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§1. Introduction.

In this paper, we will establish a limit theorem for a sequence of stochastic
processes determined by random difference equations. A feature of our work
is that the limiting process is a Markov process with jumps whereas the pre-
limiting processes are non-Markovian.

There has been extensive works concerning the problem of approximating
non-Markovian process by diffusion. See, for example, Kesten and Papanicolau
[5] and Khas’minskii [6]. Our aim is to extend these works to jump-diffusions
(strong Markov processes with jumps) and it will give us some new aspects of
limit theorems. In particular, we are interested in the problem how the con-
tinuous part and the jump part of limiting process come out. Recently, such
extension has been studied by several authors. For example, Jacod and Shiryaev
gives a comprehensive survey of limit theorems in which they treat the
weak convergence of semimartingales. Their standpoint of view is that the
convergence of characteristics of semimartingales implies that of semimartingales,
and their results include very general limit theorems. But we emphasize that
the result of this paper is not contained in theirs, because our setting of problem
is concerned with some mixing property which does not yield the convergence
of characteristics in the sense of [4]. See Remark 3 in §2.

Now, the problem we will discuss is formulated as follows. For an R¢-
valued array {&, :;n, k=N} of random variables and a dXe-matrix valued
function C on R¢, we consider the stochastic difference equation:

(11) { Son,k—@n,k_l = C<(pn.k—1><$n,k_‘an) 3 k:l’ 2’ N

On,0o = X0 E R?,
where we set a,=FE[&, [, 11(|é..1])] and I, denotes the indicator function of a
set A.

Let {j.}» be a positive sequence diverging to infinity. Define a sequence of
stochastic processes {¢,}. by

(1.2) ©n(t) = Qa, (i1
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for t[0, o). Here, [¢] is the integral part of £. Then, each ¢, can be re-
garded as a random variable with values in the Skorohod space D,=:D([0, o), R?%)
(the space of all right continuous functions from [0, ) to R¢ with lefthand
limits, equipped with the so-called Skorohod topology). Our problem is to show
the weak convergence of this sequence {¢.}.. In this problem, our standpoint
of discussion is that the weak convergence of the driving noise processes

Tint]

(1.3) €alt) = 23 (Enx—0n)

to a Lévy process implies that of the system processes ¢, to a jump-diffusion.
For the purpose, as a condition for {£, :}, we will adopt the strongly uniform
mixing condition which is considered to be an intermediate between the inde-
pendence and the uniform mixing condition. See § 2 about the definition. Under
this mixing condition, Samur showed the weak convergence of {&,}, of
to a Lévy process in and [8], which is an extension of famous Kolmogorov-
Gnedenko’s results for independent and identically distributed arrays. Our aim
is to extend his results for the driving noise processes to those for the system
processes. But, his method is not effective on our case, because it depends
deeply on the fact that the limiting processes have independent increments. So
we will apply the so-called martingale method, which goes as follows. We show
the tightness of a sequence of stochastic processes, and then characterize any
limit process by showing that the law of it is the unique solution of a martingale
problem. We will see that this method is applicable to our jump-diffusions as
well as diffusions.

Next, we explain the context of this paper. In §2, we will give the defini-
tion of some notions and notations to formulate our results. We will also give
the definition of strongly uniform mixing array, and then we will state our
results. Main theorem is [Theorem 1, which states that the sequence {¢,}, of
converges weakly in D([0, o), R?) to the solution of a stochastic differential
equation of jump type characterized by the setting of the theorem. To prove
[Theorem 1, it is convenient to show the weak convergence of the joint processes
Gn=(pn, &,) instead of ¢,. which states on this {@,}, is a rewrit-
ing of and we will give a proof only for [Theorem 2. [Theorem 3
is a supplementary result to main theorem. In §3, we will give a proof of
Since it is long, we will divide it into several steps. In §4, we
will give example of the arrays of random variables which satisfy the conditions
in our theorems.

The author would like to express sincere gratitude to Professor Hiroshi
Kunita for his kindhearted advices.
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§2. Statement of results.

In this section, we give the definition of some basic notions and notations
which will be necessary and then we state our results.

We first define some properties of driving noise processes of For each
neN, let {§,.»; RN} be an array of R°valued random variables defined on a
common probability space (2, &, P). We say that this array is stationary if for
each n=N the joint law of (§,.4, .-+, &,.:) under P is equal to that of (&, .+,
-, &nwyr) for all &, IeN.

We next introduce a kind of measure for the dependence between &, :’s.
We say that an array {&, .} of random variables satisfies the strongly uniform
mixing condition with the rate function ¢ (¢-mixing) if

P(ANB)
{lpivrm
converges to 0 as k—oco, where we set F,=0[&, ;; P <] for 1Sk<I< oo,
As far as we know, this mixing condition was first introduced in Blum-Hanson-
Koopman (in [2], they call it *-mixing) and it was used in Samur and
to show the convergence theorems in which the limits have infinite divisible
laws.

On the other hand, to represent jump processes (for example Lévy processes
or the jump part of Markov processes) by stochastic integrals, we often use
point processes. It is well-known that for a ¢-finite measure v on (R®\{0},

B(R{0})) satisfying S

(2.1) (k) = sup sup sup ~1|; A1, BE G, and PA)P(B)>0}

neN leN

s min {|z}?% 1}u(dz)<<co there exists a stationary Pois-
\ (0}

son point process {p(¢)} on R*\{0} with the intensity measure v. See Ikeda-
Watanabe [3, Chapter I, Theorem 9]. We denote its (compensated) counting
measure by N,(dudz) (Z\pr(dudz)=Np(dudz)—a’uy(dz), respectively). See [3, pp.
42~44, 59~63] for the precise definition of the above notions and the stochastic
integrals with respect to the point processes. We also refer to for the theory
of stochastic differential equations of jump type which will appear in the state-
ment of our theorem.

We give miscellaneous notations in the following. For a ¢-finite measure
v on RN{0}, we put Co)={r>0; v({z; |z|=r})=0}. We denote by C"(R?¢, R®
the space of all functions from R¢ into R*® possessing continuous derivatives of
order up to and including ». In the case of e=1, we denote it by C"(R?%). We
also denote by Cj(R¢, R®) the space of all functions of class C"(R¢, R®) possess-
ing bounded m-th derivatives for all m<r. We denote R4QR* the set of all
real d Xe matrices, which is identified with R*¢, We denote by C,(R® the
space of all bounded continuous functions defined on R°® which are 0 around
0=R¢ and have a limit at the infinity.
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For an array {&, :} on R¢, we set, for simplicity, &, r.6=%n. rLc0.53(|&n. 2 !)
and &&=&, 11 (1&En.k]). We denote by &2 , the p-th component of &, , for
p=12, -, e.

Now, let us state main theorem in this paper. We first introduce assump-
tions for the theorem.

Let {£,.»; n, keN} be an R°\{0}-valued, stationary, and strongly uniform
mixing array of random variables which satisfies the following conditions (A.]I),
(A.II), and (A.IID).

(A.1): For some sequence {j,; n=N} of positive integers diverging to infinity,
it holds:

2.2) o (o S@PEnisds) — | fmdz)  as noeo

for all f=C\(R?®), where v is a ¢-finite measure on (R°\{0}, B(R*{0})) satisfy-
mgg min {| 2|2, 1}u(dz)< 0.

Re\ (0)

(A.Il): There exists a sequence {6, =C(v); k=N, 6, | 0 as k£ 1 oo} which satisfies
the following conditions (a) and (b):

(a)

(2.3) Sup j,E[[En,1.6,1%] < o0
neN

(b) The limits:
2.4) VB = lim lm j,EC7f.1,007%0.5,]
and

Jn

(2.5) Vie= lim lim J‘ng‘; E[n% 1.6,0%.1.5,]

exist for all p, ¢g=1, ---, e, where 95.1.5,=&n.1.5,— E[&n.1.5,]-
As a matter of convenience, we take d,=1.

(A.Ill): The mixing rate function of the array {&, .} satisfies
(2.6) PRy < oo

Further, we suppose that the coefficient C in satisfies
(C.D: C = Ci(R?, R*QR?).

THEOREM 1. Assume (A.1), (A1), (A1), and (C.1). Then, the process ¢,
of (1.2) converges in law to the unique solution ¢ of the following stochastic dif-
ferential equation:
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~t t t+ A~
2.7 o) = xo+50C(go(u))BV(du) —|—Sob(g0(u))du—i—go SIZISIC(QD(u——-))sz(dudz)

+S:+S12 1>1C(§D(u—))2Np(dudz) s

where BY is Brownian motion with mean 0 and covariance matrix

(2.8) (VPe =Vt VPIfVEP), 1 ie,
) d e . acﬁq
(2.9) V(x)= 2 2 C*P(x)VEi—m—(x),
i=1 pig=1 ox

and p(t) is e-dimensional stationary Poisson point process with the intensity meas-
ure y.

We give several remarks on this theorem.

REMARK 1. Under and [2.6), the matrices V, and V, do not
depend on the choice of {d.}.

REMARK 2. If we know that the diffusion coefficient C(x)VC(x)* of the
process (2.7) does not degenerate, we can give a sufficient condition weaker than
(C.I). Here C* is the transpose of a matrix C. But it often happens that V=0
as we will see at §4. This is one of reasons why we adopt the condition (C.I)
which is adequate for the case that the diffusion coefficient may be degenerate.

REMARK 3. When {&, .} is an independent and identically distributed array
(that is the case of ¢(k)=0), then V=V, and b(x)=0. In such case, we can
obtain similarly as in [4, IX. Theorem 3.21, p. 505]. But our theo-
rem does not follow from theirs provided ¢+0.

REMARK 4. When C=1, then b(x)=0 and the limiting process is a Lévy
process starting from x, with the characteristics (Lévy system) (V, 0, ). This
is nothing but a main result of Samur and [8]. So our proof of
1 will give another one for his results though our assumption (A.III) on the
mixing rate function is slightly stronger than his.

Now, note that by the representation of and (2.7) we can see that,
roughly speaking, prelimiting processes ¢, and the limiting process ¢ are func-
tionals of (¢n, £») and (¢, &), respectively. Here,

t+

e =B"w+ |

Therefore, for the proof of [Theorem 1, we need to show the weak convergence

of {£.} as well as that of {¢,}. To this end, it is sufficient to show the weak

convergence of the pair {¢,=(¢., £»)} in the product space D,XD.. But we
will give a stronger assertion: the weak convergence of {@,} in Dg...

2

A i+
élzN,,(dudz)JrSo Slz|>lsz(dudz).
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THEOREM 2. Let ¢, and &, be the processes defined in (1.2) and (1.3), re-
spectively. Set

= (Pa(D)
(2.10) 20 = (£ ).
Then, under the assumptions (A.D), (A.II), (A.1Il), and (C.1), it holds:
(2.11) @a i @ in Dgye as n—oo,

(f.e. ¢n converges in law to ¢ as Dgye-valued random variables) where ¢ is the
unique solution of the following stochastic differential equation:

2.12) ¢(t):%0+S:6(¢(u))B"(du)+S:E(¢(u))du+gz+g C(p(u—)2y(dudz)

121

+S:+S|z1>16(¢(u_))2Np<dud2) .

Xo

Here, we put EO:-(O

>eRd+e for xoeR*, 0=R",

& (;) - (CE:”) (I, denotes the eXe identity matrix),  and

5(;)———([)(86)) for xeR?, yeR*.

We will give a proof of this Theorem 2 in the next section because Theo-
rem 2 clearly implies Theorem 1.

Finally, we give a generalization of Theorem 1. We extend (1.1) to the
following one:

{ On, b~ Pn, k-1 = Cn(SDn,k—l)(Sn,k"'an)_}"(]-/jn)Bn(SDn,k—l)

©Pn,0 = Xo,

and set ¢,({)=@n, ;01
We introduce assumptions on the coefficients.

Cp.D): C,eC¥R?, RYQR®) for all ne N and sup,supzcgrd |Ca(x)| <co. Further,
there exists a function CeC}(R?, R4QR®) such that

sup {1 Ca(x)—CO) +[C2(x) = CPW I+ C2(x)—CP(0) [} —> 0 as n—oo,
(K2
for each N>0. Here, we denote by C® the derivative of order 7.

(C..1D): B,eCY{R% R% for all n=N and sup,supser?|B.(x)| <oo. Further,
there exists a function BeCy(R%, R?) such that

sup {| Ba(x)—B(x)| +] Bi>(x)—BP(x)[} — 0 as n—oo,

for each N>0.
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THEOREM 3. Under the assumptions (A.1), (A.1I), (A.1ID), (C,.1), and (C,.ID),
it holds:

L
¢ —>¢ in Dy as n—ooo,

where ¢ is the unique solution of the following stochastic differential equation:

() = xo—{—g:C(gp(u)) Bv(du)+S:(B+b)((p(u))du+gz+s _ Clp(u—)zR(dudz)

+S Z+S 15, C @ =)z Ny (dudz).

We will not give a proof of this theorem because it is similar to that of

§3. Proof of Theorem 2.

3-1. Preliminaries and ¢-mixing property. In the subsequent sections, we
will give a proof of [Theorem 2. It is organized in three parts. The first step
is to establish for the localized and truncated processes of {G,}n,
which are uniformly bounded and have uniformly bounded jumps. We define
them in Section 3-2 below. To complete the first step, we show the tightness
of them in Section 3-3 and then we characterize any limiting process in Section
3-4. The second step is to remove the restriction of localization in the first
step. Section 3-5 contains the step. The final step is to remove the restriction
of truncation in the second step, which completes a proof of This
step is discussed in Section 3-6.

Before we proceed to the proof of [Theorem 2, we give a lemma on the
strongly uniform mixing property, which will be used frequently in the proof.

LEMMA 3.1. Set m<I<k.

(1) For an 7, (F} ~)-measurable integrable function X (Y, respectively), it
holds :

3.1 |E[XY]1—-E[X]E[Y ]| = (k—DELIX|]ELIY [].

(2) Let X be an F7 ,-measurable integrable function, Y be an F},-measurable
integrable function, and Z be an F} ~-measurable integrable function with E[Z]
=0. Then it holds:

3.2) |ELX(Y Z—ELY ZD]I £ v 2(g*+1)p(k—D)1*p(l—m)**
XECIX|1ECIY|]ELIZ]],
where we put ¢*=¢(1)+1.

ProOF OF LEMMA 3.1. (1) From the definition of rate function ¢, it is
obvious that | P(ANB)—P(A)P(B)|<(k—1)P(A)P(B) for A9}, and BETF] «.
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We can easily extend this to (3.1) by the simple function approximation.
(2) We follow essentially H. Watanabe [11, Lemma 4]. From (3.1), it
holds :
|E[LXY Z—-E[YZ]]| £ g—m)E[|X|JELIY Z—E[Y Z]|]

< 20U0—m)p*EL| X|JELIY |]ELIZ1].
Similarly, we have:

|ELXY Z]| < (k—D*ELIXIJELIY |1ELIZ]]  and
|ELY Z1| = ¢(k—DELIY|]ELIZ]]
because of E[Z]=0. Therefore it holds:
|ELX(YZ—E[YZD]|*= |E[XY Z—-E[YZ]D]I|ELXY Z]-E[X]ELY Z]|
< 2¢U—m)p*P(k—INP*+DEL| X | PELIY | PELIZ| .
This yields [3.2). O

3-2. Localized and truncated processes. For each N>0, let »y be a smooth
function on R? such that

) {l if |[x|EN

rylX)=

! 0 i |x|=N+L,

and let gy be a smooth function on R® with the same property as above. Set

Cy(x)=ry(x)C(x) and for each M=C(v) and N>0, define

(3 3) { Spn k 90%[ kNl = CN(@%,’kZXlXEn,k.M—an) for k:]-; 2,
' SD% & = xo.

We may assume that N=2|x,| because we will take N—co. Similarly,
define

M C%IzIXI = (]A( n,k— 1)(5n ko —Qn) for k=1, 2, -

(3.4) MN
Set
QM (1) (RS
~M N "
(3.5) 0= <5;‘{ 'N<t)) (Cn unn)'

We call this process the localized and truncated process of ¢,. Note that ¢¥#¥
is uniformly bounded and has uniformly bounded jumps.

3-3. Tightness of {3Y-V},. To get the tightness of the sequence {¢¥-"},,
we will show that the sequence satisfies Kolmogorov-Chentsov’s criterion.

PROPOSITION 1. For each T>0, there exists a constant K>0 such that

(3.6) - E[|gX- N =@l ¥(s)?| eV (s)—@d-¥(n|*] < K|t—r|?
for all 0Zr<s<t<T, and



Stochastic difference equations 361

3.7 E[|¢N#)—x0|?] < Kt
for all t<T.
The above proposition implies the tightness of {7}, since ¢¥ Y (0)=Z%,.

PROOF OF PrROPOSITION 1. Before going to the proof, we give a few re-
marks to make the notations simple. First we take j,=n throughout § 3. Next

we put
~ Cw(x)
¢x(5)= (o)

for x€R? and y=R®. Then ¢¥'V of [3.5) is represented as:

[ntl ~ )
(3.8) 9‘5%[ N@) = J?o‘i‘kgl CN((;‘%I,’k]XI)(En' e
M,N
s e s st =(2E5 ).

Since it is similar to the equation [3.3), we may replace Cy and ¢-¥ by
Cy and @'Y respectively, because we do not need any changes of discussion.
In the sequel, we omit superscripts M and N in ¢" and ¢ ¥, and subscript

N in Cy. We will also give proofs of [3.6) and only in 1-dimensional case,
because we are able to follow easily the proofs in multidimensional case.

For fixed M>1, put 0, :=6&n e, u—E[&rn,r,»] and b,=E[EL, v 1=E[ED; »].
Then we have:

l@n)—@a(s)|? =

|k

[ntl
2
=[§]+1C(§0n, k—1>(7]n, k +bn)1

ntl
<2 S C@nr () +4 S O@n 1001 0n 40,1

k=[nsl+1

ntl 2
+2{ 37 Clgna-idbal =t 2L(m+AL(m)+2L(n).

kE=[ns]+1

In the above, 3)i<, denotes the summation over (/, £) such that [ns]+1ZI<k<
[nt]. We will use this abbreviation later, too. We will show the following
lemma.

LEMMA 3.2. Put @n(s)=|¢a(s)—¢@a()|®. Then it holds:
t —_
(3.9) | ELL(m)®o(s)]] < K[ij%ﬁs-]—E[ms)]
for i=1, 2, 3, where K is a constant which does not depend on n, r, s, and t.

Proor oF LEMMA 3.2. We first consider I,(n). Note that from assumptions

and it holds
(3.10) sup nE[|fn, 1]2] =1 K, < 0.
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Hence, we have:
Cntl
E[Il(n)@n(s)] = k=[nzsj+1 E[C(QDn k-1)2(77n, k)2®n<s>]

= ¢*k=i7§+1 ELC(@n, 2-1*Pu($)IEL| n, 2 1]

nsl

< gICIErRu I T e, e

< gz)*|[C|\2K1—[—n—"j—;—Eﬂ E[LD.(s)].

Here, we denote by ||C|| the supremum norm of C.
For I,(n), we divide it into the sum:

> C(SDn,l—l)zﬂn,zﬂn, k+l§ C(SDn,z—x)ﬂn,z{C(SDn.k—x)—C(SDn,z-1)}77n. k-

I<k
As for the first term, from (1), we obtain:
(3.11) IE[% ClPn, 11N n, 1M, £ DPn(s)]]

= 2 P(k—DEL| CPn.1-1) 0 1D n() JEL| D, 6]

[nt]—[ns]
n

< IClgH{ 2 gt} nEL|70,1 JE[Da(5)]

=Lns] pro,on

2 1k | <
< ICIPgH{ 2 gk},
On the second term, from the mean value theorem and we have for each %:

C((Pn l—1)77n, 14 {C((Pn k—l)_C(@n. l—l)}

l=[ns]+1

-5 cqon,z-l)vn,/g{C<gan,,~>—C<son,j_l>}

1=[nsi+1
k-1 k-1

= X ) C(ﬁDn,1-1)7]n,z§0;'§.jc(§0n,j-1)(ﬂn,j+bn)

l={ns]+1 j=I

1
(Where we put 90’7'5.j‘—‘SOC’(QDn,j_1+v(g0n,j—gon.j-l))dv>

k-1 J
:j=[§]+1 {¢n,j_§0n(s)_l=[nzs]+l C((Pn l—l)bn}Soﬁ,jc((/)n,j—l)("]n,j’*'bn) .

Note that the summand is 47 ;-measurable and the absolute value is dominated
by K,|79a ;+bn| for some constant K, which does not depend on » and j, be-
cause of the uniform boundedness of {¢, ;} and the estimate:

max N Cl@n,1-1)bn

j=[nsi+1,,[nt] | 1=(ns1+1

< THCHsgpnlbnl = T|C|K,; < co.

It follows from the fact that 1imnmn]bn[=H av(dz)| <oo. Therefore it

1glzigsM
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holds :
(3.12) IE[Ee Cl@n,1-02, 1 {C(@Pn, & -1)—=C(@n,1-1)} P, 1 P (S)]|
< 2 Kop(k—DY*EL| Nn, 5+ba| JEC| a2 | JELDa(s)]

<K2¢*{2¢(k)}[nt] L5] (sup m BEC 7.1 1*142164 1% ) ELO1(5)]

< KK 50} I prg (s,

where K,=:supn{3E[| 9, 1|2]+2|b,|?}, which is finite. From [3.11) and [3.12),
we get the conclusion.
Finally, we consider I,(n). Since

1< [nt]—[ns]
n

[ntl
ICIKs,

k=[ns$]+1

it holds:

dl
We have now completed the proof of Lemma 3.2 O
We continue the proof of Proposition 1. By [Lemma 3.2, we get the estimate :

o) = TICI(LET ) R, )1,

k={ns]+1

EClga)— oul(9)1*0x(9] < KL pro (o))

for some constant K;>0, Clearly, we also have:

(3.13) E[®u()] = ELl@als)—@a(r)[*] < K;@#_

These results yield
2 2 2 [nt]"—[nr] 2
ELIgn()=¢n(9)1?|oa(9)—¢a(M)[*] £ (K (F="2),

which implies [3.6).
(3.7) is obtained from taking s=» and r=0. We have completed the
proof of Proposition 1. [

3-4. Characterization of limiting process. To show the identification of
any limit measure of {P¥ -¥=the law of ¢#-¥},, we establish a proposition.

PROPOSITION 2. Let P™-¥ be any limit measure of {P¥¥},. Define

af

e o LoarenoxN\ETOORf L dde
(3.14) I Nf(x)_—2_1',;'2=1(CN(X>VCN(]C)*> afiafj(XH-j:l

v A n oy LN f N
+S {f(x+CN(X)2)—f(x)— 2 (Ca®2Yiz15n a~j(X)}v(dZ)
1z21sM Jj=1 X



364 T. FullwARA

and
e e A ~J':f1
B =S 5 Gl ),
i=1 p,g=1 ax
Set f(%)=exp(ifi-%) where %, =R, and #-%= 8¢ 47-%/. Then,
t o~
(3.15) My(®) = F(p(e)— f(20—|, T flg(u)du

is @ (Dase, Dy, P V)-martingale, where we denote by D, the right continuous ver-
sion of Di=al@(u); u=stl.

We can easily see that implies that M,(t) of are martin-

gales for all bounded function of class C*(R%*%). Therefore it shows that pr.w
is a solution of martingale problem in the sense of [4]. See Definition III.2.4
and Theorem 11.2.24 in [4]. On the other hand, we have the uniqueness of
solutions of martingale problem for £*:¥, because the corresponding stochastic
differential equation :

(3.16) ¢ ¥(0) = Fot | Ca(e" V(W) B (@) + | Ba(p" ¥ (w)du

0

t+ ~ ~ . N
+S SMSCW‘”'N(u—))sz(dudz)JrSo SKIZ]QICN((,BM'N(u—))ZNp(dudz)

has the unique solution process. See [4, Theorem IIl. 2.26, 2.32 and 2.337.
Hence, we conclude that any limit P¥*-¥ is equal to the law of the solution
@™ of (3.16), and this yields that

3.17) QB%N —~—>¢M’N in Dgy. as n—oo,

PROOF OF PROPOSITION 2. As in the proof of [Proposition 1, we give a
proof in 1-dimensional case and omit the superscripts M, N, and ~.

For the limiting measure P (:ﬁM-N), set J(@)={t=0; P(Ap#)=pt)—p(t—)
#+0)>0}, which is at most countable. To prove this proposition, it suffices to
show :

(3.18) EL{M ) —M;(s)} ¥ (p(uy), -, o(un)]1 =0,

for all s, t€ (o), meN, u,sJ(p) (=1, -, m), 0£u,< - Su,<s, and bounded
continuous functions ¥ : R™—R. Here, J(¢)° denotes the complement of the set
J(p). 1t follows from the right continuity of paths and the property: 9,C 9, _
C Y for s<s’, where Dy_=0[\Uycsr D2].

In the sequel, we may assume that the law of ¢, converges weakly to P
(=P™ M), Now for s<t, we have by Taylor’s expansion and

(3.19) f(<pn(t>)—f<gon(5))=k:7§ {f(@n.2) = f(@n, -0} = S2(n)+So(n)+Sy(n),

[7ms]+1
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where we put

[nt]
(320) Sl(n) - k=[§]+1f,(90n' k~1)C(SDn, k—l)’?n. ks
[nt]
3.21) Sum =3 f(@us0ns-ba,
[ntl 11 ”
(3.22) sim=,_ 5 [\ arnitasCiens

X (N, e tba))dad BC(@n, k1) (N n, e +ba)
For some time, we will concentrate on S,(n). Again by applying Taylor’s
expansion to f’C and by [3.8), we get similarly :

Sm = S {{f'Clon o) —F C@u(N .+ Con(S)m. i}

k=[n8]+1

[nt]

(/Clpn. 00— 1O} i+ 1 Clgpa() . o}

k=[nsl+1 {L=[n s1+1

- % (f'c)'C(SDn l—1)77n, 17]71, k+ L%z (flc)/C(SDn L—l)bnnn, k
+3 a0/ gni i+ aBini—pn 1)) dadBlgni=gn1 - 1n

+ S Cal) -

k=[ns]+1
As for these terms, the following lemma holds.
LEMMA 3.3. (1)
(3.23)  limsup 23 VEL(f'CY Cl@n. - n. 0n, e —EL 00 100, e H ¥ ()11 = 0.

(2)

(3.24) lirg_.swuplge LEL(f'C) Clpn, 1-0)bnn, s a(s)11 = 0.
3
(3.25) timsup 32 B[ { [ a(r0)"0n. 11+ aBl@n.i— i)
X dad B0(@n. 1 (0.1 b2 1 T ()] | = 0.
@
(3.26) timsup, 37| ELS"Clon(s) 1T ()] = 0.

Here, we put U(s)=T(p.(wy), -+, @alun)) for T and uy, -, up in (3.18).

Proor or LEMMA 3.3. (1) Note that
(f1O)Cpn,1-1) = {(f'OY Cpn, 1-0)—(f'CY Cle (s )} +(f'CY Clals))

= S @ et b)(FCY Clgals)),

j=[nsi+1
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where d)n_J:S:(( F1CYCY(@r. 31+ 0(@n. ;—@n. 3-)dvC(@n. 1), Which is uniformly
bounded and P ;-measurable. Then we obtain from 2):
l% LEL(f'CY Cl@n, 1-1)Nn. 1N n e —ELYn, 170, s ¥ 2(s)]]
—S—j<§kIEI:@n,j("]n,j‘l_bn)(nn,l"]n,k_E[ﬂn,lvn,k])wn(s)]1

+ 2 N ELS O Con()) (D, 100, 6 — EL9n, 17, s DT ()]

( > denotes the summation over (7, {, k) such that [ns]+1<7<I<kZ[nt])
I<I<E

S X Kp(b—=D"2 U= PEL D, j(0n, i+ 0¥ () JELI a, | JELI 7,8 1]

I<I<k

+ 2 Kok =01 —[ns DV ELIH (SO Clpal DT u() JETI 70,11 JET1 9.4 1]

< Ko 3 9(0)) (Cnt1—Lns DI Do JNCEL 70,1212+ [Ba 41 CYCIY
X L1 I

—>0 as n—oo ,

because of and sup,n|b,| <co. Hence, we get (3.23).
For (2), (3), and (4), they are easily obtained from Lemma 3.1 (1) if we note
E[nn,kao O

Next purpose is to show what is the limit of the term in (3.23):

5 EL O Cln - n(IEL D, 110,41

LEMMA 3.4. For all bounded continuous function G on R, it holds:
t
lim EL 3 G(a,1- 0¥ (s)1EL7,100,51 = E| | Glou)dudl 9|V,

where U ()= (p(u,), -, ¢(un)) and V, is the constant defined in (2.5) for 1-
dimensional case.

PrROOF OF LEMMA 3.4. Set w, ,=FE[Nn,1Ma,:] for [<k, which is equal to
Wy o141 by the stationarity of {&, ;}. Then we have:

[ntl-1 [ntl

> G(QDn,z—x)wz,k = G(GDn,z_l) Wi,k
1<k I=[ns]+1 E=1+1
[ntl-1 [ntl-Cns] [ntl-Lns]
= 3 Glonin] T w3 wia)
l=[ns]+1 k=2 k=[nt]-1+2

Here, note that lim sup,_ .23t St .| w;, .| =0. In fact, it holds:
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[ntl-1 [ntl-[nsl] [ntl-Lnsl
~ - lwiel = 2 (B—=2)|wy, sl
I=(ns8]+1 k=[ntl-1l+2 k=2
< Kl(l/n)[nt:insj kY(k) —> 0 as n—oo,
because of 337 (k)< co.
Next we will show that for s<t it holds:

[ntl-Cns]

(3-27) lim n E wl, P V1 .
n—0 k=2
This follows from the facts:
. ([ntl-CnsDvn . ([ntl-CnsDvn
lim sup » P |w,, | < K, lim sup o (k) =0,
n->00 k=(ntl-[nsDHAR n—eo  k=([nt]-[RSDAR

and

n n
Imn 3w, =1Imn> E[9n,1,9n,r,5]
k=2 =00 k=2

n—oc0

for all 6=C(v). In the above, we denote a\Vb=max{a, b} and a Ab=min{a, b}.
The latter follows from the estimates:

lim sup né E[n@mn, 6]l = é} $(k) lim sup nEL| 933 | 1EL I n,1,511 =0,
and
lim sup nk2n] [E[p2im$]1 =0
N—oo =2
for each d=C().

Now, we will complete our proof. Since ¢,(u)=¢n,:-1 for uc[(—1)/n, I/n),
it holds:

[nt] Intl-Ens]
B[ 3 Gloni) 8w alus)]

l=[nsi+1

[ntl-Cns]

=E[[ """ Gl )] xn 5w

([nrsl+1)/n

_>E[S:G(<,o<u>>duw<s)}vl as n—co

because of ¢, = ¢ whose law is P (=P*-¥) and [3.27). O
By this lemma, we obtain :
t
lim % EL(f'C)Y Cpn,1-0)¥ 2(S)IE[Nn. 190, 2] = E[Ss(f’C)’C(go(u))duL’f(s)}VI.

Combining this with we arrive at the conclusion for [[3.20):

Cnt]

(328) HmE[ 3 [(@ns)Cna-)700¥09)] = B[] (O Ol (9|1
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As for Sy(n) of [3:2T), since nbn—>§ 2(dz), it is easy to see:

1glzlsM

(3.29) mE[, 3 fpna-)Clpn a-0bWo(s)]
- E[Szglglziﬂ( f’C)(gp(u))zduu(dz)W(s)] :

Finally, we consider S.(n) of [3.22). To show the convergence of it is an
essential part of establishing the jump-diffusion approximation. To this end,
we first prepare the following lemma. For the simplicity, we set

Ons = .| af O (pn s+ aBCpn s 70 s +b)dad B,
which is 7 ,-measurable and bounded by (1/2)] f®].
LEMMA 3.5. (1)
(3.30) limsup 33 B0, «Clpn, - {0, 1 +b2"

-0 k=[ns]
"(ﬁn,k.a)z_(fﬁf,)k,zw Z}Wn(s)]! =0
for each §=C(v).

2)
(3.31) lim lim supk:z:jﬂ[E[{@n,k—(1/2>f<2>(gon,k,1)}
XC(gon,k—l)2<7]n,k,a‘)zwn(S)]E =0.
3)
3.32 lim 1i 3 el (are
(3.32) 532 Hﬁiup k:[nEs]+1 [{ n,k'—SOSoaf (Son’k_l

+aBC(n s )k adB} X Clpn, s P EDn W (5)|| = 0.

This lemma shows that in the limiting procedure of lim;lim sup, E[{---} ¥ ,(s)]
we can replace @, rC(@n, x-1)X(Nn, 1 +ba)? by

(3.33) %f(”(san, #-)C(@n, 1) (D, 2,0)"

101
+ [ ar @it B, 40580 1) d QX Cln, 1 E0, 0

Proor or LEMMA 3.5. (1) Since
N, e +00) =N, 1,5 — (&%, )’

= B[ w1 P28 uELED w1420 1, 56+2b0 00, 2 +03
it holds:
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B E[®n.sCon s {5+ — (0 0.0 — € Pa 1 T al(s)]]

k=[(nsi+1
| < IfENCPIFNCnt]—[nsDIBELIED, u| T
+6E[1&n 1,6l JECIERP, 31 142100 E[[ 92,1121+ | bal?}.

Then we get if we note that for each d=C(v)

lim nEL 160, w11t = lim —(nELIEul1) = 0x (] lzluda) =0,

dslz21s

and

lim sup nEC | €,1.51 1EL18%, 1] S limsup ()" (nEL 1 &n.151*1 /20 EL 18D, ]

g0><K1/2S lzldz).

dslzls

2) Since (1/2)f<2>(¢n,k_l):S:S:afm(gon,k_l)dadﬂ, by the mean value theo-
rem, we have:

B BL{@0 s~ (/D (1)} Cpn, 01,0 T (Y]]

= 1FSNCEINTNEnt]—[asDIEL I 9n,1] | 9n,1,512 14 102l ELI94,1,51 %1}
From this, we can easily see if we note

Hmsup nEL|9a,1] | 9n,1,512] < 20lim sup nE[ | 94,1212 E[ | 91,5212 < K0

for some K which does not depend on 4.
(3) Again by the mean value theorem, we have:

E[{@n k —S:S:af(Z)(SDn, k-1 FABC(Pn, 21D, M)dadﬁ}

[ntl

k=[ns]+1
X O, 8- € s a(5) |
< IfONICI I ICA1~CasDIEL n,0.0] 162, ]
+(ECIE@,x1 1412 DEL 16D, w11}

Then, we can obtain ((3.32) if we note

limn_ilulp NEL| Yn, 15l 16w ?]

< 25 lim sup nE[ |49, u|*] < 255 lzld). O

121 s

As for the first term of (3.33), we get:
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LEMMA 3.6.

lim sup| E[, 31 (FDCNpn 1 ){(Tn 0.0~ EL(n. 0. DTH)|| =0
for 0=C().

PrROOF OF LEMMA 3.6. It can be obtained by the similar consideration in
the proof of (1) because E[{(9n, 2.5 —EL(Dn, 2,01} 1=0. O

Combining this lemma with the assumption we obtain :

Lnt]
(3.34) lim limsup [E[, 33 (FPCHpn, 100, 0.0F ()

=(m33+1
~[\rocxpmna @] =0.
Next, as for the second term of (3.33), we prepare the following lemma.
LEMMA 3.7. Set
F(x, 2) = S:g:a FO(x+aBC(x)2)dad BCx) 2.

For this function F and each 6= C(v), it holds:

Cntl .
(335 limsup, 3 [EL(P(gna- &80 u)= ELF(E, 0010 mpp s} ¥als)] =0.

PROOF oF LEMMA 3.7. First note that by Taylor’s expansion of f(x)=
exp(ix-u) it holds for each m<N,

F(x, 2) ="5} Fy(x)G(2)+ Rz, 2)

where Fp(x):S:S:apﬂ/gPdadﬁ(l/p !)f(m—z)(x)C(x)pH, G,(2)=27*, and R.(x, 2)=
S:S:aMﬂﬁmf(m)(@d“dﬁ(c(xk)m”/m! for some a. Since

limsup sup [nzﬂ |E[LRn(x, §&% 1)]|

n—oo  reRE k=[ns]+1

< lim sup {|u|™|C}™*M™/m )X[nt]—[nsDELIEX, u|*1}
< lu™Cpm(M™/mOT sup nELIED »|*] —> 0 as m—oo,

to see (3.35), it suffices to show it for Fp(x)G,(2) (p=1, -+, m—1) instead of
F(x, z). But it can be easily seen if we replace (f®C?)(x) and (9,,:,5)? in
by Fu(x) and G (&%, x), respectively and if we note that

lim 7| ELG (¢, 10| =§ Golamda = Me| jzin(da).

ds1z1s

Thus we have completed our proof. O
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Similarly, by the above approximation of F by X ,F(x)G,(z), we can see

(336)  lim 3 E[ELF(x, P01 spn ,  XTu()]

n-o k=[nsl+l

= E[Stgaglz|§MF(go(u), z)duv(dz)qf(s)]

8

— E[S:Slz|§MF(go(u), z)duu(dz)ws)] as 0€C() | 0.

Combining this with (3.35), we obtain:

n-co k=[ns$}+1

[ntl
(337 lim limsup|E| 3} F(pnms, 600 XTa(s)

= o), DduwldT @)= 0.
Thus, from [3.34) and [3.37), we arrive at the conclusion for [3.22). That is,

[nt]
(338) HmE[, 3 00 sClpns (a0 Tals)]

k=[nsl+1

Now we go back to (3.19). Take n—oo in it. Then, from (3.28),
and (3.38), we obtain [3.18] We have thus established O

3-5. Removal of localization. We now proceed into the second step: to
remove the restriction of localization. For the purpose, we define the truncated
process ¢ of ¢, for each n€N and MeC(v) by

(3.39) ¥ ) = N taea
for t<[0, o), where
(3.40) X =l oy = Clo¥ 1 )(En k. u—an)

for k=1, 2, ---, and

O 0= Xo.

We also define the truncated driving noise process &% of &, by

(3.41) 0= 3 u—an
and set

M
(3.42) FH(t) = (gM ((t?) .

Our aim in this section is to prove the following proposition for the weak
convergence of {p¥},.
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“PROPOSITION 3. For each M=C(v), it holds:

£
(3.43) G —> ¥ in Dgye as n—oo

where @™ is the unique solution of the stochastic differential equation:
~ ¢ '
(348 "0 = %o+ | C@" B+ | Be"w)du

+St+gm 51(Nj(gﬁzu(u——)).zl\Nf,,(ciudz) +g:+5 5(¢M(u_))sz(dudZ) .

0 iglzisM

PrOOF OF PROPOSITION 3. For N>0, set Sy(¢)=inf{t=0, ()| =N/2 or
|¢(t—)|=N/2} for g=Dgay.. Then, it defines a {D}}-stopping time (i.e. {g: Sx()
<t}e9Y) and it is a lower semi-continuous function from D, to [0, co]. De-
fine 9%,={A<c9; AN{Sy=t}=9}. To see [3.43), note that we can apply
Stroock-Varadhan Lemma 11.1.1 to our case Dg.., instead of their case
C([0, o), R%). According to their lemma, it suffices to check the followings:
for sufficiently large N, it holds

(3.45) Puy = px  on 94, for all nEeN,
3.46) Py =pr  on ag,,

and ;

(3.47) Ilvigﬁﬂ(szvgt) =0 for all t>0,

where P¥ and P* denote the laws of @¥ and ¢, respectively.
To see them, take N>2max{|C||(M+1), |x,|} for fixed M. Then, since

su ~M’Nt < N, and su ',:Mt < N
tE[O,SNI(Jé%[’N):lspn ( )l = tECO,SNI?g;!%)]l(Hn( )! = ’

it is easy to see that Sy(¢¥ ¥)=Sn(¢¥) for all n&N and that ¢¥ Y(H)=g#(t) if
t<Sn(@¥). These results imply [3.45). Next we can obtain (3.46) because it
holds that

. ™Y £ N  and sup ]ltﬁM(t)I <N

sup. .
tero, Sy N tero, Sy e

provided that N>2max{[|C|(M+1), |x,|} as above and we have the uniqueness
of solution of the stochastic differential equation (3.44) (or that of martingale
problem for T¥ which we define by (3.14) for C instead of Cy).

(3.47) is an easy consequence from the fact that

{g; Sx(@)=t} = {g; sup |¢(u)|=N/2}

and P¥ is a probability measure on the Polish space Dgy .. O

~ 3-6. Completion of the proof of As a preparation for remov-
ing the truncation in we first show the following.
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PROPOSITION 4. For the sequence {¢™}y defined by (3.44), it holds:
-
(3.48) Y —> in Dygie as MeC@)—oo,

where & is the process defined by (2.12).

PROOF OF PROPOSITION 4. First we show the tightness of {¢”}y. To this
end, by Bass [1] Proposition 3.2 (which was originated by Stroock [9], Theorem
A.1), it suffice to check that for each fe&C}R?*+%) there exists a constant C,
(depending only on ||fl.=: |fI+IFf I+ such that f(a(t))—f(a(0))—C st
is a supermartingale with respect to P¥. But it is easily seen if we take

Cor={ICPIVIFIBIHICI] 1z} let 2l 21> D).

lz1s1

Next, by we have:
E|{£@"@)— 1@ )= T A (), -, p*und] =0,

for all s, t€J(¢), s<t, m&N, u,J(@), 0=u;=< --- Sux<s, and bounded con-
tinuous functions ¥ : (R¢+9)™—R. Take M—oo in it, then we can see that any
weak limiting measure of {¢¥} is a solution of the martingale problem for L
which we define by (3.14) for C and M=co instead of Cy and M<co, respec-
tively. By the uniqueness which also follows from the one of solution of (2.12),

we obtain the conclusion (3.48). O

We give another preparatory result as follows. For Ke(C(y), define

tx(§) = tx(p, H)=inf{t; [AE@)| 2 K}

where ¢=(¢, §)€Dase, 9E Dy, and §<D,. Since if ¢,—¢ in Dy, then we have
SUPyero, 11| AP ()| —SUPucro,:1| AG(u)| for all te J(¢)Y, we can see that tx(¢) is a
lower semi-continuous function from Dy, to [0, «o]. For a sequence {Tx<
[0, o)} ¢ such that Tx 1 o as K1 o, set

tx(3) =tx(@INTk .
Then we obtain the following lemma which is an obvious result from the de-

finition of &,, ¢¥, and 7.

LEMMA 3.8. Take K such as 1<K<M-—1 for sufficiently large M, then it
holds:
(1

(3.49) Tx(¢n) < T(GY),
(2)
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[nT g1l
(3.50) (ex(@n) <ex(@Dl © U {16041 M},
3

At last, we are ready to complete our proof of [Theorem 2, that is, to show
(2.11). Let t be any positive number and @ be any bounded continuous 9?-
measurable function. Take M and K such as t<Tgx and K—1<M. Then, by
(3.51), we have:

3.52)  E[O(¢n)] = E[D(gn); tr(@n)StIHELD(Fn); Tr(Fn)>1]

= E[O(¢r); tx(@)St1+ELD(G); Ta(@Fn)>1]

= E[O(31); Tx(@2)=t]1—E[D(37); Tu(@)<t]+ELD(gY)] .
We first estimate P(rx(3,)<t). By [3.49) and [3.50), it follows that

P(rx(gn)=t) = P(rr(ga)=1x(¢7) =)+ P(rr(ga)<t and tx($n) <tx($7))
= P(rr(@h) =)+ P(rr(@a) <tr(gh))
< P(rg(gn)=O)+[nTx1P(&n1 | >M).
By the lower semicontinuity of ¢x and we obtain

lim sup P(rx(¢i)<t) < PM(zx<t).

On the other hand, by [2.2), we obtain

Li_{g[nTK]P(ISn,II>M) =Trv(lz| >M).
Thus we have
(3.53) lim sup P(zx(¢,)<t) < PY(ci<t)+Taul|2]>M).

In the sequel, we denote by P the law of ¢ of (2.12). By (3.52), [3.53), and
Proposition 3, we obtain :

lim sup| EL@(¢)]—E°[O]]
< lim sup| EL@($.)]—EL[P(¢1)]]
+lim sup| ELO(¢1)]—EP"[@]| +| E**[@1—-E?[0]]
< 2|\l lim sup P(rx(¢n)<t)+ | EP*[@1—EP[0]]
< 2@ {PY(ex <O+ T (| 21 > M)} + | EP*[@]1— EP[D] ).

Since we can take M<=C(v) as large as we hope, by it holds:
liT»iuplE[@(¢n)]—Eﬁ[@]l < 2[0|Pzx<t) < le@llﬁ(uzltlopﬂl A&(u)| zK)
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for all K such that Tx>t. Since we can see that under the measure P the
canonical process & is a Lévy process with the Lévy measure v, it holds:

B¢ supnlAS(u)lZK)Zl—exp{——tv(lzl_Z_K)} —>0 as K—oo.
uelo,

From this, we obtain:

(3.54) lim E[@(¢,)] = EP[@].

n—co

Since ¢ is arbitrary, [3.54) holds also for all bounded continuous funct10ns Q.
Thus we have established [Theorem 2. O

§4. Example.

In this section, we give an example of the array of random variables which
satisfies the conditions of our theorem.

. Let Fy(x) be a [0, 1]-valued smooth function defined on R' which satisfies
for some 0<a <2
{ 1—-Fy(x)~x"* as x— oo

Fo(x)~|x|“ as x——oo

where F(x)~G(x) denotes F(x)/G(x)—1. Moreover, we assume that the deriva-
tive F{(x) is an even function. Define a probability measure = on R' by =n(dx)
=F'(x)dx where we put

F(Ctve 0 >0
F(x):{ o(CTHx) nx

Fo(C31%x) on x<0

for some non-negative constant C, and C, such that C,C,>0.
For a constant 8<=(0, 1), put p(x, ¥y)=Bp(x)p(y)+1 where

sin(C14%x) on x>0

p(x) :{ sin(C3'%x)  on x<0.

Since p(x, A)::SA;b(x, yn(dy) (A= B(R")) defines a probability measure for each

x<R!, we can define a stationary Markov process {§,; k=N} which has the
transition probability p(x, dy) and the initial law n(dx). Then, we see that this
Markov process satisfies the conditions (i) and (ii) of Theorem 5 in Blum-Hanson-
Koopman [2]. Hence, by the results of [2] we can conclude that {£,} is a
strongly uniform mixing process with the rate function ¢(n)=p".

Next, we define an array {&, .} by

£

plila

4.1) §nx =

for the Markov process {£:} constructed as above. Then, it holds:
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nl f@PEcd) — | f@mdz  as noe
for all f=C,(R"), where

d d
(4.2) u(d2) = &{Culn suole) e+ Cal o (@) i)

Moreover, it is easy to see that for (e, 2]

%inol limsup nE[|£,.1.51?]1=0.

Now, consider the stochastic difference equation for the array of
Then, by the sequence {@.(t)=¢u, ni1}nen converges in law to the

solution of
o(t) = x0+S:+SmSIC(<p(u——))21\~/p(dudz)+Sz+S _ Clpu=Y)zN,(dadu)

2]

where {p(t)} is the stationary Poisson point process on R*\{0} with the intensity
measure y, of Hence, in this example the limit is a pure jump process.
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