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1. Introduction.

In his paper [4], Kawauchi proved that if a closed orientable 3-manifold $M$

admits an orientation reversing involution, then the torsion part of the first
integral homology group, Tor $H_{1}(M;Z)$ , is isomorphic to $A\oplus A$ or $Z_{2}\oplus A\oplus A$

where $A$ is an abelian group of finite order. Moreover, for any given abelian
group $G$ with Tor $G\cong A\oplus A$ , there exists a closed orientable irreducible 3-mani-
fold $M$ admitting an orientation reversing involution with $H_{1}(M;Z)\cong G$ . And
if $M$ is a closed orientable 3-manifold admitting an orientation reversing involu-
tion with $H_{1}(M;Z)\cong Z_{2}\oplus A\oplus A$ where $A$ is an abelian group of odd order, then
$M$ must be a connected sum of $P^{3}$ and a certain manifold.

In this paper, for the remaining cases, we will prove the following theorems.

THEOREM 1. For any abelian group $G$ with $TorG\cong Z_{2}\oplus A\oplus A$ (possibly,
$A=0)$ and $G/TorG\neq 0$ , there exists a closed orientable irreducible 3-manifold $M$

admitting an orientation reversing involution with $H_{1}(M;Z)\cong G$ .
THEOREM 2. For any abelian group $G\cong Z_{2}\oplus A\oplus A$ where $A$ is an abelian

group of non zero even order, there exists a closed orientable irreducible 3-mani-
fold $M$ admitting an orientation reversing involution with $H_{1}(M;Z)\cong G$ .

We refer to [2] and [3] for general definitions and terminology.

2. Proof of Theorem 1.

We identify a 3-sphere $S^{3}$ with $R^{3}\cup\{\infty\}$ , and consider the antipodal map
$\tau:S^{3}arrow S^{s}$ by $\tau(x, y, z)=(-x, -y, -z)$ $\tau(\infty)=(\infty)$ .

LEMMA 3. There exists a closed orientable irreductble 3-manifold $M$ admit-
ting an orientation reversing involution with $H_{1}(M;Z)\cong Z\oplus Z_{2}$ .

PROOF. Consider a graph $T$ in $S^{3}$ as in Figure 1. We choose the graph
$T$ so that $T$ contains the origin $0=(0,0,0)$ of $S^{3}$ and $T$ is invariant by $\tau$ , the
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Figure 1.

antipodal map of $S^{3}$ . Let $N(T)$ be a $\tau$-invariant regular neighborhood of $T$ and
$M_{1}=S^{3}-N(T)$ . Note that $F=\partial M_{1}$ is a closed orientable surface of genus two.
Let $M_{2}$ be a quotient space of $F\cross I$ by an identification map of $F\cross\{1\};(x, 1)\sim$

$(\tau’(x), 1)$ , where $I$ denotes the unit interval $[0,1]$ and $\tau’=\tau|_{F}$ . Then $M_{2}$ is a
twisted I-bundle over a closed non orientable surface, and $M_{2}$ has a canonical
involution induced by $\tau’$ . Let $M=M_{1} \bigcup_{h}M_{2}$ , where $h$ is the identity map of
$F=\partial M_{2}$ onto $F=\partial M_{1}$ . Then $M$ has an orientation reversing involution.

By the ordinary cut and paste argument (cf. [2]), if $M_{1}$ and $M_{2}$ are irre-
ducible and $\partial$-irreducible, then $M$ is irreducible.

Since $M_{2}$ is a twisted I-bundle over a closed surface, $M_{2}$ is irreducible and
$\partial$-irreducible.

For $M_{1}$ , suppose $S$ is an embedded 2-sphere in $M_{1}=\overline{S^{3}-N(T)}$ . Then, we
can regard $S$ as an embedded 2-sphere in $S^{3}$ which does not meet $T$. By the
Schonflies theorem, $S$ bounds two 3-balls in $S^{3}$ and $T$ is contained in one of
these 3-balls. Hence $S$ bounds another 3-ball in $M_{1}$ . Hence, $M_{1}$ is irreducible.

Suppose $D$ is a properly embedded essential disk in $M_{1}$ . Remove $D\cross[-1,1]$ ,
the regular neighborhood of $D$ , from $M_{1}$ , and we denote its closure by $M_{1}’$ . If
both $M_{1}’$ and $\partial M_{1}’=(D\cross\{-1,1\})\cup(F-\partial D\cross(-1,1))$ are connected, then $M_{1}’$ is a
submanifold of $S^{3}$ and its boundary is a torus. Hence we may assume that $M_{1}’$

is a non trivial knot exterior or a solid torus. Since we obtain $M_{1}$ by attach-
ing a l-handle to $M_{1}’$ , we have $\pi_{1}(M_{1})\cong H*Z$ (a free product), where $H$ is a
knot group or $Z$ . If $M_{1}’$ is connected but $\partial M_{1}’$ is not, $\partial M_{1}’$ consists of two
tori, since $\partial D$ is essential on $F$. Then rank $H_{1}(\partial M_{1}’ ; Z)=4$ , and rank $H_{1}(M_{1}’ ; Z)$

$\geqq rankH_{1}(\partial M_{1}’ ; Z)/2=2$ . Since we obtain $M_{1}$ by attaching a l-handle to $M_{1}’$ ,
we must have rank $H_{1}(M_{1} ; Z)\geqq 3$ . But, we can see from Figure 1 that
rank $H_{1}(M_{1} ; Z)=2$ . It is impossible. If $M_{1}’$ is disconnected, let $N_{1}$ and $N_{2}$ be
the connected component of $M_{1}’$ , then $N_{i}$ is a submanifold of $S^{3}$ and $\partial N_{i}$ is a
torus. Hence $N_{i}$ is a non trivial knot exterior or a solid torus. Since $M_{1}$ is a
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boundary sum of $N_{1}$ and $N_{2}$ , we may assume $\pi_{1}(M_{1})\cong H_{1}*H_{2}$ , where $H_{i}$ is a
knot group or $Z(i=1,2)$ .

Hence, if there exists an essential disk in $M_{1}$ , we must have $\pi_{1}(M_{1})\cong H_{1}*H_{2}$ ,
where $H_{i}$ is a knot group. (We may regard $Z$ as the fundamental group of a
trivial knot exterior.) We will see Alexander matrices of $H_{1}*H_{2}$ (cf. [1], [5]).

Consider any epimorphism $\phi$ from $H_{1}*H_{2}$ to an infinite cyclic group $\langle t$ ; $\rangle$ .
Then $\phi|H_{i}(i=1,2)$ is a homomorphism from $H_{i}$ onto a subgroup $\langle t^{a_{i}}$ ; $\rangle$ of
$\langle t$ ; $\rangle$ , where at least one of $\alpha_{i}$ is non zero. An Alexander matrix of $H_{1}*H_{2}$

must be the block sum of Alexander matrices of $H_{1}$ and $H_{2}$ . Hence the k-th
Alexander polynomials $\Delta_{k}(k=0,1,2)$ of $H_{1}*H_{2}$ must satisfy the conditions:
$\Delta_{0}=0,$ $\Delta_{1}=0$ and $\Delta_{2}=\Delta_{1}^{1}\cross\Delta_{1}^{2}$ , where $\Delta_{1}^{i}$ is the first Alexander polynomial of $H_{i}$ .
Note that, since $H_{i}$ is a knot group, $\Delta_{1}^{i}$ is a polynomial in the group ring of
$\langle t^{a_{i}}$ ; $\rangle$ such that $\Delta_{1}^{i}(t^{a_{i}})=\Delta_{1}^{i}((t^{\alpha_{i}})^{-1})$ ( $i.e$ . $\Delta_{1}^{i}(t^{\alpha_{i}})=t^{u_{i}}\Delta_{1}^{i}((t^{\alpha_{i}})^{-1})$ for some $u_{i}\in Z$).

Hence we must have $\Delta_{2}(t)=\Delta_{2}(t^{-1})$ .
We may choose the generators of $\pi_{1}(M_{1})$ as indicated in Figure 1, then we

have
$\pi_{1}(M_{1})\cong\langle a, b, c:b^{-1}aca^{-1}[ca]b[ac]=1\rangle$ .

Let $\phi$ be an epimorphism from $\pi_{1}(M_{1})$ to $\langle t;\rangle$ defined by

$\phi(a)=t^{2}$ , $\phi(b)=t$ and $\phi(c)=1$ .
By the Fox calculus ([1], [5]), we have an Alexander matrix of $\pi_{1}(M_{1})$ ;

$( 0 0 t^{2}-1+t^{-1})$ ,

and the Alexander polynomials;

$\Delta_{0}=0$ , $\Delta_{1}=0$ and $\Delta_{2}=t^{2}-1+t^{-1}$ .
It contradicts $\Delta_{2}(t)=\Delta_{2}(t^{-1})$ . Hence, $M_{1}$ is $\partial$-irreducible.

We will see $H_{1}(M;Z)$ . We choose the generators for $H_{1}(M_{1} ; Z),$ $H_{1}(M_{2} ; Z)$

and $H_{1}(F;Z)$ represented by curves indicated in Figure 2. Then we have

$H_{1}(M_{1} ; Z)\cong\langle a_{1}, a_{2} : \rangle$ , $H_{1}(M_{2} ; Z)\cong\langle x, y, z;2z=0\rangle$

and $H_{1}(F;Z)\cong\langle m_{1}, m_{2}, l_{1}, l_{2} : \rangle$

as abelian group presentations. By the homomorphism $i_{1}$ (or $j_{2}$) induced by the
inclusion map from $F$ to $M_{1}$ (or $M_{2}$ , respectively), the generators of $H_{1}(F;Z)$

are mapped as follows;

$i_{1}(m_{1})=a_{1}$ , $i_{1}(m_{2})=a_{2}$ , $i_{1}(l_{1})=0$ , $i_{1}(l_{2})=0$ ,

$i_{2}(m_{1})=x$ , $i_{2}(m_{2})=-x$ , $i_{2}(l_{1})=y$ and $i_{2}(l_{2})=y$ .
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$witharrow^{z}$ by $\sim$.
$F\cross\{1\}/\sim\subset M_{g}$

Figure 2.

Hence we have

$H_{1}(M;Z)\cong\langle a_{1}, a_{2}, x, y, z:2z=0, a_{1}=x, a_{2}=-x, y=0\rangle$

$\cong\langle x, z;2z=0\rangle$

$\cong Z\oplus Z_{2}$ .
This completes the proof.

Let $J,$ $J’\subset S^{3}$ be $\tau$-invariant non trivial knots such that $J$ contains the fixed
points of $\tau$, and $J’$ does not contain them. Let $M_{3}=\overline{S^{3}-N(J)}$ and $M_{4}=\overline{S^{3}-N(J’}$),

where $N(J)$ and $N(J’)$ are $\tau$-invariant regular neighborhoods of $J$ and $J’$ . We
may assume that $N(J’)$ does not contain the fixed points of $\tau$ .

Note that we can construct a homology 3-sphere $M_{6}$ with $\pi_{1}(M_{5})$ infinite,
by $M_{5}=M_{3} \bigcup_{h}M_{4}$ , where $h$ is a homeomorphism of $\partial M_{4}$ onto $\partial M_{3}$ which carries
a preferred longitude of $\partial N(J’)$ to a meridian of $\partial N(J)$ . Then, $M_{5}$ admits an
orientation reversing involution induced by $\tau$ on $M_{3}$ and $M_{4}$ .

PROOF OF THEOREM 1. Let $G\cong(\oplus Z)\oplus Z_{2}\oplus Z_{p_{1}}\oplus Z_{p_{2}}\oplus’\cdots\oplus Z_{p_{r}}\oplus Z_{p_{1}}\oplus Z_{p_{2}}$

$\oplus\cdots\oplus Z_{p_{r}}$ $(s\geqq 1, r\geqq 0, p_{1}, p_{2}, \cdots , p_{r}\in Z)$ . Let $K_{1},$ $K_{2},$ $\cdots$ $K_{S-1},$ $L_{1},$ $L_{2},$ $\cdots$ $L_{r}$
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$\subset M_{4}\subset M_{6}$ be $r+s-1$ knots and $T\subset M_{4}\subset M_{5}$ the graph same as in the proof of
Lemma 3 which satisfy the following conditions;

(1) $K_{1},$ $\cdots$ , $K_{\epsilon-1}$ and $T$ are $\tau$-invariant,
(2) $K_{1},$ $\cdots$ , $K_{S-1},$ $L_{1},$ $\cdots$ , $L_{r},$ $\tau(L_{1}),$ $\cdots$ $\tau(L_{r})$ and $T$ are mutually disjoint,
(3) $[K_{i}]\neq 1,$ $[L_{l}]\neq 1,$ $[T]\neq 1$ in $\pi_{1}(M_{6})$ ,
(4) each two of $K_{1},$ $\cdots$ , $K_{S-1},$ $L_{1},$ $\cdots$ , $L_{r},$ $\tau(L_{1}),$ $\cdots$ , $\tau(L_{r})$ and $T$ have the

linking number $0$ in $M_{5}$ , and
(5) none of knots contains the fixed point of $\tau$ .

For example we can choose such knots and graph as Figure 3. Remove a small
$\tau$-invariant regular open neighborhood of $\bigcup_{i=1}^{\iota-1}K_{i}\cup U_{J=1}^{r}(L_{j}\cup\tau(L_{j}))\cup T$ from $M_{5}$ ,

and attach $s-1$ copies of $M_{4}=\overline{S^{3}-N(J’)},$ $2r$ copies of a non trivial knot exterior

Figure 3.

$\overline{S^{3}-N(L)}$ and a twisted I-bundle as follows;

(1) $\partial N(T)$ is identified with the boundary of a rwisted I-bundle as in the
proof of Lemma 3,

(2) $\partial N(K_{i})(i=1, \cdots , s-1)$ is identified with a copy of $\partial M_{4}=\partial N(J’)$ so that
a preferred longitude is a preferred longitude of $\partial N(J’)$ ,

(3) $\partial N(L_{i})$ ($i=1,$ $\cdots$ , r) is identified with a copy of $\partial(\overline{S^{3}-N(L)})=\partial N(L)$ so
that a preferred longitude of $\partial N(L_{i})$ is a curve linking with $Lp_{i}$-times in $S^{8}$ ,
and

(4) $\partial N(\tau(L_{i}))$ ($i=1,$ $\cdots$ , r) is identified with a copy of $\partial(S^{3}-N(L))=\partial N(L)$

so that the attaching homeomorphism commutes with $\tau$ .
We call the resulting manifold $M$. We can see that $M$ has the required

first integral homology group. The irreducibility of $M$ follows from the irre-
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ducibility and $\partial$-irreducibility of each part of $M$. Note that every non trivial
knot exterior is irreducible and $\partial$-irreducible.

This completes the proof.

3. Proof of Theorem 2.

LEMMA 4. There exists a closed orientable irreducible 3-mamfold $M$ admit,

ting an orientation reversrng involution with $H_{1}(M;Z)\cong Z_{2}\oplus Z_{2n}\oplus Z_{zn}(n\in Z)$ .

PROOF. Let $B_{i}(i=1,2,3)$ be a 3-ball and $\tau_{i}$ an orientation reversing in-
volution of $B_{i}$ with one fixed point. Let $D_{i}\subset\partial B_{i}$ be a 2-disk such that
$D_{l}\cap\tau_{i}(D_{i})=\emptyset(i=1,2,3)$ , and $D_{2}’\subset\partial B_{2}$ a 2-disk such that $D_{2},$ $\tau_{2}(D_{2}),$ $D_{2}’$ and
$\tau(D_{2}’)$ are mutually disjoint. We will attach four l-handles to them, one from
$D_{1}$ to $D_{2}$ , one from $\tau_{1}(D_{1})$ to $\tau_{2}(D_{2})$ , one from $D_{2}’$ to $D_{3}$ , and one from $\tau_{2}(D_{2}’)$ to
$\tau_{3}(D_{3})$ . We call the resulting manifold $M_{6}$ . $M_{6}$ is topologically a handlebody
of genus two and admitting an orientation reversing involution $\tau$ which extends
$\tau_{1},$ $\tau_{2}$ and $\tau_{3}$ . Let $\alpha$ and $\beta$ be generators of $H_{1}(M_{6} ; Z)$ as in Figure4. We
choose knots $K_{1}$ and $K_{2}$ which satisfy the following conditions;

(1) $K_{1}$ is $\tau$-invariant and contains two of fixed points,
(2) $K_{2}$ does not contain any fixed point,
(3) $[K_{1}]=\alpha\in H_{1}(M_{6} ; Z)$ and $[K_{2}]=\beta\in H_{1}(M_{6} ; Z)$ , and
(4) $K_{1},$ $K_{2}$ and $\tau(K_{2})$ are mutually disjoint

(see Figure 4). Note that $[\tau(K_{2})]=-\beta\in H_{1}(M_{6} ; Z)$ .

Figure 4.

Remove a small $\tau$-invariant regular open neighborhood of $K_{1}\cup K_{2}\cup\tau(K_{2})$ from
$M_{6}$ . For $K_{1}$ , consider $M_{4}=S^{3}-N(J’)$ (the same $M_{4}$ as in the section 2) and
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identify $\partial N(K_{1})$ with $\partial N(J’)$ so that a preferred longitude of $\partial N(J’)$ is a meri-
dian of $\partial N(K_{1})$ . For $K_{2}$ and $\tau(K_{2})$ , consider two copies of a non trivial knot
exterior $\overline{S^{3}-N(L)}$ . Identify $\partial N(K_{2})$ and $\partial N(\tau(K_{2}))$ with two copies of $\partial N(L)$

so that a preferred longitude of one copy of $\partial N(L)$ is a curve $C$ on $\partial N(K_{2})$

with $[C]=n\gamma_{1}+\beta\in H_{1}(\overline{M_{6}-N(K_{2})\cup N(\tau(K_{2}))};Z)$ , and a preferred longitude of
another copy is a curve C’ on $\partial N(\tau(K_{2}))$ with $[C’]=n\gamma_{2}-\beta\in$

$H_{1}(\overline{M_{6}-N(K_{2})\cup N(\tau(K_{2}))};Z)$ , where $\gamma_{1}$ and $\gamma_{2}$ are new generators created by
removing $N(K_{2})$ and $N(\tau(K_{2}))$ from $M_{6}$ (see Figure 4). We call the resulting
manifold $M_{7}$ . Then we have

$H_{1}(M_{7} ; Z)\cong\langle\alpha, \beta, \gamma_{1}, \gamma_{2} : n\gamma_{1}+\beta=0, n\gamma_{2}-\beta=0\rangle$ .
By this construction, we can see that $M_{7}$ has an orientation reversing involution
which is an extension of $\tau$ on $M_{6}$ and $S^{3}$ .

Let $F=\partial M_{7}$ (an orientable closed surface of genus two) and $M_{8}$ a quotient
space of $F\cross I$ by an identification map of $F\cross\{1\};(x, 1)\sim(\tau’(x), 1)$ , where
$\tau’=\tau|_{F}$ . Then $M_{8}$ is a twisted I-bundle over a non orientable closed surface,
and $M_{8}$ has a canonical involution induced by $\tau’$ .

Let $M=M_{7} \bigcup_{h}M_{8}$ where $h$ is the identity map of the boundary $F$, then $M$

has an orientation reversing involution.
We can see $H_{1}(M;Z)$ by using $\partial M_{7}=\partial M_{8}=F$ and the inclusion maps $i_{1}$ and

$i_{2}$ as in the proof of Lemma 3. We choose the generators for $H_{1}(M_{8} ; Z)$ and
$H_{1}(F;Z)$ represented by curves indicated in Figure 5.

with arrowed lines by $\sim$ .

$F\cross\{1\}/\sim\subset M_{8}$ $F=\partial M_{7}=\partial M_{8}$

Figure 5.

Then we have
$H_{1}(M_{8} ; Z)\cong\langle x, y, z:2x+2y+2z=0\rangle$ and

$H_{1}(F;Z)\cong\langle m_{1}, m_{2}, l_{1}, l_{2} : \rangle$ .
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It is easy to check that

$i_{1}(m_{1})=\gamma_{1}+\gamma_{2}$ , $i_{1}(m_{2})=0$ , $i_{1}(l_{1})=\beta$ , $i_{1}(l_{2})=\alpha$ , $i_{2}(m_{1})=2x$ ,

$i_{2}(m_{2})=2z$ , $i_{2}(l_{1})=x+y+2z$ and $i_{2}(l_{2})=2x+y+z$ .
Hence,

$H_{1}(M;Z)\cong\langle\alpha,$ $\beta,$
$\gamma_{1},$ $\gamma_{2},$ $x,$ $y,$ $z$ ; $n\gamma_{1}+\beta=0,$ $n\gamma_{2}-\beta=0,2x+2y+2z=0$,

$\gamma_{1}+\gamma_{2}=2x,$ $2z=0,$ $\beta=x+y+2z,$ $\alpha=2x+y+z\rangle$

$\cong\langle\gamma_{2}, x, z: 2n\gamma_{2}=0, 2nx=0,2z=0\rangle$

$\cong Z_{2}\oplus Z_{2n}\oplus Z_{2n}$ .

For the irreducibility of $M$, as in the proof of Lemma 3, we only prove the
irreducibility and $\partial$-irreducibility of each part of $M$. A non trivial knot exterior
and a twisted I-bundle over a closed surface clearly have these properties.
Hence we shall prove it for $M_{6}-N(K_{1})\cup N(K_{2})\cup N(\tau(K_{2}))$ , denote by $M_{6}’$ .

Suppose $S$ is an essential 2-sphere in $M_{6}’$ , then $S$ is also a 2-sphere in the
handlebody $M_{6}$ . Since a handlebody is irreducible, $S$ bounds a 3-ball $B$ in $M_{6}$ .
Hence $B$ contains at least one of $K_{1},$ $K_{2}$ or $\tau(K_{2})$ . Since $K_{1},$ $K_{2}$ and $\tau(K_{2})$ are
not contractible in the handlebody, it is impossible. Hence $M_{6}’$ is irreducible.

Suppose $D$ is an essential 2-disk in $M_{6}’$ . Since $K_{1},$ $K_{2}$ and $\tau(K_{2})$ are not
contractible in the handlebody $M_{6},$ $\partial D$ is not on either $\partial N(K_{1}),$ $\partial N(K_{2})$ or
$\partial N(\tau(K_{2}))$ . Hence $\partial D$ is on $\partial M_{6}$ , and we may regard that $D$ is a proper 2-disk
in $M_{6}$ . If $D$ did not separate $M_{6}$ , then $D$ must cut a curve representing the
generators of $\pi_{1}(M_{6})$ . But we choose $K_{1},$ $K_{2}$ and $\tau(K_{2})$ to be such curves.
Hence it is impossible. If $\partial D$ was trivial in $\pi_{1}(\partial M_{6})$ , then $D$ with a disk on
$\partial M_{6}$ bounds a 3-ball, and this 3-ball must contain $K_{1},$ $K_{2}$ or $\tau(K_{2})$ . But it is
impossible, because $K_{1},$ $K_{2}$ and $\tau(K_{2})$ are not contractible in $M_{6}$ . The remaining
possibility is the case when $D$ separates $M_{6}$ into $M’$ and $M’’$ , and $\partial D$ is non
trivial in $\pi_{1}(\partial M_{\text{\’{e}}})$ . In this case, $D$ represents the amalgamating subgroup of
$\pi_{1}(M_{6})\cong Z*Z$ , hence $\pi_{1}(M’)\cong\pi_{1}(M’’)\cong Z$ . Note that the knots $K_{1}$ and $K_{2}$ are
chosen to be generators of $\pi_{1}(M_{6})\cong Z*Z\cong\langle\alpha, \beta:\rangle$ and $[\tau(K_{2})]=\beta^{-1}\in\pi_{1}(M_{6})$

(now, we consider $a$ and $\beta$ in Figure 4 are the generators of $\pi_{1}(M_{6})$ , ignoring
the base point). Hence $K_{2}$ and $\tau(K_{2})$ are homotopic without meeting $D$, so
without meeting $K_{1}$ . But it is impossible. Hence $M$ is $\partial$-irreducible.

This completes the proof.

PROOF OF THEOREM 2. Let $G\cong Z_{2}\oplus Z_{2n}\oplus Z_{2n}\oplus Z_{p_{1}}\oplus Z_{p_{2}}\oplus\cdots\oplus Z_{p_{\gamma}}\oplus Z_{p_{1}}\oplus$

$Z_{p_{2}}\oplus\cdots\oplus Z_{p_{r}}$ $(r\geqq 0, n, p_{1}, p_{2}, \cdots , p_{r}\in Z)$ . We consider knots $L_{1},$ $L_{2},$ $\cdots$ $L_{r}$ and
$L’$ in $M_{5}$ ( $M_{5}$ is the homology 3-sphere in the section 2), such that $L’$ is $\tau-$

invariant, $L_{1},$ $L_{2},$ $\cdots$ , $L_{r},$ $\tau(L_{1}),$ $\tau(L_{2}),$ $\cdots$ , $\tau(L_{r})$ and $L’$ are mutually disjoint,
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and $[L_{i}]\neq 1,$ $[L]\neq 1$ in $\pi_{1}(M_{5})(i=1,2, \cdots , r)$ . We will do like as in the proof
of Theorem 1. Remove a small $\tau$-invariant regular neighborhood of
$\bigcup_{i=1}^{r}(L_{i}\cup\tau(L_{i}))\cup L’$ from $M_{5}$ , and attach $2r$ copies of a non trivial knot exterior
to $\partial N(L_{i})$ and $\partial N(\tau(L_{i}))$ ($i=1,2,$ $\cdots$ , r) for the required torsion of $G$ . We call
the resulting manifold $M_{9}$ .

We will construct the same manifold as in the proof of Lemma 4, but for
$\partial N(K_{1})(\subset M_{6})$ , we will attach $M_{9}$ so that a preferred longitude of $\partial N(L’)=\partial M_{9}$

is a meridian of $\partial N(K_{1})$ .
By this construction, the resulting manifold has the required first integral

homology group. And the irreducibility of the manifold follows from the irre-
ducibility and the $\partial$-irreducibility of each part.

This completes the proof.
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