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0. Introduction.

Let G be a finite group and F be the collection of all modular functions
f(z) satisfying :

(1) f(2) is a modular function with respect to a discrete subgroup I" of
SL,(R) of the first kind. (i.e. f(z) is meromorphic on H*=H\J{cusps of I}
where H is the upper half plane.)

(2) The genus of I is zero and f(z) is a generator of a function field of
I (i.e. the genus of I'NH* is zero and f(z) is a generator of a function field
of I'NH*),

(3) At z=ioo, f(z) has a Fourier expansion of the form:

g tat B angt (g=e).

In [2Z], Conway and Norton have assigned a “Thompson series” of the
form:
T, =q '+ H(o)g+Hxa)g*+ - € F

to each element ¢ of the Fischer-Griess “Monster” group M and conjectured
that H, are characters of M for all n. This remarkable connection between
the “Monster” M and modular functions is called Monstrous Moonshine.

One of the problem which arose from Conway-Norton paper is that

(*) For each element ¢ in -0, is there a class of elements o, in M whose
Thompson series T, has a form 0 .(2)/n,(z)+constant ? (For the definition of
74(2z) and O,(z) see (1.3) and (1.4).)

In [2], Conway and Norton studied elements in -0 of weight 0 and proved
that (%) is true for elements of weight 0 (i.e. if ¢ is of weight 0, then there is
a class of elements ¢, in M whose Thompson series T,, has a form 0,(2)/7,(2)
+constant). In [6], Kondo and Tasaka studied elements in M,, (M, can be
naturally embedded in -0) and proved that (%) is true for elements in M,,.
Recently, Kondo calculated @,(z) for ¢ in 2'*M,,\M,, and proved that (x)
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is false for c=2*M,,\M,, (i.e. there exist some elements ¢<=2¥M,\M,, such
that @,(z)/9,(z)+constant is not a Thompson series T,, for any o, in M).

The main purpose of this paper is to (i) calculate ©,(z), (ii) show that (x)
is false for exactly 15 conjugacy classes of -0, and (iii) find an obstruction
to (). In particular, we will show that if f,(z)=6,(z)/9,(z) does not possess
a corresponding class in M, then the Riemann surface whose function field is
C(f,(z)) cannot be realized as I',\NH* where [, is the fixing group of f,(z)in
SLyR). The main theorems are stated and proved in Theorems 3.2.2, 8.3.3 and
3.4.2

The author would like to express his gratitude to Professor Harada for his
invaluable advice, discussion and encouragement.

Finally, the author wish to thank Professor Kondo and Professor Koike who
made several suggestions and corrections on the results in this paper.

1. Frame shapes of Conway group 0.

As usual, we denote by -0 the automorphism group of the Leech lattice L.
So -0 has a natural 24-dimensional representation p, over @ induced by its
action on the Leech lattice. We will assign to every element ¢ (or every con-
jugacy class) of -0 .a Frame shape of degree 24 as follows:

Let f(x)=the characteristic polynomial of o=det(x/—p,(0)), then f(x) can
be written in the form

1:[(x‘—1)” where teN, r,eZ.

II.t"* is called the Frame shape of ¢ with respect to p,.

We also refer to the Frame shape of a conjugacy class of -0, as two con-
jugate elements of -0 having the same Frame shape.

The Frame shape of every conjugacy class of -0 is listed in Table 3. (They
are taken from [7]. See also[10]. These Frame shapes may have been known
to other mathematicians too.)

DEFINITION 1.1. Let ¢=]I,t"¢ be a Frame shape. We define the following:
(1) deg o = Xtr,.
(2) wte=1/2,7,.

LEMMA 1.2 (Koike [3]). Let o=II,t"t be a Frame shape of a -0 element,
then

(1) dego =24,

(2) wte =0.

We classify every conjugacy class of -0 into the following: (by an abuse
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of notation, the elements of -0 and their Frame shapes are often identified.)
(1) o, such that wt ¢=0 (90 of them).
(2) @, such that ¢=M,,, a subgroup naturally embedded in -0 (21 of them).
(3) o, such that ¢=2¥M,\M,, (28 of them).
(4) The remaining 21 conjugacy classes.

DEFINITION 1.3. Let %(z) be the Dedekind eta-function
ﬂ&)=q”“ﬁ§L—ﬂ), g=er",  zEH.

For a Frame shape o=II,"¢, we put 9,(z)=ITp(tz)"".

DEFINITION 1.4 ([1]). Let {ey, -+, es} be a natural basis of R*, a=TI,t"¢
a Frame shape in -0. We define the following:

(1) v(x, y); the innner product on R* with v(e;, e;)=20;;.

(2) L,={x=L}|o(x)=x} where L is the Leech lattice in R* defined in [1].

() B,(2) = Jzer g™ .

2. Known results for Conway-Norton problem.

In this section we shall state the results obtained by Kondo and Tasaka [6 I
The following notations are used.

T'N) = {(f 5)ESL2(Z), ¢=0 (mod N)}
W x..=an Atkin-Lehner involution of I"y(NN)
ae b
=We.= (cN de>’

a,b,c,deZ, where ellN, i.e. e>0 is a divisor of N with (e, N/e)=1 and
detW,=e.
For any A which divides n, we define:

rain= @G D= Yesiw o esd)

for example, Fo(8|2):<g (1)>—1F0(4)(§ (1))

Let W, be an Atkin-Lehner involution of I’ 0(%) then

Tnih)+w., ~-=<F0(n|h), (g ?)'lwe(é‘ (1’)>

We can simplify our notations as follows:
N=N—=T\N),

N+e, - =<T(N), W, >,

N+ = <I"y(N), all its Atkin-Lehner involutions),
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nlh=nlh—=1Iyn|h),
nlh+te, - =Lyn|h)+w,, .

THEOREM 2.1 (Conway-Norton [2]). If o=II,t"* is a Frame shape of weight
0, then (%) is true. Namely, there exists an element o, in the Monster simple
group M, such that O ,(2)/n,(2)=T,,+constant, where T,, is a Thompson series
for @,

In Kondo and Tasaka have determined ©,(z) explicitly in terms of the
classical Jacobi theta functions and the Dedekind eta-function for every ¢& M,,.
Furthermore, by using these expressions of ©,(z), they have shown:

If o= M,,, then (x) is true.

In [8], Kondo informed us that @,(z) has been calculated for o<2"M,,\M,,
and () is true for 20 Frame shapes.

Concerning the Frame shapes ¢ such that (x) is false, the following problem
is very important.

PROBLEM 2.2. Given g<-0 such that (%) is false, what is the fixing group
of 04(2)/n4.(2) in SLy(R) ?

To answer this question, we need the following lemma.
LEMMA 2.3 M. Koike [4]). Let ¢ be elements listed in the following table,

then there exist some elements g and g’ in M such that O ,(z)/n,(z2)=tz+c/ty
where ¢ 1S a constant.

Frame shape g g’ ¢
6c 142. 6%/3¢ 6E 6D, —4 81
—6¢ 2836/14 6E 6B, 12 1
10p 122. 103/5% 10E 10C, -2 25
—10p  2%5°10/12 10E 10D, 6 1
12y 124, 6212/32 121 12B, —4 9
—12; 2%3%4,12/12 121 12H, 4 1
30p 1.6.10.15/3.5 30G 304, -3 1
—30p 2.3.5.30/1.15 30G 30F, 1 1

Here tg,.=T,+c, ¢ is a constant, and if we do not need to specify the constant
term ¢, we write t, instead of t, . FEach line of the above table rveads as
O,(2)/ns(2)=t,+c/ty. For example, the first line shows that:

@d(z>/770(2):T6E+4+81/(T6D_4) .

Now the following theorem answers Problem 2.2.
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THEOREM 2.4. Let o and I', be elements in 22M,N\M,, such that () is
false and discrete subgroups in SL,(R) given in the following table, then I', is
the fixing group of ©,(2)/7,(z). Moreover, I', is of genus zero.

Frame shape 1y
6¢ 142.6°/3¢ 6—
—6¢ 253%6/1* 6—
10p 122.10%/5% 10—
—10p  2%5%210/12 10—
12, 124.6212/32 12—
—12, 223%4.12/1% 12—
30p 1.6.10.15/3.5 30415
-30p  2.3.5.30/1.5 30+15

PrOOF. We prove the theorem for ¢=12.6°/3*. See for the proof of
the other 7 cases.

Let 0,=2%3/1'6%, then %, =T.+4 and the fixing group of 7,, is I'y(6).
Applying and the symmetrization formula for Tgp: Tep=
Tee—8/(T+3), we have

81
7701‘8/(7]01—1)—8
_<_77§J'_977¢271+817701—-81)

(v31—97701) ’

O,(2)/1.(2) = 9o+

Let I" be the fixing group of 0,(2)/9.(2z). Since I'y(6) fixes n,,, I'«(6) also fixes
0 ,(z)/n4(z) and thus I'(6)S .
On the other hand, from the above equation, we know that », is a solu-
tion of :
F(x) = x*—9x?+81x—81—0,(2)/9,(z)(x*—9x) = 0.

Let f, and f, be the other two roots of F(x). Since I" fixes O,(z)/9,(z), I’
also fixes F(x), this implies that I" permutes {%,,, f1, f2}. Therefore I" can
be embedded into S;. Let I, be the kernel, then I'/I", is isomorphic to a sub-
group of S;. So, [I': [',]<6. Since I'y(6) is a discrete subgroup in SL,(R) of
the first kind, /" is also a discrete subgroup in SL,(R) of the first kind.

cusps (¢;) of I'y(6) 0 1/2 1/3 1/6
7]0»1(61;) 9 0 1 [ee]
@o'/??u(ci) 0 oo 1 e}

Case 1. [I':I'y(6)]=2. By the above table, we have [I",;: (I'y(6)):/5]1=2.

This implies that ]’1,3:<A1A:(é ?)((1) 1 (_é (1) > and A(1/6)=4/15 is equi-
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valent to 1/3. This is a contradiction.
Case 2. [I':1I,(6)]=3. By the above table, we have [Iy;: (Lo(6))5]=3.

This implies that I'y=(A14=(5 )5 )5 1)) and AO=2/9 is equi

valent to 1/3. This is a contradiction.
Case 3. [I':I'y(6)]=6. By the above table, we have [["y;: ([ (6));:]=6.

T oL 13y 10 o
This implies that F1,3,<A1A_ 3 1)(0 N g 1)> and A0)=2/9 is equi-

valent to 1/3. This is a contradiction.
Summing up the above, we have I'=14(6).

3. Conway-Norton problem for the remaining conjugacy classes of -0.

3.1. Matrix representation of -0 elements. To give a complete study of
Conway-Norton problem for the remaining 21 conjugacy classes (as listed in
Theorem 3.1.2), a matrix representation of each element is necessary. To
achieve this, we first state a theorem.

THEOREM 3.1.1 (see [11). -0 is generated by a, 8,1, 0, ¢ and T, where

a = ()0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15, 16, 17, 18, 19, 20, 21, 22)

B = (==)(0X1,2,4,8,16,9,18, 13, 3,6, 12)(5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14)

r = (0, 00)(1, 22)(2, 11)(3, 15)(4, 17)(5, 9)(6, 19)(7, 13)(8, 20)(10, 16)(12, 21)(14, 18)

& = (co)0)3)(15)1, 18, 4, 2, 6)(5, 21, 20, 10, 7)(8, 16, 13,9, 12)(11, 19, 22, 14, 17)
¢ and T are listed in Table 2.

Next, we give a brief explanation of how to obtain matrix representations
for the remaining 21 conjugacy classes.

(1) Find a set of representatives of all conjugacy classes of M,, expressed
as permutations of 24 letters explicitly.

(2) Determine the matrix representation A,’s for each representative. (See
Table 2.)

(3) Compute products of T and A,’s.

(4) Study the Frame shape of each matrix computed in (3).

Finally, we state our results in [[heorem 3.1.2.

THEOREM 3.1.2. The matrix representation of the remaining 21 conjugacy
classes are listed below :

Frame shape matrix representation of ¢
34 3%/18 (AyTAT)®
5¢ 5°/1 (A:TAYC

—6p 153. 6¢/24 (A,T)?
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6r 3%%/1.2 (AsTAy)?
—65 1.66/2238 (A;T)?

9% 93/3 (A, TA,T)
9 1893/32 (A;TAT)
—10g  1%5.10%/2¢ (A,TA,)?
—12p  2.3%128/1.4.6° (AsTAL)?
124 2%6.122/1. 3. 42 (A;TAg)
—125  1.2%3.122/4? (AsT)
—12x  1%123/2.3.4.6 .

15z 1215%/3.5 (A;T)
—185  1%9.18/2.3 (A, TA,T)
18 1.2.18%/6.9 (AT}
—18;  220.18/1.6 (A;TAyp)
20¢ 1.2.10.20/4.5 (A;TAy)
—20¢  2%5.20/1.4 (A;TAp)
245 1.4.6.24/3.8 (AsTAg
—24p  2.3.4.24/1.8 (AT
—30g  2.3.5.30/6.10 ‘4.TA,

A’s and T are listed in Table 2.
ProOOF. The proof is done by computer.

REMARK 1. The main purpose of finding a matrix representation for each
conjugacy classes in -0 is to use the matrix form of each conjugacy classes to
determine their theta functions.

REMARK 2. The theta function of ¢=1°12%/2.3.4.6 can be evaluated with-
out its matrix representation (see 3.2.4).

3.2. Theta series of -0 elements. To calculate the theta function of g,
let us consider the matrix representation of each element: First, for simplicity,
we still use ¢ to denote its matrix representation. Secondly, let V, be the
eigen space corresponding to 1, then L,=LNV,. Practically, V, can be evalu-
ated easily, but LNV, is not so easily determined. To achieve this, we intro-
duce the following :

LEMMA 3.2.1 (see [6]). The Leech lattice L in the Euclidean space R* can
be described as disjoint sum in the following way:

L= \J{1/2e;4 Loy J(1/4eo+1/2e,+Ly)},  where

XEQ

(1) P={,0,1,-,22} is a 24-point set and GC P(Q) is the (binary) Golay
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code on 8. For codes and Golay code, see [1].
(2) Let {ey, -+, ey} be a natural basis for R*, then
L; = {x=3xe,€Z% | 3 x;=06 (mod 2)} for 6=0,1.
(3) For a subset X of 2, we put e;=>icxe:.

Using the above lemma, we can prove the following theorem.

THEOREM 3.2.2. Let ¢ and O,(z) be elements in -0 and functions defined in
the following table, then ©,(z) is the theta function of o. (A, B,C, D, E are
matrices listed in Table 1.)

Frame shape 0, (2)
3, 39/15 6(z, A)
5¢ 55/1 @(Z;B)
—6p  193.64/2: 6(z,4)
6p 3%63/1. 2 6(z,0C)
—6;  L.65/2:3 ‘9(2' (; i))
95 93/3 (<2 (g <35>>
9. 1393/32 6(z,D)
105 1%5.10%/2° 6(z, B)
12, 2.3%12%/1.4. 63 ("(Z' (3 i))
125 2%6.122/1.3.4° 8<Z’ (g (6)>>
125 128312040 6(z, E)
—12x  1%12%/2.3.4.6 @(Z’ (3 Z))
15z 1%215%/3.5 (')(Z’ G Ali>>
—185  1%0.18/2.3 9('2’ (g 2))
2
18, 1.2.182/6.9 C<Z (3 Z>)
—18¢  2%9.18/1.6 O( (12 12))
20¢ 1.2.10.20/4.5 @’(2’ (3 2))
—20~  2%5.20/1.4 @(z’ (18 18))
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24 1.4.6.24/3.8 @(Z» (é 2))
—24p  2.3.4.24/1.8 @(Zr (3 1(2)))
—30r  2.3.5.30/6.10 @(2» (i i))

Proor. The proof is done by direct computation.

REMARK. Professor Kondo informed us that,

(1) A=3E;*, (2) B=5A4;*, (3) C=3D,, and

(4) O(z, E) = 1/2(04(2)04(32)*+0,(2)0432)°),
where E;, A, and D, are Cartan matrices.

We did not find a matrix representation for ¢=1%12%/2.3.4.6, but it is not
necessary, as shown by the following lemma and corollary.

LEMMA 3.2.3. Let 7, 0 be two elements in -0 such that
1) r=o0m, nelN
(2) dim V,=dim V,

then 0,(2)=0,(z2).

PROOF. By (1) V,SV,; (2) Vo=V,. So L,=L,. So 0,(2)=0,(2).
COROLLARY 3.2.4. For ¢=1°12%/2.3.4.6, 90(2):@<2, (g i))

PROOF. Let 0=1°12%/2.3.4.6,y=1.6°/2%3%, then the corollary follows immediately.
The next two sections give important applications to our main theorem.

3.3. The modular functions of -0 elements. The main purpose of this
section is to study the modular functions of the remaining elements (as listed in
[Theorem 3.2.2). A main theorem will be stated and proved in 3.3.3. This proves
the conjecture of Koike [3].

LEMMA 3.3.1. Let M(N)=M(I'(N)) be the set of all functions invariant
under I'(N), holomorphic on H and meromorphic at the cusps of I'W(N). Given
f(2), g(z2)&M(N) such that f(z)—g(z) is holomorphic at all cusps of ['o(N). Then
f(z)—g(z)=a constant function.

LEMMA 3.3.2 (see [5]). Let o=II;t"t be a Frame shape in -0. Assume

(1) Xitr, =24,

(2) 7.(2) is invariant under the action of a discrete subgroup I' of SLy(R)
containing I'y(N) for some N,

() Iw={o<sI"| o(0)=c0} is equal to <<(l) ii>>,
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(4) z=ico is the umque pole of 7,(z) among all inequivalent cusps of I
Then 1,(2) is a generator of a function field corresponding to I'. Moreover, I’
is of genus zero.

Now we are ready to prove the main theorem.

THEOREM 3.3.3. Let g, O,(2), 6, and I', be elements in -0, their theta func-
tions, elements in M and corresponding discrete subgroups in SL,(R) given in the
following table, respectively, then

(1) If a, appears, then O,(2)/n,(2)=T, +constant and O,(2)/7.(2z) is a
generator of a function field corresponding to I', which is of genus 0, in parti-
cular, I'; is the fixing group of O,(2)/n,(2).

(2) If x appears, then (x) is false.

Frame shape 6, (2) g1 Iy
3. 39/18 6(z, A) 3B 3—
55 51 (z, B) 5B 5—
—6p  1°3.64/2¢ 0(z, A) x x

65 3%3/1. 2 6(z,C) 6D 62
—6p  1.6°/223° (-)(z, (‘2l Z)) 6E 6—
95 9%/3 @<z, (g 2)) 9B 9—
9 1998 /32 6(z, D) 94 9+
—105  1°%5.10%/22 6(z, B) x x
12,  2.3%12%/1.4.6° (-)(z, (‘; i)) 12B 1244
125 2%6.122/1. 3. 42 @(z, (g 2)) 121 12—
12y 1.223.122/4 6(z, E) x x
—12%  1°12%/2.3.4.6 @(z, (g i)) 12H 12412

o 41
155 1°15%/3.5 @(z,<1 4>) 15C 15+15
—185  1%9.18/2.3 9(2, (g 2)) % x
18, 1.2.182/6.9 @(z, (‘é Z)) x x
18,  29.18/1.6 @(z, (13 12)) x x
42
200 1.2.10.20/4.5 @(z, (2 4)> 20F 20+20
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—200  2%5.20/1.4 @(z, (18 18)) 20C 20+4
24y 1.4.6.24/3.8 @(z, (3 g)) 241 24424
—24p  2.3.4.24/1.8 oz (g . )) 24C 24+8

) x x

Proor. We prove the theorem only for ¢=1.6°/2%3® and ¢=2.3.5.30/6.10.
See [9] for the proof of the other 19 cases.

0=1.6°/2?3*: From [Theorem 3.2.7 @Az)z@(z, (4 2))

—30z  2.3.5.30/6.10 @(z, (‘i i

2 4
level weight character
@o (Z) 6 1 <-§)

po(2) 6 1 (3)

where (3) is the Jacobi symbol.

From the above table, we conclude that f,(z)=0,(z)/9,(z) M(6). To show

fo(2)—Tee=—3, where Tozg=1,s 1,1 s—4. By applying Lemma 3.3.1, it suffices
to show f,(z2)—7T is constant at 0, 1/2, 1/3, 1/6 and equals to —3 at the
cusp 1/6.

Since deg(o-W, .)=0 for e=2, 3,6, we have f,(z) has pole only at 7co.
I'(6)NH* is of genus 0 and T,z is the generator of M(6) having a pole at 7co,
so f,(z)—Tsg=constant. f[,(z)—Ts=—3 follows immediately.

0=2.3.5.30/6.10: From [Theorem 3.2.2, we have @g(z):@<z, (11 i)) Com-

putation shows that 0,(z)/9,(z)=¢'+0+5¢+3¢*+6¢°+ ---. Since this does not
appear in Table 4 of [2], (x) is false.

3.4. Fixing groups of the modular functions. In this section, we will
try to determine the fixing group of ©,(z)/79,(z) for every o< -0.

Case 1. If (%) is true for some ¢, implying that 6,(z)/n,(z)=T,,+c¢ for some
.M, then 6,(z)/7n,(z) and T, have the same fixing group and the fixing

group of T,, is listed in Table 3 of [2]. (Groups listed in Table 3 of [2] are
of genus 0 by Lemma 3.3.2)

Case 2. If (x) is false. In this case, we have 15 conjugacy classes, the first
8 conjugacy classes are listed in with their fixing groups. The
rest 7 elements are 1°3.6%/2% 1°5.10%/22, 1.223.12%/4%, 1%9.18/2.3, 1.2.18%/6.9,
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2%29.18/1.6 and 2.3.5.30/6.10. [Iheorem 3.4.1 will give the fixing group for every
one of them.

THEOREM 3.4.1. Let o and I', be elements in -0 and discrete subgroups in

SL.(R), given in the following table, respectively, then I', is the fixing group of
o. Moreover, I', is of genus zero.

Frame shape Iy
—6p 153, 64/2¢ 6—
—10g 1%5.10%/22 10—
—12g 1.223.12%/42 12—
—18p 129.18/2.3 18—
18¢ 1.2.182/6.9 18—
—18¢ 229.18/1.6 18—
—30g 2.3.5.30/6.10 30+15

PrOOF. We prove the theorem for ¢=2.3.5.30/6.10. See for the proof
of the other 6 cases.

¢=2.3.5.30/6.10: From [Theorem 3.2.2 (90<z>:@(z, (‘i‘ }1)) From [Theoren

3.3.3, (for the case ¢=1%15%/3.5) 0 ,(2)=1%,,(2)—7.,(z) where ¢,=3?5%/1.15 and
0,=1%15*/3.5, then ©,(2)/9,(2)=9.,2)—7,(2) where ¢,=3.5.6.10/1.2.15.30 and
0,=1%6.10.152/2.325%30.

Using Table 3 of [2], we have

- 2 — 1300—2
T =Twotld g M=
@q(Z) _ 2 T300_2 i
770(2) = T30G+1+ Too—2 TsoG (Equatlon 1)

where T306=17;.5/2.50 With fixing group Io(30)+Ws.

Let I' be the fixing group of 6,(2)/7.(z). Since I'((30)+W,; fixes Tioe,
I'(30)+W,; also fixes O,(z)/n,(z). Thus, I'y(30)+WsSI'. To show I'=1",(30)
+W,s, we do the following: From Equation 1 we know T is a solution of

F(x) = (x*=2x>+4x—4)—(0 ,(2)/9,(2))x(x—2) = 0.

Let f, and f, be the other two roots. Then I' permutes {Tsos, f1, f2} which
implies I can be embedded into S;. Let I', be the kernel of the action, then
'/, is isomorphic to a subgroup of S,, so [/": I',]<6. Since I",SI,(30)+W;,
we also know that [[7: I',(30)+W5]1<6.
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cusps (c;) of I"o(30)+Wy; 0 1/2 1/3 1/6
Tag (¢) 2 oo 0 1
(Os/74) (¢1) ©o 00 co 1

The above table shows that if we pick ¢, then ¢(1/6) is equivalent to
1/6. Without loss of generality, we may assume that ¢(1/6)=1/6. Computa-

tion shows (1’0(3O)+W15)l,6:<(é (1))((1) ?)((_é g)>

Case 1. [I':I'y\(30)4+Ws]1=2. Then [I"1s: (I o(30)+W5)1,]=2 which implies

Fael DG SDCE D) rie (00 L . e

A(1/3)=13/84 is equivalent to 1/6. This is a contradiction. So [I": I"(30)+W 5]
#2. Similarly, we can prove that:

Case 2. [I':T'\(30)+W,5]1=3 and

Case 3. [I':I'y(30)+W,s]=6 cannot happen.

Summing up the above, we have I'=1"4(30)+W,;. In addition, I'4(30)+W s
is of genus zero by Lemma 3.3.2.

THEOREM 3.4.2. Let ¢ be a -0 element such that (x) is false,; then the Rie-

mann surface whose function field is C(0 ,(2)/9,(2)) cannot be realized as I';NH*
where I'; is the fixing group of O,(2)/n.(z) in SLy(R).

PROOF. We prove the theorem for ¢=2.3.5.30/6.10. See [9] for the proof
of the other 14 cases. ,

0=2.3.5.30/6.10: Suppose C(6,(z)/7,(2))is the function field of the Riemann
surface I',\NH* then

(1) I, is the fixing group of @,(2)/79.(2).

(2) Since

@U(z)/no(z) = (TaoG_2)+2/(TaoG—2)+3—(T306“2)/T306

_ T306—2T%6+4T 306—4
T30G(T306_2) ’

where 30G=3.5/2.30 then [C(Ts6): C(O.(2)/74(2))]1=3.
By (2) and the assumption, we have [[I,: I'(30)+W,;]1=3, which contradicts
the fact that I",=1"4(30)+W ;. '

Thus, the Riemann surface whose function field is C(@g(z)/m(z)), cannot be
realized as I',\NH*,



276 M.-L. Lanc
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Table 2.

The matrix representation of a permutation A; listed below can be derived in the
following manner: Let A=(.--)---(---,7,,---) be a permutation and [A] be its corre-
sponding matrix, then the (741)th row of [A] consists of zero except for an entry
of 1 in the (j+1)th column. The 24th row (column) corresponds to oo.

Ay = 2818 = (4,22) (6,7) (8,18) (9, 10) (11, 12) (13, 16) (15, 20) (19, 21)
Ay = 135 = (0,1,2) (5,14, 17) (6,21, 19) (8,11, 18) (9, 20, 15) (13, 16, 22)
Ag = 195t = (1,18,4,2,6) (5,21, 20,10,7) (8,16, 13,9, 12) (11, 19, 22, 14, 17)
= 144222 = (4,6,22,7) (8,9, 18, 10) (11, 15, 12, 20) (13, 19, 16, 21) (3, 14) (5, 17)
A5=1373— (,8,3,0,2,4,9) (14,6, 12,17, 20,5,1) (7, 10, 22, 19, 11, 15, 18)
As=122.4.8* = (4,8,6,9,22,18,7,10) (13,12, 19, 20, 16, 11, 21, 15) (3, 17, 14, 5) (oo, 0)
Aq = 12223262 = (0,5, 1,14, 2,17) (6, 16, 21, 22, 19, 13) (8, 18, 11) (9, 15, 20) (o0, 3) (4,7)
Ag = 1211 = (1,2,4,8,16,9,18,13,3,6,12) (5, 10, 20, 17, 11, 22,21, 19, 15,7, 14)
Ay = 12¢ = (00,20, 8,21,14,16,0,9,18,6,17,13) (1,10,11,7, 3, 4,2, 15,12, 19, 5, 22)
Ay = 6 = (c0,8,14,0,18,17) (1,11, 3,2,12,5) (4, 15, 19, 22, 10, 7) (6, 13, 20, 21, 16, 9)
Ay = 45 = (o0,21,0,6) (1,7,2,19) (3,15,5,10) (4, 12, 22, 11) (8, 16, 18, 13) (9, 17, 20, 14)
A = 38 = (o0, 14,18) (0,17,8) (1,3,12) (2,5, 11) (4, 19, 10) (6, 20, 16) (7, 15, 22) (9, 13, 21)
A =22 = (00,0) (1, 22) (2, 11) (3,15) (4, 17) (5, 9) (6, 19) (7, 13) (8, 20) (10, 16) (12, 21) (14, 18)
1= 242 = (00,7,3,4) (0,6, 14,22) (1,21,17, 13) (2, 19, 5, 16) (8, 15) (9, 11) (10, 12) (18, 20)
A15 =2.4.6.12 = (0,13,5,6,1,16,14,21,2,22,17,19) (8,9, 18, 15, 11, 20) (c0, 4, 3,7) (10, 12)
Ap=1.2.7.14 = (0,14,8,6,3,12,0,17,2,20,4,5,9, 1) (7,11, 10, 15, 22, 18, 19) (16, 21)
A =1.3.5.15 = (o0, 14,9,19,22,16,1,20,2,5,15,11,18,13,12) (4, 6,0, 17, 10) (7,8, 21)
A =1.23=(0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15,16, 17, 18, 19, 20, 21, 22)
Ag = 2°102 = (0,3,1,15,19,12,18, 8,4, 10) (6, 13, 14,7, 11, 16, 17, 21, 22, 20) (o0, 9) (2, 5)
Agy=3.21 = (0,7,16,22,8,13,14,4,2,6,1,9, 15, 20, 10, 19, 11,0, 21, 17, 5) (3, 18, 12)
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Matrix T. (a = 0.5, b = -0.5)
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Table 3.

The first column gives the Frame shapes of -0 elements.
The second column gives the theta functions.

The third column gives the Monster elements.

The last column gives the discrete subgroups in SL.(R).
Each line of the table reads as:

(1) If o, appears, then @,(z)/7,(z) =T, +constant.
(2) If x appears, then (*) is false.

(3) I, is the fixing group of 6,(2)/5.(z).

(4) —ngz=n, if —n,y does not appear.

The following notations are used:

(1) A, B, C, D, E are matrices listed in Table 1.
(2) Ey(2) =1/2(0:(2)84605(2)54+60,(2)")

(3) 0i(z) =06:(2)03(2)0,(2)

(4) 0P (2) = 0,(2)0:(p2)+05(2)05(p2)

(5) 6(z,D,) =1/2(03(2)"+06,(2)*)

6) ¥;i(z) =6;22)

@) Fi(2) = 0,(102)

8) &;=06.(12)

(9) @(2) =6(2)03(52) —03(2)0:(52)

Frame shape B4 (2) o1 I
14 1% E,(2)*—45/166](2)® 14 1+
—14 2%/1% 1 2B -
24 1898 E,(22)2415/2560, (2) 24 2+
—24 216/18 E,(22) 2B 2—
25 412912 1 4D 4]2—
2¢ 212 0,(22)12—3/26{ (22)* 44 4+
34 312/112 1 3B 3—
—34 112612212312 1 6B 6+6
3z 1638 6P (22)6-9/4(61(2)0](32))2 34 3+
—3p 296¢/1936 1 6C 643
3¢ 39/12 6(z, A) 3B 3—
—3¢ 1%69/2:3° 1 6E 6—
3p 38 E,(32) ' 3C 3|3
—3p 68/3° 1 6F 6/3—
4, 4818 1 AC 4—
—4, 1848/28 E,(22) 44 44

4p 48/ 0(2z,D,) AC 4—
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—5g
S¢
—5¢
64
—64
65
6¢c
—6¢
6p
—6p
6k

67
—6p

6a
6
61
74
—74
7B
—7s
84
8B
8¢

8p
8z

142244

2844/14
2444

86/4¢

48

56/16
16108/2858
145°

2410%/145¢
55/1
1.10%/2.5°
3461/142¢
1468/2834
28126/4%°
142.6%/3*
25346/14
2.6°/1%3
1°3. 64/2¢
12223%?

216%/1%3*
3%°%/1.2

1.66/2233

2%3
12¢/6*

64

74/14
1414472474
1873
28143/1°73
84/2¢
2484/4
228471442
148%/224*
8t/42
1%2.4. 82
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0;(22) 10—
5/40,(22)*0,(22)%04(42)*
0:(22)6—12%,(2)
1/4(05(22)*+-6,(22)*)*

1

O3(42)°

1

1

12+ T+ T 4

44

4C
4B
8F
8B
5B
10D

3U U QUL+ 20T

1

©(z,B)

1

1

1

1

1/2 31-20(22)°6,(62)
1/2 ¥$.0:(22)09;(62)°
1

6(z,A)

(6% (22)6® (42) ) 2—

3/4(02(2)6:(32)6,(22)0,(62))*

P (4z)®
O(z,C)

2
@(z’ ; 4))
6:(22)%0;(62) 3—6770 (2)
1
O;(62)*
1
1
67 (22)°—3/20{(2)0{(72)
1
1
O;(4z2)*
1
62z, D,)
O;(42)%
0;(22)%0;(42)%—

3/460,(22)20,(42)0,(22)6,(42)*

10B
5B
10E
6D
6E
12F

6E

6A

6C
6D

6E

12A
127
12D
7B
14C
7A
i4B
8D
8B
8E
84
8D
8A

4+

4]2+
84—
8|2+

10+10

6+3
6-+2

12+
126—
123+

144-14
7+
1447
8|2~
8|24

8+
82—
8+
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94
—9,

9B

—9,
9¢
—9
104
—104
105
10¢
—10p
10g
—10g
10F
114
—114
124
—124
125
12¢
12p

—12p

12
—12g
127
12¢

125

—124
12;
—12;
12,
12¢

—12¢

2%4.8%/12
4282

9%/12
1318372898

9%/3

3.18%/6.9°
139332
233%18°%/1%29°
5210%/1%2?
17104 /2452
2520°/4°10°
4220%/2%10°
1%2.10%/52
23521071
2.10%/1%
135, 10%/22
22102

12112
22227/1%112
1412473444
243412%/1%46*
22124/4%6*
62122/2%4*
1.123/3%

2.3%12%/1. 4. 68

47122/1%3%
123242122 /2%6*
4%243/8%123
4%12%/2.6
2%.122/1.3. 4%
1.2%3.12%/4%
1%4.6%12/32
223%4.12/1%
2.4.6.12
2%3.128/1%4. 6°

1312%/2.3.4.6
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0:(42)05(22)*—67,(2)
6(4z, Dy)

1

1

o= (s o))
1
0(z,D)

1
1
1
1
1
1/2 £1.26,(22)%0;(102)
1/2 ¥7-40:(22)0:(102)*

1
6(z,B)

1/4(65(2)65(52) +64(2) 04 (52))*
U (22)2-1/4 (92é2—93(33+@4é4) 2

1

[ o o

o(=(; o)

1
04(22)°04(62)*—41 4 (2)
1

64(22)04(62) +27,(2)

o= s))

0(z, E)

5100, (42)%0;(122)
Yi26:(42)0;(122)°
O® (42)0® (82)

1

o(=(; 1))

8C
9B
18E

12C
121

12H

18—
9+
18+9
1042
10—
20{2410
20|245
10—
10—
10—
10—
20+
11+
22+11
12412
1244
12—
12{24-2
12—

124

1243
12+
24|4+6
12+3

12—

12—
12—
12—
12|12+
12—

12412
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12,
12y
134
—13,4
14,
145

—14g
154
~154
155
—154
15¢
—15¢
15p

—15p

—15¢

164
165
—165
184
—184
185

—185

18¢

—18¢

204
—204
20

20¢

24%/12%
122

138/12
1%26%/2%132
2228%/4%14%
1.2.7.14

22142/1.7
1°15/3%5?
28395930°
1%°10°15°
3215%/125°
12522302
2237102152
15/3
3230?/6215?
1.3.5.15
2.6.10.30
1.3.5.15

1%15%/3.5

2°3. 5. 30°
1%6. 10. 152

22162/4.8
2.16%/1%8
1°16%/2. 8
9.18/1.2
1.18%/2%9
2.3.18%/1%.9

1%9.18/2.3

1.2.18%/6.9

229.18/1.6

1220%/4%5%
225%20%/124°10?
4.20

1.2.10.20/4.5
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6™ (22)0D (42) —
1/20,(2)0,(72)0,(22)6,(142)
6™ (42)

1

1
1
1

1
1
GD(22)6D(102)—3/2 1(22)D(62)

1

o(= (1 )

03(42)05(82)
1
05(42)®

0:(42)0:(202)

o(= (> o)

247
24E
138
26B
28D
144

14B
15C
304
15B
30D

15D
30E
154

30C

15C

30G

164
168
16C
184
18D
18D

20F
20C
40B

20F

24|12~
24|64+
13—
26426
28]2-+14
14+

1447
15415
304-6, 10
15+5
30+5,6

15/3—
30/3+10
15+

30+3,5

15415

30-+15

16]2+
16—
16+
1842
18—
18—

18—

18—

18—

20420
2044
40|12+

20420
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10 0
2 -
_ 20  25.20/1.4 c(z,< 0 10)) 20C 204
21, 12212327 1 21D 21+21
223272422
24 e 1 42B 424614
21, 7.21/1.3 1 21B 2143
1.3.14.42
_213 275777217 1 42D 42+3, 14
21, - 3.21 6 (62) 21C 21|34+
—21,  6.42/3.21 1 42C 42|3+7
22, 2.22 65(22) 64(222) —21 4 (2) A4AB 44+
23, 1.23 6 (22) 2, (2) 234 234
—23,  2.46/1.23 1 46AB 46423
2, 22042 /628 1 24H 24(2412
124, 6. 242
24, 146,28 | 241 24424
2. 324, 242
~Up s 1 24C 2448
24, 8.24/2.6 1 24D 241243
24, 12.24/4.8 1 24G 24]4+2
245 2.6.8.24/4.12  6,(42)0,(122) 244 24/2+
245 1.4.6.24/3.8 @(z, (g g) 241 24424
24 2.3.4.24/1.8 6(2 (6 0)) 24C 24+8
F -9 & 24/ o 12
2.4 2.52/4.26 1 52B 52|2426
28 4 4.28/1.7 1 28C 2847
—284 1.4.7.28/2.14  Y1..9,(22)0,(142) 28B 28+
285 4.56/8. 28 1 56BC 564414
1.2.15.30
20, L2 1 30F 30+2,15
223, 5. 30°
—304 NCTOH 1 30G 30-+15
2.10.12. 60
308 4“6”2‘m 1 - 60F 60|245,6
30, 6.60/12. 30 1 60F 6016410
30,  2.3.5.30/L.15 1/2 31'_.6,(62)0,(102) % 30+15
30p 1.6.10.15/3.5 1/2 %% .0,(22)0,(302) x 30+15
30 2.30/3.5 1 30G 30415

41
—30z  2.3.5.30/6.10 @(z,(l 4)) x 30+15
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(1]
£2]
£3]
[4]

33, 3.33/1.11
1.6.11.66
—334 2.3.22.33
354 1.35/5.7
2.5.7.70
—354 1.10.14.35
364 1.36/4.9
—364 2.9.36/1.4.18
39, 1.39/3.13
2.3.13.78
—3%4 1.6.26.39
404 2.40/8.10
4.6.14.84
9 Ee M. 2F O
424 2.12.28. 42
3.4.5.60
604 1.12.15.20
60 1.4.6.16.15.60
4 2.3.5.12.20.30
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