the microlocalization functor gy (see §2.1). Refer to Kashiwara-
Schapira for the definition of the bifunctor g hom (-, ).
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Fundamental properties of these sheaves are as follows (see for more
details).

PROPOSITION 2.3. Let #y, x: 1%, X—M, be the canonical projection. Then
we have a sheaf isomorphism

Iy (Bu)ly = FEuox)sCuoxly.
Further Cy, x satisfies the following:

Cyix  on TH,XN{t=0, Re §>>0}

Carpix = { ;
T ey on T%, XN {t>0, Re =0},
and we have canonical injections

Cxix > Cupix >—> Liuso(Ca)  on THXNTEX.
PROPOSITION 2.4. We take a complexification Y of N in X. Setting
G.=1{t x; 0, v=IneT§ X; =0, Re =0},
T¥X = {(w, z; 0dw+Ldz)=T*X ; w=0, {=0},
we define the canonical projection:
0 THXNT§X (x5 0, V—=17) —> (x; v—Inp)cvV—1T*N.

Then the sections of Cy,ix [vesp. Cyix] have unique continuation properties along
the fibers of t|g . \ryx [resp. cJ.

Moreover Cy,,x [resp. Cyi,x] is an &x module on T%,X [resp. T%X].
The most important property of Cy x as €x modules is the division theorem
due to Kashiwara-Kawai [4, 5]. Refer to Schapira for a semiglobal ver-
sion of the theorem and also to Kataoka for the explicit calculation of
projections.

THEOREM 2.5. Let K be a compact subset of Y p)CT%X with some p=
(2; V—=1p)e V=1T*N, and P, x, D., D,) be a microdifferential operator defined
in a neighborhood of K. Assume that the principal symbol o(P) never vanishes
on 0K=K\int(K). Then, putting

s = (the number of zeros in int (K) counting multiplicities),

we have a dirvect decomposition of sections of Cy x:
T(K, Cyix) = P(t, x, Do, D,)-I(K, Cyix)+ 3 Cy-00(1).
j=0

The sheaf ¢y y, on v—IT*N of mild microfunctions introduced in §1 is
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defined as a subsheaf of !*(CM+|XIG+\T;X)/!*(CN|XIT}‘VX\T’I‘,X) (see [11], [12]):

2.10) Cyimylyp zﬂli_rg [{f(, x)Ez*(CM+[X|g+\T;X),,; for some open neighborhood
400
V of p, f(t, x) extends to (- (V)N{#<C; |6]| >R} as a section

of Cxix}/ts(Cxix| T’;,X\T;X)p]

for any pe~—1T*N. Then “ext” in (1.10) of §1 is an injective sheaf morphism
(not Dy-linear):

.11 ext: Cyin,2f(t, x)—> f(t, X)Y(t)E!*(CM+|X]G+\T;X) .

That is, ext(f) is the canonical representative of f in the above equivalence

class (see §2.6). At the same time, setting 2=M,\N, Schapira-Zampieri
obtained another expression of Cyy, :

(2.12) Cwiss = Ru(Coixlartx).

Here Co x is a complex of sheaves on T*X introduced by Schapira [22], which
is supported by (T(XN{t=0})\UG. with

G.=1{0, x; 0, V=Ip)eT%X; Re §<0}.
Since Cg,x is a complex of &y-modules, we have

PROPOSITION 2.6.

Caa, s an t(Ex 1 \r%x)-module.

REMARK. This is also proven by the technique of excision for the sections
of Cy, x. In fact, for any neighborhood V of p&+—IT*N, every section of

LGiNG N V), Copi x)NT(G N (VIN{OSC; 16 >R), Cyix)
is decomposed into a sum of
LGN V), Co )N (VIN{OEC; |01 >R}, Cwix)
I(G-neY(V), Cyix).

and

Such a decomposition is explicitly given by the Cauchy integral concerning one
holomorphic parameter because Cy x is isomorphic to the sheaf of microfunc-
tions with one holomorphic parameter (see [4, 5], [13].

Fix a point p=(%; v—1#)ev—1T*N. Let P(t, x,D,,D,) and Bjx,D,,D,)
Ec*(é’xl;} X\T;X)p (1£7<m,) be microdifferential operators of order m and m;
{(<m) of the forms:

P(t, x, Di, D) = DI+ S Aut, x, D2)-Di,
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m-1
Bj(x; Dt; D.Z') - kz'(ll Bjk(x) Dx)'D;a (1§]§m+)'

Then the microlocal well-posedness of elliptic boundary value problems for
(P; By, -+, Bn,) is formulated as follows.

THEOREM 2.7. Suppose the following conditions (C1) and (C2) for some m.,
0m.<m):

(C1) H(0)=0,(P)0, %, 8, ~v—1%)=0 has m—m, roots with respect to 8 in
{Re >0} and m, roots in {Re 6 <0}.
(C2) Under (Cl), we decompose

H(6) = H.(6)-H_-(9)

so that H.(0)+0 on {Re8=<0} and H_(8)+0 on {Re §=0}. Define the
Lopatinskii polynomial

— m+ -1 -
Rk, VIO = 3 Buuls, v =19)-0°
= 0n(B;X%, 0, vV—14) modulo H.(6)

for j=1, -, ms and assume that the system of polynomials of 0
{Ri(%, V=19)0); j=1, -+, my} is lineary independent over C; or equi-
valently,

det (B, 1 -1(%, \/"—lf]»lsj,ksmq. #0.
Then for any f&Cyiu,|p and any (v;);€CH*|,, the boundary value problem at p

(2.13) { P(t, x, Dy, D2)u = f(t, x)
| Bix, Du, Dulievo =vix)  (1=j=my)

has a unique solution u(t, x)Cxiu,|p-
Proor. Under (Cl), we can decompose P as
P= P+(t7 Xy Dt, Dx)P—<t; X, Dty D.l‘)

by the Spith type theorem for microdifferential operators due to Sato et al.
[17]. Here P.ewlx|i* rirpx)lp where P, and P. are elliptic on G_Ne (V)
and G, (V) respectively for some neighborhood V of p. Moreover P. has
the form

m 1

(2.14) P.=DI"+ 3 Alft, x, D.)-Df.

k

Then we can decompose Bj's as

(2.15) Bj - B;(ty X, DZ} Dz>+E]<t; :’C, Dt; DI)’P-(t; X, Dt) Dz)
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for j=1, -, m,, where Bj, E;Sc(€x|t%x\rtx)l, and Bj is written in the
form:

may-1

(2.16) B = X B, x, D,)-D}.

Therefore, noting [Proposition 2.6, we can reduce the boundary value problem
to the following form:

{ P_(t, x, Dy, D;)u = P.(t, x, D, D2)"'f(¢, x)
BX0, x, Dy, D)uliovo = v{x)—(E;* PTf(E, )it (1S5S my).

Since om;-x(Bje)0, %, v —1%)=p,:(%, v—1%), the second equations are uniquely
solvable with respect to {DJu(+40, x); =0, ---, my—1} under the condition (C2).
On the other hand, the first equation is equivalent to

@17) P(ext () = ext (PF')+ 3 QDE(+0, )00},

where

J+
{

Because P. is elliptic on ("{(V)N\(G,U{8=C; 10| >R}) for some neighbornood

V of p and some R >0, the solution “ext (u)” to [2.17) can be obtained uniquely
as a section of

Qi=Dp+i4 B (7 ])-@/90) Aperenn0, x, DIDY.
Osj+lsm —k-2

@}!>:<(C'M+[X|é+\T’I‘,X)f\!*(CN|X]?jvxmw»mw;x)-
R 400
This completes the proof. g.e.d.

We need the following proposition to calculate the cohomology group in the
proof of [Theorem I.I. Let P and p=(%; v—1#) be as above. Further let
{Se; k=0, -+, m—1}, {E;; 7=1, -+, m4, k=0, .-, m—1} be microdifferential
operators belonging t0 ¢«(€x|7% x\r3x)p such that

Sy = DZ""“‘»{—mZZ(;_zskl(t, x, D,)-Di (ord S,=m—Fk—1),

E;x =FE;(x, D) (ord E;p=m;—k),

where 0=<m,<m and 0<m,;<m (j=1, ---, m,). Itis easy to find microdifferential
operators Wi(x, D) (k=1, -+, m—1,[=0, ---, k—1) at p of order <k —I[ such
that the relations

(2.18) grx) = (D) ZWarle, Dlulx)  (k=0, -+, m—1)

between (gx(x)) and (h,(x))EC¥|, solve uniquely the equation
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219) T Sult, x, Diy DoXga(w3E) = 5 Qulx, Doy Da)ha(x)3(0).

Here Q, (=0, ---, m—1) are microdifferential operators associated to P and the

boundary {{=0}:

J+!
[

(see (1.3)). Under the preparation above, we have

Qu=Dr 1t 3 (=)

0sjt+lsm-k-2

)+(@/38) A114:x0, %, DD

PROPOSITION 2.8. Setting
m-1 k-1
By(x, Do, Do) = 3 Epu(x, Do)-(Di+ S Wz, DIDH (=1, -, m.),

we suppose the conditions (Cl) and (C2) in Theorem 2.7 for (P; B,, -+, By)).
Then the problem

Pgt, x)— 3 Sa(gu(x)3(1) = f(t, x)

m-1

%Ejk(x: Doge(x)=eix) (G=1,-,m,)

has a unique solution (g(t, x), go(x), -+, Gm_1(x)) in

(2.20)

t(Corpixlanryx)pBCH| o
for any f(t, X)Ses(Coyixlanryx)l, and any (e, (X)) ECh* | p.

PROOF. Uniqueness. Suppose f=0 and e¢;(x)=0 for j=1, ---, m,, then the
first equation implies that [g] modulo ¢x(Cy x|3% x\r5x), represents a germ of
Cwin, at p, and that

{ Plg]=0
gu(x) = (D4 S Walx, DDt Dlecss (£=0, -+, m—1).

(See [2.18).) Therefore by we can conclude that [g]=0 in Cyu,
at p. In particular g,=0 for any 2. Thus g must be zero.

Solvability. Take feEex(Cu,ixlarpx)p. Since Cy, x coincides with Cyx
on G.N{Re #>0}, we can decompose f(f, x) by as

M=My-1

St )= Phtt, D+ B (0500,

where hEe(Chix |25 xnRe 630013 x)p and (h,)=CH ™+|,. Here h extends to a
section of ¢x(Cy, xla,\rpx)p because P is elliptic on G:N{Re #=0}. Moreover,
easily to see, we can find some (gi(x)),=C%|, satisfying

1

— SR = 5 ).
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Put g=g—h and g,=g,—gr (=0, ---, m—1). Then [(2.20) is reduced to the
problem for (Z(t, x), Zo(x), +, Fm-2(x)):

m-

PEt, x) = 3 Sx(@(2)3(t)
(2.21) k=0

B B, Dglx) = ef(0)— S En(x, Dgix) (=1, -+, m.).

Consider [(2.18) and [2.19). We know that this is equivalent to the boundary
value problem for u&Cyy,:

Pu=20
(2.22) { ¢ m-1
Bj<x; Dt: D.z)”(_l_oy x) = ej(x)'—kgo Ejk(x, Dx>g;;(.7C) (]:]., ey, m+).

Finally we can solve (2.22) under (C1) and (C2) by Theorem 2.7, Then g=ext(u)

and gk:(Df—i—iZ;}: Weix, DﬁD})ultqﬂ, (k=0, ---, m—1) are the solution to (2.21).

Thus the proof is completed. qg.e.d.

2.5. Boundary values of hyperfunctions with holomorphic parameters.
We characterize the boundary values of hyperfunctions with holomorphic para-
meters. We follow the notation prepared at the beginning of §1; that is, let
M=(—T, T)XN be an open subset of R, X R} with a complex neighorhood X

in C,XC? with z=x++v—1y. We set
M=((-T, TYxC"HNX.

Then the sheaf B© can be viewed as Homo 3(J1, B#) where X is a complex

neighborhood of M in C,XC2XCZ and J1 is a coherent 93 module expressing
the partial Cauchy-Riemann system

N:0/0z;;u=0 (1<;<n).
We take subsets 2, F and L of M as follows: .
(2.23) Q2= {, z)EM; P, z, 2)=y,—¢(t, x, y')>0} —i—> M
F={t, DEM; §(t, 2, 2)<0} <— L={{t, 2) M ; y1=¢(, x, y)}.

Here ¢(t, x, y’) is a real analytic function defined on M, and 7 is the inclusion
map. Then by the theory of non-characteristic boundary value problems for
systems of differential equations, we have an injective sheaf morphism

bv: (JxJ ' BO) L = (JuJ 7 Homg 3(TN, Ba))|l1>—> Homoz(lz, B1).
f(t; 2) > f(t) xl'{—i90+i0) x,‘i‘Z‘y,)

Here, Z is a complexification of L. In fact this is obtained from the exact
sequence

0=15%(80)—> (jxJ 'BO)| —> HHBO) —>
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and the isomorphism

RFL(.@O) - RFL(R ﬂom_@,{-(fn, 0@1‘?)) (l-' Rﬂom@z(mZ’ -@L)I:_l:l
due to M. Kashiwara (cf. [14], [19], [17).

The purpose of this §2.5 is to characterize the image of the above mor-
phism. If we take coordinates of L as (¢, x, y’) with y'=(y,, -+, ¥,) so that

(¢, x, ¥') expresses (¢, x, yi=¢(t, x, ¥'), y')&L, 35 is written explicitly as

. — — (V=1+(0¢/0x1))-(0p/0Z;) _
(2.25) f]ZZ.{D,,j—i—\/ 1D, +2- @ /ax,) Dxl}f—O

(2=5=n).

To estimate the singular spectrum of the sections of bv((jxj ' B0O)|L), we
take coordinates of T$Z as (¢, x, y'; v —l(rdt+&dx+7y'dy")) with R, £=(,
-, &)ER™ and 77’:(7}2, e, ﬂn)ER"—l.

Let G(t, z) be a germ of j«j'80C at (}, £+~ —19)L. Then we note that
the boundary value

(2.26) @, x, )= G, x,+v—1Lo@, x, y)++ =10, x'++—1y")

extends holomorphically to {Im %,>0} with respect to the complexified variable
%, for x,. Therefore f(¢, x, y’) satisfies

(2.27) SS(HYC @, x, ¥'; V=1, § 9 )&V —1T*L; §,20} Nchar (9)
={, x, y'; V—1(z, & )< VZIT*L; 6,20,
¢, — —©0¢/3y,)+(0p/0x,)-Bp/dx;)
;=

1+(@p/0x,) B =iEm,
7= 22 xii:((az//a];,))z( PR esiz).

where char (J1z) (CT*Z) is the characteristic variety of Ji.
At the same time, putting a regular involutive submanifold Y in ~v—17*L:
(2.28) S=1{t, x, '; V=1, & 77); £=0, 7'=0},
we have
SSE(S)
C ¢, x, v ; £~V —Tedt; v—L(x*dx+ E'z (x¥dx,+ y%dy ) ; 70, x¥=0}.

(Recall the characterization of SS%(-) by the expression using boundary values
of microfunctions with holomorphic parameters.)

On the other hand, the micro-characteristic variety of 71, along 3¢ (a com-
plexification of X in T*Z) is obtained in a similar way to (Refer to
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Bony-Schapira and Kashiwara-Schapira for the micro-characteristic
variety.) Hence we get the estimate:

(2.29) SS(f) {(t X,y oy —1dt; vflz(dx1+

n —(0¢/0y;)+(0¢/0x,)(0p/0x ;)

P 1+ @p/dx.) dxt

n (0¢p/0x;)+ (0p/0x,)(0¢/0y,) .

Jé 14+(0¢p/0x,) dy,-)) ' Z>O} )

Remark that it is also possible to derive the estimate from Tose and
Tose-Uchida [30].

Consequently, we have the characterization for bv(j47 ' B0O|L):

PROPOSITION 2.9. For u&Homg,(Jz, Br), u belongs to bv(jxj ' BO|L) if
and only if the conditions (2.27) for SS(f) and (2.29) for SS¥(f) are satisfied.

PrRoOOF. We have only to prove the “if”-part.

Let u(t, x, y’) be any hyperfunction at p=(, %, 9)=L satisfying the equa-
tions 71, and conditions [2.27) and [2.29). Then our problem is reduced to find-
ing a hyperfunction U(s, {, x, y’) on

{0<s<d, lt—F|+1x—%1+]y" —5'| <}

such that

_ (09/dx)+v—1 o
{Ds (0¢/0x:)*+1 Dﬁ}U(S» t, x, ¥)=0

U(+0, ¢, x,y) = u(t, x, ¥)

for some 6>0. Here the operator in is just the operator (v —1—g¢,,)*-
(D:,+~—1Djy)) in the coordinates (#, £, ) with

(2.30)

(2.31) ft=t, i==x, Si=¢l x, y)+s, ' =y.

In fact, if such U exists, we easily see that U(y,—¢(t, x, ¥'), t, x, y)E74771 80|,
and u=bv(U). Moreover, by the microlocal uniqueness of solutions of
we have only to solve the boundary value problem [2.30) microlocally at each
point of

K= {(p; v—1I(zrdt+&dx+n'dy" )= vV—1THR, X REXR)}.

Noting the condition for the singular spectrum of u, we can solve
by at any point of K except for (p; =+—1dtf). On the other
hand, at (p; =+ —1dt) we have the condition for the second spectrum of
u along Y'={§=0, 5'=0}.

Hereafter we denote by p* one of (p; +=+/—1dt). Hence, by replacing ¥
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with a larger involutive submanifold

2" = {&=0},

we obtain the estimate
(2.32) SS%.(u) C {(t, x, y'; vV—1(r, £,=0, &, n"); vV—14dx,); 2>0}

in some neighborhood of p*. We claim that u(¢, x, y’) extends holomorphically
= with respect to x;, to {Im x,>0}. In fact, after cutting the support of u, by
using the Cauchy kernel we can decompose u(f, x, y’) into a sum

u(t, x} y’) = F+(t) x1+'\/‘_.-10, x,7 y,)+F—(t; xl—v:_io) -x,y y,>

in a neighborhood of p. Here F.{¢, z,, x’, y’) are hyperfunctions with holo-
morphic parameter z, defined on

{+Im 2,>0, |t—i|+|zi— %] +|x"—2'|+]y'— 3| <3}
respectively for some 0>>0. By the definition of SS%(-), we know that
(p*; —v—ledx)) & SS&(F.(t, x,+v—1e0, x’, y))

for e=+1. Thus by (2.32), we conclude that F_(t, x,—+ —10, x’, ¥’) must be-
long to C3 as a microfunction at p*, where 3" is the partial complexification
of 3.

Combining these facts, we can find a hyperfunction #(¢, z;, x’, y’) with
holomorphic parameter z, defined in

{Im z:>0, It—ﬂ +lzi—x: |+ x"—x] +1y' =3 <6}
for some 0>0 such that
p* & SS(i(t, x1+~v—10, x/, y)—ult, x, ¥)).

Hence we can replace u by (f, x;++/—10, x’, y’) in the problem [2.30) at p*.
Recalling we consider the coordinate transformation:

(4, %, ¥, 51, 57)
=, x,—Imo@, x;++v—1y,, x’, y), x’, y:+Re o, x1+v—1yy, 2, 9", ¥")
with a non vanishing Jacobian 14-(d¢/0x,)® on {y,=0}. Note that
Ji—(, %, §) = {1+(0¢/0x.0¢, x, y )} (3:+0(¥%)  as y,-0.
Therefore U(f, %, 5)=1#(t, x,-+v—1y,, x/, v’) is a hyperfunction on
Fo>ed, 7 7, li—H+12=2|+15— 9|+ i—0(, %, 3" <8}

for a small 0>0. It is easy to see that U(t, x, s+¢(t, x, »'), ¥) is a hyper-
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function solution to for #(¢, x,-++v—10, x’, ¥'). This completes the proof.
g.e.d.

Further we obtain the following characterization for bv(B0|.) by easier
arguments.

PROPOSITION 2.10. For any ucSIHomg,(Jlz, BL), u belongs to bu(BO|L) if
and only if
SSuycC {(t, x, v'; =+ —1rdt); v>0} = %, and SS¥u)=0g .
Concerning the operation of Dx|; on bv(jxj ' BO|.), we have the following

lemma. Here we use another coordinate system (s, t, x, y’) of M having the
correspondence

@, x, s+ot, x, ¥'), y)E M

with the original coordinates. Noting that, the operator 6/0z, in the original
coordinates is written as

(2.33) Py =1/2-{D,,—(8¢/0x,—~—1)Ds},

we set the subsheaf
Cp, = {PEDs|z; PPh)=P,P}

of ring of D#|;, which includes Dx|;. Then we can define a morphism 7 as a
composition of division by P, and restriction on Z as follows:

LEMMA 2.11. There is an algebra-homomorphism t: Cp —Dy such that, for
the generators of Dx|z, we have

T =t, 71@)=x+v—1o@, x, ¥), 1@)=x"+v—-1y",
D

_ P —_v=1
(2.34)  7(D;) =D+ \/:T_%Dzl, 7(D:) = = S

= __ %= )
r(Dz') - -Dz'+ '\/_l_SDxl D.u .

In particular every operator in 7(Dx|L) commutes with the tangential Cauchy-
Riemann operators in (2.25). Further, for any operator P in Dx|y1, v is compati-
ble with the morphism bv concerning operation on j+j '(BO)|;.

ProOOF. Define the subsheaf €; of 93|, by
€, ={Q€Dx|z; Qs=sQ}.
Then @, is a sheaf of rings, and there is a natural identification

a:6/sC; ~, D,.
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. 8 .
On the other hand, the natural morphisms €, = (23/9 #P,)|z becomes an iso-
morphism of sheaves because any equivalence class of (9 /9 #P,), has a unique
representative in €; for any p=Z. Hence, we obtain a natural morphism

5:(‘5}30_‘963

as the composite of morphisms
-1

Cp,—> (Di/D2Fo)| z —> Q.

Then we can easily find that § is a ring homomorphism. Therefore the com-
posite of ¢ and the ring homomorphism

(Ss -—> @s/s@s;QZ.

gives the desired algebra homomorphism 7.

To show the compatibility of 7 with bv, we take p=L, f(t, 2)=(Uxi ' BO),
and P€€p, ,. Then bu(f)=g(t, x, ¥') is characterized by the property
. VTl-g,

T PHg, x, v Pl Ba)

for any flabby extension f=I'3(B5) of f. If f is the canonical flabby exten-
sion of f, we have

s N—=l—0,
Pf = S5, x, 500(s).
We decompose P as

P: Q'P0+R(t; S, X, y’y Dt: DI) Dy’)
by some Q, ReDxz, , with [R, s]=0. Then we have
2
(R =i o]0

(This can be seen from the two facts H:R, V;L—Po], s]zO and

“_1_—90 1

2 B 2P, ..
e et R L R el SIS

Hence we have, for the canonical extension f of f,
P(Pf)= P(Q-P+R)J

= {POQPO + ng*¢le-(va2_¢xl)-l.Po}f

= {po+ Yo (Yo | (Y ).
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Thus
, VT,
PPF— T E5(Rog)i(s) & Py 1))

where Ry=R(¢, 0, x, y', Dy, D, D,.)=7y(P). Since Pf is a flabby extension of
Pf, we have

bv(Pf) = Rog = y(P)buv(f)) .
q.e.d.

2.6. Mild microfunctions. First of all we study the microlocalization
el (B0O)) of @'y (80) along M. We can show that the complex
tul 7, (B0O))[n] is concentrated in degree O if we consult with an abstract
vanishing theorem in Kashiwara-Laurent [7]. Moreover we have

LEMMA 2.12. The sheaf pu(l'z (BO)[n] is conically flabby. Especially,
the complex RI'x(pu('n (BO))n] is concentrated in degree O for any closed conic
subset K of T%M.

Proor. We can prove the flabbiness in the same way as the proof of that
of C; in Sato et al. if we show that

H(V, F(t;oy(-@L@w)l (m w=0) =0 (=1
for any open subset V of R, XR3*"!. Here 8.0, denotes the sheaf of hyper-

functions with holomorphic parameter w=u-++—1lv=C?*"!, Following P.
Schapira consider the complex

A
(2.35) 00— I'i20/( B, 7L,u2n)) —> I'420(Ba, U,U2n)) —> 0.

where the operator A=(9/0u,)*+ -+~ +(0/0us,)>. Here we find by using the ele-
mentary solution of A and the flabbiness of @ that the morphism A in
is globally surjective on any open subset of R, XR%, ., ;. Moreover by partial
ellipticity of A, the complex is quasi-isomorphic to

A
(2.36) 0 —> 1200 B:0w, o)l 5 —> L620(BOcw, wo) r —> 0,

where H={Im (w, w:,)=0}. On the other hand, the kernel of A in is
isomorphic to I ;20)(B:0,)? on HN\{w,, =0} =R, X R%*~*. (As for partially elliptic
operators, refer to Bony-Schapira [1] and Kashiwara-Schapira [8].) This com-
pletes the proof. q.e.d.

We can show from the definitions [1.IZ), (2.10) of Cg,.» and Cy.y, that
there exists a natural injective sheaf morphism

(237) D: é}qu —> 2*(CJI+IX)/2*(CNIX)

on T%M. Here we extend the projection 7 in §1 to
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(2.38) £ TEXUTEX ——> TEM.
W w
(t, x; Odw+~—1pdx)—> (t, x; V—15dx).

Moreover the sheaf morphism ext in (2.11) induces an injective sheaf morphism
(2.39) ext: Cryxy —> 85(Cary i x)

on T%M, which gives a splitting of @. Here we remark that ext is not 9x-
linear on {t=0}.

In this situation, the main aim of this section is to construct a splitting of
ext in through px(I" 7, (80))[n]. For this purpose, we rewrite the sheaves
in functorially :

(2.40) éR+xN = Ri,(Co x),
(2.41) t5(Cux) = Rix(Cyrpix)
where

Coix = phom (Zo, Ox)n+1], Cyox =phom(Zy,, Ox)[n+1]

with @=int M,. Remark that the restriction of right hand side of to
{t=0} is nothing but Cu ., by (2.12), and that C,, ,x is cohomologically trivial.
These remarks justify [2.40) and [2.41) Indeed the conically cohomological
triviality of Cy, x comes from that of sheaves Cyx and Cox|ryx~ryx
(=(Cuy1x/Cwix)|r% xnr% x) due to Schapira-Zampieri [24]. Therefore the mor-
phism “ext” in (2.11) gives a morphism

(2.42) ext”: (Ri(Cqix)) [—n] —> (Rix(Car, x) [—n]
on TMAZI, where \/ denotes the inverse Fourier-Sato transformation
V2 DE(THM) —> DT uM) .

Refer to [9] for more details about \v. Hence we have only to give a splitting
of ext” in through p,(I"7 (B0) =vu(I'5,(B0O)). Here yy(x) is the functor
of specialization along M defined in Kashiwara-Schapira [9], which is equivalent
outside the zero-section to the real monoidal transformation with center M by

Sato et. al. [17].

Let us introduce sheaves ﬁhxm ﬁm,m and §k+xN on TM]\7[. We take local
coordinates (w, z=x++—1y)cCXC" and (t, x; vV —1v-0/0y)cRX~—1TR" for
X and T M respectively. Set

Dy, %;0) = {(w, 2)=CxC"; |lw—1i|+|z—%| <9,
0-Imz-v>{|Imz|?*~Am z-9/|0])%} 2+ |Im w| +(—Re w).}

(in case 7+0),
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Dyt 2;0) = {(w, 2)€CXC"; |w—1i|+|z—%|<d} (in case =0),
Sp = {(w, 2)€CXC"; |Im w|+(—Re w). <h(|Im z|)},

for 6>0, (f, ; v—1o)eT M and h=B. Here ().=t for t=0, and (t),=0 for
t<0, and O is a directed set:

= {h)eCY[0, +oo)); K(t)=0, h'(t)=0, h(0)=h'(0)=0}
with the natural order
hy < h, if and only if A,(t)<hy(t) for any t<[0, +o0).

Then we can construct the sheaves ﬁR+xN, J§;¢+xN and §R+xN supported by
{t=0} with stalks '

(2.43) Apuxnle= lim I'(D«q), ©x),
o0+

(2.44) Bhonly= lim Hy, (D), Ox),
40

(2.45) Brouwle= lim H4,(Dilg), Ox)
nee

for any ¢=(, x; VZTv)eTyM with t=0. It is easy to see that
(2.46) Biyun =2 vu(Ta (20)).

For the concentration of the right hand side comes from the pseudo-convexity
of Dyg\M..

REMARK. 1) We omitted that the orientation sheaves in the above defini-
tions.

ii) The sheaf Ag,.y is equal to vy(Ox)|r,z on TuMr{t>0}. Moreover
the stalk of v,(®y) at any point of {t=0}ﬂTMM is properly embedded in that
of fNIR +x~. Indeed ﬁmx ~ | =0, is nothing but the sheaf Ay , introduced by Kata-
oka in Definition 2.1.15 of [11].

iili) The sheaves given in (2.43)~(2.45) depend only on the product struc-
ture RXN of M, and in this sense they are coordinate-invariant. Similarly to
it is possible to define Ag,,» and Bp, .y functorially. In fact, Kataoka
defined Zlm and §M+ (a variant of §R+xN) functorially from ©y in by
employing the real monoidal transformation of X with center M,, which is a
generalization of real monoidal transformaitons due to Sato et al. [I7] (see
Definition 2.1.13 of [11]). By a method similar to AM+ and B u,, We can define
ﬁRMN and §R+xN functorially from the sheaf Oy.

LEMMA 2.13. For any ¢=@, %; v—10)=T yM, we have



Microhyperbolic mixed problems 291

§R+xzv|q—3“—> {(f¢, x)€l'y, (B¢ 5 ;
SS(UHN{t=F+|x— x| <e}C{v—1rdt-+~—1ndx; &-n=e|n|}
for some £>0}

= l_i_I%[’H?-nzslr/I.ﬁEC)({lt_ﬂ+Ix_9%|<5}; Cu,ix).
ot

where (t, x; @, \/:—177) is a coordinate system for T¥%,X introduced in (2.9).

ProoF. The last equality is obvious from [Proposition 2.3. Further, in a
similar way to Proposition 2.1.27 of Kataoka [11], we can show that

Hm I 5. pzein1, seci({ lt—E+1x—2|<e}, Ciiix)
]

2 lim HY,(Di9), Ox) = Br,xnle.
)

REMARK. We can prove by a variation of of
Schapira-Zampieri [24], and a Mayer-Vietoris exact sequence. But the argument
is complicated, and it is sufficient for our aim to see that there is a natural
morphism

B;e+x1v|q"_> l_iI_,nF(%-y;a]q!.eem({lt—i]+|x"f]<5}’ Cupix).
&—+0

LEMMA 2.14. We have the following isomorphisms

(2.47) Ri(Cox) [—n] > Apn,
248 Ry 2 T—1D) = ) gy
. Cx\U M1 x - §R+xN (l:O).

PrOOF. We have only to prove [2.47) and [2.48) for each stalk at ¢g=
¢, %; v—lﬁ)eTM]VI. Then by Definition 2.1.2 and Proposition 2.1.4 of Kashi-
wara-Schapira [9], we have

(2.49) F[—nllq= lim RTyeo(z~(x(U)), F)
=)
for any F' ED;‘M(T}‘,JVI). Here U runs over a neighborhood system of ¢ in T M]VI,
and : TyM—M, x: T;}‘M-»M are natural projections, and
Ues = {@t, x; —vV—1peT5M ; (V—1v)-(¥=17)=0
for any (¢, x; v—1v)eU}.
Apply to F=Ri(Co,x). Then
HYR:i(Coix)'[—n))q

= 1_12;1 Hl{%-n;elm,lﬁlse’l%~q)({ \t—f]+|x—5’cl<s}, Caix).
£—=+0
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Since supp (Co x)CTHXUTEX, of Schapira-Zampieri implies
(2.50) HYRi(Cg x) [—n]), = lim lim HY(V,, Ox).

e=+0 Vg
Here V. ranges through the family of open subsets of X such that

@)
&€

ceenv, Monfw—eyr |52 1 Blypc sk = g

Then, since V. can be chosen convex, the cohomologies of vanish for the
degree +0, and the O-th cohomology is equal to Ag,.»l. Thus we have

proved [2.47).
Next apply (2.49) to F=Ri4«(Cy, x). Then

(2.51) H (Rix(Caryrx) [—n])g

= I.Lf_,nHl{%-n;slm,eem({lt—fl'Hx'JH<5}, CM+|X>-
&-+0

Since Cy, x is concentrated in degree 0, we have the vanishing of for

[<<0. Further, on account of we find that the 0-th cohomology
group of (2.01) is equal to B, «y. Thus we obtained [2.43). g.e.d.

Note that there exist natural morphisms of sheaves
a : Ap S f(w, 2) —> [f{t, 2)- Y] Br,ux
B”: Broxx —> Broxn -

Here 87 is Dx-linear. Moreover taking into account of the original definition
of ext by Kataoka (Proposition 2.1.18 and Corollary 2.1.24 of [117), we find that
B a” is just equal to ext”. Hence by we get

LEMMA 2.15. There exist canonical sheaf morphisms a and B on T%M:
(2.52) a: Crpey —> (T (BO)[],
(2.53) B punl 7 (BONn] —> ts(Corsix).
Here B is Dx-linear, and for any section f of Cr.xnx we have
Bla(f)) =ext (f).
REMARK. There is also a natural morphism
a’: Cy>f(x)—> f(x)-0)Epu(l "7, (BO)[N],
which splits to a natural morphism
Ca2f(x) —> f(x)-0()Et(Caryix) -

In fact, j«Cy with j:THY={t=0}"\T§M—T%M can be imbedded in (g, .y,
and thus we can write
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a'(f(x)) = Dy(a(f(x))).

3. Proof of the main theorem.
We prepare the following lemmas.

LEMMA 3.1. We follow the notation of §2.5. Suppose that ¢(t, x,y') is a
real analytic and convex function. Setting

M, = {@¢, 2)=M;t=0} and L.=LNM,={y,—o(t, x, y')=0, =0},
we define the sheaves @ and G, on L as follows: For any open subset V of L

I'v,a)={f, x, y)el'L,(V, B1); [ satisfies the equations Jiz
in (2.25), and the estimates (2.27) for SS(f) and (2.29)
for SS¥ )},

IV, ¢)={f@¢ x, y)=I'(V, 8); SS(f)c3 and SS¥f)=@}.

Then we have a quasi-isomorphism as Dx modules on L:

GRY Rl 5, nr(BO) 1 ==, (5] ' "5, (BO)| /2., (B0O)|[—1]
and isomor phisms

o by by
(3.2) Usy T2, (B0)| 1 ~, ¢ and @'y (B0O)|L ==, 4.

PROOF. The vanishing of 0-th cohomology group of the left hand side of
(3.I) follows from the unique continuation property of #0. Further, noting the
triangle

+1
—> R ,nr(B0) = RI'p '3 (B0) —> 'z (BO) —> Rjxj ' ['5,(B0) —>,

we obtain
R, nr(BO) 1 == s T2, (BON| /5, (BO)| L.

On the other hand, since the support of any section of 80 has a fibre structure
with respect to the map (¢, z)—t, Propositions 2.9 and imply

.. by bv
(Uxj e (BON|L =, ¢ and 'z (BO)|L =, G.

Hence the problem left to us is to show R 5, ~r(B0)| =0 for any ¢=>2. First
we remark that

3.3) R 4, nr(B0) L =R 5, ~r(Ox)|1 .
Note that X \(MJ\F ) is a union of two Stein open subsets:

{(w, 2)&X; w&ElD, +oo)}U{(w, 2)€X ; Im 2, >¢(Re w, Re z, Im 27)}
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if X itself is a Stein open subset. Hence by the Mayer-Vietoris exact sequence,

we conclude that the right hand side of [3.3) vanishes in case ¢=>2. This com-
pletes the proof. qg.e.d.

LEMMA 3.2. Under the assumptions of Theorem 1.1, the following sequence
is exact in a neighborhood of p=(t, 2):

h h
(3.4) 0—> D™ —> Dy DIH+DDT —> DyBDT —> M —> 0,
where
m m4- m-1
hlgD(g )i = aPO(—9Qu+ T 0B+t
(3.5)

m-1

m+
hal(s,)72) = 0B 7B~ 3 5B ),
PROOF. On account of coherency of 9Dy, we have only to show the exact-
ness of (3.4) for its stalk at p=(f, 2). The exactness of (3.4) at 9%+ and at
DxPDY is trivial to see. To verify the exactness at DyPBIDE+PDE, we take
any

& = (]@(Qj)ﬁt@(fk)gf—ile(}{er (ho))p.

Then we find that ¢=0 and that there exist (¢}); and (¢%); in Dk* satisfying
the equations

(3.6) g;=gqjt+q%, [¢f, D=0 (=L, -, mi)
and
m+ m+
(37) Ve :_]éq}'Bjk, ng;{'Bjk:O (k:O, ---,m—l).

In case 0,

a= h1<(q}—|—qg{-—];—);:>€(lm .

In case {=0, we recall the assumption (A2). Then we know in particular that
the matrix

(O'mj—k(Bjk))lsjsm+, 0sksm-1

is of the maximal rank m., (In fact, the polynomials in &
mj . )
[ B om-sBadz, O- (04205 5=1, -, m.
are C-linearly independent. For otherwise

m+-1 .
("Bt 2, B0 205 =1, -, mi)



Microhyperbolic mixed problems 295

become C-linearly dependent.) Taking into account of this fact, we obtain,
from the second equation of (3.7), (¢/)j=i=0 in &% o 5:%. This implies (¢/)jh
=0 in 9y%. Thus by [3.6) and (3.7), we show a=(Im h,),. This completes the
proof. q.e.d.

PrROOF OF THEOREM 1.1. Without loss of generality we may assume =0
and Im&,>0 because E=E+ v —1%=0. We put p=(f, 2). Since our conditions
(Al) and (A2) are of open properties, we have only to show
(3.8) RIp (R omg (M, Iy ,(BONp = 0.

Here
F={(t, M; —yi+¢0, x, )20}

with a real analytic and strictly convex function ¢ defined in a neighborhood
of ({, %, 3') satisfying

5}1:@(5; J%y 5}1) and (@t; (Pm @y'):(f’/f]x; é/yc]b _77,/771) at <i7 JDC; 5),)'
Hence, by Lemma 3.1, we can reduce to
(3.9) R omg (M, jxj 5 (BO) /7, (B0)|L)=0 at p.

Therefore we have only to show the vanishing of 0-th, 1-st and 2-nd cohomology
groups of by using the resolution (3.4) for M.
0-th cohomology group. Let U, Uy, -+ ,U ,_, be given germs of (747 ' i ,(BO)),
satisfying
{ PU=0QU+ - +Qn_yUny

(3.10) D BaUi=0 (=1 -,m)
] t-U,=0 (=0, -+, m—1)
modulo Fﬂ_‘_(Q@)‘p. Setting #=bv(U), vo=bv(U,), ---, and vp_1=bv(Un-), We

take the boundary values of on L. Then by Lemma 211 we have some
differential operators P’'=y(P), Bjy=r(B;;) 1=j=ms, 0sk=m—1), Q:=1r(Q:)
(0<E<m—1) of the forms

P'= DI+ £ Ajlt, %, ¥/, Dz, Dy)- D}
(311) ;‘k = B;k(t; X, y', Da:: Dy’)
m—-k=-2
Qllz = D;n_k_l'l" zgo Q;ﬂ(t; X, y,; Dzr Dy')D%

such that

order(A;) < m—k, order(Bj:;) = m;—k and order(Q;)=m—Fk—1.

Hence the germs #, vo, -+, vm-; Of @ satisfy the equations:
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P,~ = Q{)UO"F +Q;n—1vm—1
m-1
(312) ké) B;'k‘l)k =0 (]:1, ey, m+)
t-v, =0 (=0, ---, m—1)
modulo &,.
Further, from (2.34) we know that the values of ¢.(P’), omj_k(B;k) and

On-r(Qat (@, x, y'; 0, v—1&, v —17’) coincide with those of ¢,.(P), 0m;-x(Bji)
and g,_;_,(Q,) at

(3.13) (t, X+ V=le, x'+~v—=1y";

vjl(/)t —El \/:I ' Yo Y @x’_\/l—l(ﬁy’
0+ \/:—I—SDIIEI, \/:'1__9011, 2 {E v 177 + V,'_*_j_gpgq 51}>
From now on; we consider #, vy, =-*, vm-; as sections of C.,z. Then they

satisfy equations microlocally on

(3.14) H={(t, x, y'; 0, V—1&, ~V—19")=T*Z; (&, 7")#0, t=0, 6 =C, Re 6 =0,
x, y', € and %’ are real, {-(Re§)=0, |t—F+|x—%|+ |y —5'| <8}

for some 0>0; we will take another 6>0 small enough if necessary. On the

other hand, by the condition [2.27) for the estimates of singular spectrums for
sections of ¢, we have only to consider @, v, -, Um-1 ON

@15 H' ={t x,3";0, V1§ v—1y)=H; >0,

= —Qy; TPz, Pz Pa; TP, Py;
’ 1‘|‘{(Px1}2 1+{(Px1}2

Then for any (¢, x, y'; 6, v—1&, ~/—15’)= H’, the corresponding point in (3.13)
becomes

&, = & for j=2, ---, n}.

(3.16) (z, XV =1, x4+ —=1y";

_EI_ N 2 i
. (A+ea? ‘.

It follows from the second and the third systems in that

‘xL'(Pt_\/:—l(leSDt’ (‘Dl‘]-}— \/——1; (2R Y —\/_F_—lgpy')> .

(3.17) vell, x, ¥') = up(x, y0@) (=0, -+, m—1)
with some microfunctions u,(x, y’)’s satisfying

m-1
(3.18) kgo B0, x, v, Dy Dy du, =0 (=1, -, my).

These facts combined with (Al) assure that # vanishes on H'N\{t>0}. For
P’ is elliptic there.
In case H'N\{t=0}+ @, we may assume =0, and then we can use the addi-
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~

tional condition (A2). In fact, @ defines a Cr,z, solution u(?, x, y') on

t(({t=0}"H’") because of the equation and the relations where
Ly=LN{t=0}. Then it is easy to see that

(319) uk<x) y,) = Rk(t) X, y,) DL; Dx) Dy’)ult—»+0 ('Ie:O: Tty m_l)

where R,=7y(D%) is a differential operator of order 2 with symbol

- . — /=1 - &
B20)  ouRuE %, 3 0, VI V=T = (04 R )
1

Thus u satisfies the boundary value problem
Pu=0
m--1
;L:Jo B;kRku]t~+0:O (]_“1> "')m+)

as a section of Cr,z,. Therefore, under (Al) and (A2), it becomes a microlocal
boundary value problem satisfying the conditions of [Theorem 2.7. Hence we
deduce that =0, and thus #=ext(u)=0, v,= - =v,_,=0 on H'N{t=0}.
Consequently we conclude that

SS(ANISSWo)J -+ USS(wm-1)C .

The remaining problem is to show the vanishing of SS% for #, v,, --- and vy, ;.
Since ¢ is a solvable operator for &, tv,=¢, implies that v,—u,-0(t)eg, for
some hyperfunction u,(x, ¥’). On the other hand, it follows from SS(v,)CY
that u,(x, y’) is analytic. Hence SS%(v.)=@ for k=0, 1, ---, m—1, and also by
the first equation of we have SS%(#)=¢@. That is, #, vy, -+, vm-, belong
to G,. This shows the vanishing of the 0-th cohomology group.

The 1st cohomology group. Let P’, Q; and Bj, be operators defined in [3.11)
Then it is sufficient to show the following assertion : If germs E, E; (j=1, ---, my),
I, (k=0, ---, m—1) of ¢ at p satisfy the equations

m-—1
(3.21) t-Ej— 2 Buli=0  (j=1,-,m) modulog,

there exist some germs U, U, (=0, ---, m—1) of ¢ at p such that

PU-"S QU.=E

3.22 m-1 .
@28 S BuUL=E;, (=1, m)

t'Uk:-—: kB (k:(), “',m—‘l)
modulo &,. Since the morphisms

te:jx ) g (BO), > and t-: [z, (B0)|, >
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are surjective, we may assume [,=0 (=0, ---, m—1) and that the equations
hold as hyperfunctions. Under the additional assumption (I,);'=0, we
will show that (3.22) has a unique solution (U, U,, -+, Un_;) as a section of

t(Crozl )™ in a neighborhood of #(H") (see (3.14), (3.15)), where ¢ is the
projection

i H=(, x, v'; 0, v—1&, ~/—17")
i (t) X, y,; \/:_151 vjv,)ERtXV:ITX(RZXR27I)

For the moment, we consider U, Uy, -+, Un_y, E, Ey, -+, E,,, as sections of
Cr,1z. Then we can write

Ej(t’ X, y,) = ef(x7 y,)5<t) (]:1) Ty m+)’
Uit, x, ) = u,(x, y)-6@¢) (=0, ---, m—1)

(3.23)

with some microfunctions ej(x, y’) (=1, -+, my), u,(x, y’) (=0, -, m—1)
satisfying

m-1
(3.24) EB B0, x, y', Do, Dyduy, =e;  (j=1, -+, my).

Hence our claim for the part H'N\{t>0} follows from the ellipticity of P’ by
(Al). In case HN{t=0}# @, we may assume =0, and we can utilize the addi-
tional condition (A2). Therefore, we can apply [Proposition 2.8 to find
U, wo, **+, Um-1) by putting P=P’, S,=Q; (k=0, -, m—1) and E;,=B},
(j=1, -+, my, k=0, -, m—1) in [2.20) In fact, since the operator D}+

W e(x, D.)Dt corresponds to R0, x, v, D;, D, Dy)=7(D%)|:=¢ in this
situation, the conditions (Al) and (A2) imply (Cl) and (C2) for the pair
(P, 3%'Bjr R4 ¢=) in a neighborhood of H’ (see (3.13), (3.16) and (3.20)). Thus
our claim has been verified. Moreover, it follows at the same time from the
uniqueness in the above claim that this solution (U, U,, -+, Un_,) extends to
H as a section of (/'y.(Cr,1z)™*" and that it satisfies the equations 71, of (2.25)
there. The latter part is because all operators in commute with any
operator in 1, (see Lemma 2.11). After all, since P’ is elliptic on ¥={£=0,
n'=0}, there exist hyperfunctions V(¢, x, y)=I"1 (81)|, and V(x, y), -,
Vaolx, y)E8L,15. 5 such that

PV-"S QuV,st)=E at p,
(3.25)

me-—1
k;o B;k(Vk'5(t)) = E] at p fOI‘ ]:1, e, My,

and that
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SS(V) U SS(V (1) U - U SS(V 5 _100) € H'UY,
(3.26) SSAVYcY (=2, -, n),
and SS((Allt=0>Vk) = @ <1:27 v, N, kzox Ty ’n_l)'

Here A,, ---, A, are tangential Cauchy-Riemann operators in (2.25). Let
Zo=2ZN\{w=0} (CX) be a complexification of L,=LN{t=0} with the embedding
Z—Y =XN{w=0} induced from the embedding

Lo3(x, y)—> 0, x, (0, x, 3", y)EMN{t=0}.

Then we have following quasi-isomorphism of Cauchy-Kowalevsky’s type due

to M. Kashiwara (see also [17]).

Rﬂ[omgyl;(f”', @?)I —_— Rﬂ[om.@zo(m’zo, OZQ)’

where 9'=93/31.197Dz, and Jl, is the D, module induced on Z, from I,
Therefore &tbzo(fn’zo, Oz,) = Extpp(TN’, Op)lz,=0. Hence we can modify
Vo, -+, Vm-1 by subtracting suitable analytic functions so that

(/1;|¢=0)Vk — 0 at (.7%, j’l) fOI‘ l:2, e, n and k:(), tty m"l.

Combined with this implies V0(¢), ---, Vm_10(t)=@G |, because the estimates
for SS3(V.0(t)) follow from those for SS(V,). Then after modifying V on ¥
as a section of C.,,z, we reobtain

(3.27) PV — ’:;: QUV.6(t) = E at p
for modified V,, -+, Vn_i. In case =0, this implies
(3.28) AV =0 (=2, -, n)

at p because P’(A,V)=0 at p ({=2,---, n). In case >0, after some modifi-

cation of V as those for V,, we have Moreover, we obtain from (3.27)
a proper estimate for SS3%(V) since P’ is elliptic on 2. Combining these

estimates with [3.26), we derive the fact Veg|,. Consequently (V, Vd(1), - ,

Vn-10@)E(G] )™ solves [(3.22), Thus we have shown the vanishing of the
1st cohomology group.

The second cohomology group. Let W, ---, Wn,, be arbitrary germs of ¢
at p. Then we have only to find some germs V,, -+, V., Uy, -+, Up_, of @
at p satisfying

m-1
W;=tV;— kgo BUy (7=1, -, my)
modulo &,. In fact, it is possible even when U,=U,= - =U,, _,=0 beéause

te: Jxf g, (BO) ], <D
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is surjective.
Finally our long proof of is completed. g.e.d.

Proor oF THEOREM 1.2. By applying Kashiwara’s theorem to 1/6,.(t%, 2, 8, 0),
we know that (H1) is equivalent to the following :

(H1Y The equation ¢,(P)t, z, 8+7, {)=0 has no purely imaginary roots with
respect to 6 on

W= 0<U<5{(t, z; tdt+Re(ldz)e T*M ; 0<t <3, |[Rez— x|+ |ImZ| <3,

7|+ |Imz|+|Rel—ex*| <eb}
for some small 6>0.

Therefore, since the number of roots in {#<C; Re §>0} is constant on W, the
assumption (H1)’, (H2) implies the assumption (Al), (A2) for every (¢, z; 7, D) W.
Hence, by [Theorem 1.1, we have for the system 9 in associated with
(P, By, -, Bn.)

WNSS(RI omg (M, [, (BO))=0 .

Therefore by the formula (2.6

0, ;dx)ESS(RH omg y(M, I'y (Bi))).
For we have

R omo (M, I'y (By) = RI"'y(RHomo (M, Iz, (BO)))[n].
Hence we obtain
(3.29) RI (225 (RIomDx(M, 'y (Bs))] 0,5 = 0.
In particular

lim I'(U, F) —> lim FUN{x; <%}, F)
74 U

with F=SHomg (M, 'y, (By)), where U runs over a neighborhood system of
(0, ). Combined with the resolution (3.4), the observation in (1.1)~(1.5) implies
Theorem 1.2 g.e.d.

PROOF OF THEOREM 1.3. The uniqueness part is contained in [Theorem 1.2.
Thus we have only to prove the existence part. By we have

extlﬁnx(im, FM+r\(xlga’c1)(—CBM))(o, »=0.

Consider the resolution (3.4) of M. Then by the vanishing of the above
cohomology group, we can find a solution (U, U,, -+, Un-;) with value in
Iyonizg220(By) at (0, £) satisfying



Microhyperbolic mixed problems 301

PU-"S Q.U = ext(f)

(3.30) 7:\;: B U, = gix)-6(t) (1<7=my)

t-Up=0  (k=0, ---, m—1).

Hence U, has a form u,(x)-0(¢) for every k2. Let u(¢, x) be the restriction of
U(t, x) to {t>0}. Then it is clear from the observation (1.1)~(1.5) that u(¢, x)
satisfies [(1.11) q.e.d.

PROOF OF THEOREM 1.4. Let u be a section of Cg,.» Over

W=t x; V=19 TEM; 0<t<d, | x—2| <38, | 9—H| <8, ¢(t, x, 7)<0}
satisfying on W. Therefore

u* = (a(u), u(+0, x)-0(t), ---, D~ *u(+0, x)-0(t))

expresses a section of Homg (M, uxu(I'7,(BO))[n]) over W, where  is defined
in and M is the coherent Py module defined in

Under the assumption (S1) and (S2), we claim that
(3.31) 0, %, %; dg0, %, 9)) & SS(RIHomg (M, uu(l' 7 (BO))[1n])).
Indeed, in the same way as in the proof of [Theorem 1.2, we can deduce from
the assumption (S1) and (S2), the condition (Al) and (A2) for any (¢, z; 7, {)=V
with

14 =o<k<)5 {(t, z; 7, Re(Qdz)eT*M ; 0=t<9, |[Rez— x|+ |Im{—7| <0,

|t —ef*|+|Imz—ep*|+|Rel—ex*| <ed}

for some small §>0. Hence by [Theorem 1.1 and the formula we obtain
(3.31). In particular, we have

limI'(U, ) > lim UN{PE, x, )<0}, )
U U

with F=Homg (M, uu('y,(B0)[n]). Here U moves over a neighborhood
system of (0, #, #). Hence u* extends uniquely to (0, #; v—1%) as a section
of Homg (M, pu(l'z (BO)[n]). Let uw*"=U, U, -+, Un-;) be the unique
extension, and consider B(U), where 8 is defined in[2.53) Then since o(P)+0
on {(0, %; 8dw); §+0}, we can extend B(U) as a section of Cy x to

{(x; 0dw+~—1nd)eT%X; | x—%|+|n—7| <8, 10| >}

with some d>0 by using [I.4) Therefore [f(U)] modulo #4«(Cx x) becomes a

germ of Cg,.x at (0, £; v—1%). Then by we find that [B(U)]

gives a unique extension of u to (0, #; v—1%) as a Cg,«n-solution of
q.e.d.
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PROOF OF THEOREM 1.5. The uniqueness part is included in
Thus it is sufficient to show the existence of the solutions. By (3.31) and
Lemma 212, we have

Sxt’@X(E'JE, F(gﬁ;O)(#M(FﬂJr(—CBO))[n]))(n.2,77")20-
Thus in the same way as in the proof of [Theorem 1.3, we can find for any
f(t, x) and (g,(x)); in [Theorem 1.5, a solution (U, U,, ---, U,_,) with value in
Ligeo(pn(T 7 (B0O)[n]) at (0, %, $) satisfying

PU-5 Q.U, = a(f)

. 2 m-1 .
(3.32) l kgo B U, =gi{x)0@) (1£575my)

tUpy=0  (k=0, -, m—1)

as germs of py(I'%. (B0))[n]. Then by considering (B(U), BWU,), -+, BUm-1)
as sections of Cy,,x with support in 7'({¢)=0}), we can employ the argument
similar to the proof of In fact, B(U,)¢, x) has the form u,(x)-8(2)
with some microfunction u,(x)ECy|;v=iz, for any %k, and thus BU)¢, x)
satisfies the equation

(3.33) PEUY = S Qulus(x)3(0)+ext(f)

as a section of Cy, x. Hence by the same argument as in the proof of Theorem
1.4, we conclude [B(U)] modi«(Cy x) is a section of Cr,.nx in a neighborhood
of (0, #, »). Then it is easy to see that [B(U)] satisfies [(1.16) q.e.d.
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