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Introduction.

The groups associated with Kac-Moody algebras, the Kac-Moody groups,
were constructed and studied in Peterson-Kac [9]. These groups are, so to
speak, “infinite dimensional Chevalley groups”, and inherit many good proper-
ties of flnite dimensional Chevalley groups. For example, they have BN-pairs,
the corresponding flag varieties are defined, and their Bruhat decompositions
are given. Moreover, among the Bruhat cells, the same closure relation holds,
in a certain topology, as in the case of finite-dimensional semisimple algebraic
groups. (See [9] and also Tits [10].)

But, it seems to us that this type of construction has some disadvantage
for applications to the representation theory. In fact, the exponential map is
not defined on the whole Lie algebra, but only for certain generators of algebra
(elements of Cartan subalgebra and root vectors of real roots). In other words,
there do not exist the l-parameter subgroups which correspond to root vectors
of imaginary roots. (See \S 1 and \S 4 for details.) As a consequence, even if we
could differentiate a representation of a Kac-Moody group, there should be so
much difficulties to examine if the differential gives a representation of its Lie
algebra or not.

Motivated by these observations, we attempted to construct groups associ-
ated with Kac-Moody algebras in such a way that the exponential map is
defined for every element of algebras. This is partially achieved in this paper.
We construct such groups corresponding to certain real forms, called unitary
forms, of complex Kac-Moody algebras with symmetrizable generalized Cartan
matrices (GCM). For finite dimensional complex semisimple Lie algebras,
unitary forms are nothing but compact real forms.

We now explain the construction. Let $\mathfrak{g}$ be a complex Kac-Moody algebra
with symmetrizable GCM, $\mathfrak{h}$ the Cartan subalgebra of $\mathfrak{g}$ , and $f$ the unitary form
of $\mathfrak{g}$ . Let $\Lambda\in \mathfrak{h}^{*}$ be a dominant integral element and $L(\Lambda)$ the irreducible
highest weight module for $\mathfrak{g}$ with highest weight $\Lambda$ . It was proved in [6,

Theorem 1] that $L(\Lambda)$ has a canonical pre-Hilbert space structure under which
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each element of $f$ acts on $L(\Lambda)$ as an antisymmetric operator. We prove in
\S 3 the existence of an absorbing subset $B$ of $\mathfrak{g}$ with the following property.
For any $x\in B$ and $v\in L(\Lambda)$ the series $\Sigma_{m\Leftarrow 0}^{\infty}(m!)^{-1}x^{m}v$ is absolutely convergent.
The linear map exp $x;L(\Lambda)\ni varrow\Sigma_{m=0}^{\infty}(m!)^{-1}x^{m}v\in H(\Lambda)$ from $L(\Lambda)$ to $H(\Lambda)$ is
extended to a unitary operator on $H(\Lambda)$ if $x\in B\cap f$, where $H(\Lambda)$ is the com-
pletion of $L(\Lambda)$ . The map exp is naturally extended to a map from $f$ into the
group $U(\Lambda)$ of all unitary operators on $H(\Lambda)$ equipped with the strong operator
topology. Our group $K^{A}$ associated with the unitary form $f$ is defined as the
closed subgroup of $U(\Lambda)$ generated by expf.

We define a subgroup $H^{\Lambda}$ of $K^{\Lambda}$ by $H^{\Lambda}=\exp(\mathfrak{h}\cap f)$ . In case where $\mathfrak{g}$ is
finite-dimensional, $H^{\Lambda}$ is nothing but a maximal torus of $K^{\Lambda}$ . Even when $\mathfrak{g}$ is
not finite-dimensional, $H^{A}$ is compact in many good cases. We remark here,
for any $x\in f$ and $v\in L(\Lambda)$ , the function $f(t)=(\exp tx)v$ of real variable $t$ with
values in $H(\Lambda)$ is differentiable, and its differential at $t=0$ is equal to $xv$ , the
original action of $x$ on $v$ (see \S 3.3).

Let $G_{0}$ be the Kac-Moody group in [9] associated with $\mathfrak{g},$
$K_{0}$ the subgroup

of $G_{0}$ corresponding to the unitary form $f$ , and $\pi_{\Lambda}$ the representation of $G_{0}$ on
$L(\Lambda)$ (see \S 4 for detail). The groups associated with $\mathfrak{g}$ larger than $G_{0}$ had
been defined by Garland [3] in case of affine type, and by Tits [10] in general
case, and the existence of the largest one was proved by Mathieu [7]. Roughly
speaking, these groups are formal extensions of $G_{0}$ in the direction of positive
roots (but not in the direction of negative roots). Their subgroups correspond-
ing to the unitary form $f$ remain to be the same, not extended from $K_{0}$ .

By [9, Corollary 4], $\pi_{\Lambda}(K_{0})$ is contained in $K^{A}$ . $H^{A}$ normalizes $\pi_{\Lambda}(K_{0})$ and
so $H^{A}\cdot\pi_{\Lambda}(K_{0})$ is a subgroup of $K^{\Lambda}$ . The group $H^{\Lambda}\cdot\pi_{\Lambda}(K_{0})$ contains exponentials
of generators, as a Lie algebra, of $f$, but does not contain all exponentials
exp $x(x\in f)$ . Therefore, the following problem naturally arises, which is
discussed in \S 4.

PROBLEM. Is the closure of $H^{\Lambda}\cdot\pi_{\Lambda}(K_{0})$ equal to $K^{Ap}$

This paper is organized as follows. In \S 1, we recall some preliminary
facts about Kac-Moody algebras. In \S 2, we first construct certain Hermitian
forms on highest weight modules. In case the highest weights are dominant
integral, they give the pre-Hilbert space structure described above. Then, we
estimate the norm of the action of root vectors on the pre-Hilbert spaces.

\S 3 is the main part of this paper, where the groups in title are constructed
as described above. In \S 4, the relations between our groups and Kac-Moody
groups, treated in [3], [7], [9] and [10], are studied. In \S 5, we study the
relations between the groups $K^{\Lambda}$ in \S 3 and the groups constructed on lowest
weight modules in the same manner as in \S 3. For every dominant integral



Kac-Moody algebras 87

$\Lambda$ , they are mutually isomorphic and the lowest and highest weight modules
are contragredient to each other as representations of the group.

NOTATIONS. We denote by $C$ the complex number field, $R$ the real number
field, $Q$ the rational number field, and $Z$ the ring of rational integers. For an
ordered set $(S, \leqq)$ and $s\in S$ , we define subsets $S_{>s}$ and $S_{\geq\epsilon}$ of $S$ by

$S_{>s}=\{t\in S|t>s\}$ ,

$S_{\geq s}=\{t\in S|t\geqq s\}$ .
The author expresses his hearty thanks to Prof. T. Hirai for his valuable

advices and encouragement.

\S 1. Preliminaries.

In this section, we recall primary facts in the theory of Kac-Moody algebras
briefly, needed in the succeeding sections. For detailed accounts, see [5] for
example.

1.1. Kac-Moody algebras. Let $n$ be a positive integer and $A=(a_{ij})_{1\leq\text{\‘{e}}.j\leq n}$

be a generalized Cartan matrix (GCM). This means that $A$ satisfies the follow-
ing conditions:

i) $a_{ij}\in Z$ ,
ii) $a_{ij}\leqq 0$ if $i\neq j$ , and $a_{ii}=2$ ,
iii) $a_{ij}=0$ if and only if $a_{ji}=0$ .
For a field $k$ with characteristic $0$, we denote by $\mathfrak{g}_{k}=\mathfrak{g}_{k}(A)$ the Kac-Moody

algebra over $k$ associated with $A$ , which is constructed as follows.
Let $\mathfrak{h}_{i}=\mathfrak{h}_{k}(A)$ be a $(2n-rank(A))$-dimensional vector space over $k$ . Let

$\Pi=\{\alpha_{1}, \cdots , \alpha_{n}\}$ and $\Pi^{\vee}=\{\alpha_{1}^{\vee}, \cdots , \alpha_{n}^{\vee}\}$ be linearly independent subsets in
$\mathfrak{h}_{k}^{*}=Hom_{k}(\mathfrak{h}_{k}, k)$ and in $\mathfrak{h}_{k}$ , respectively, such that

$\alpha_{j}(\alpha_{i}^{\vee})=a_{ij}$ $(i, j=1, \cdots n)$ .
We denote by $\sim \mathfrak{g}_{k}the_{L}Lie$ algebra generated by $\mathfrak{h}_{k}$ and $2n$ symbols $\tilde{e}_{1},$ $\cdots$ , $\tilde{e}_{n}$ ,
$f_{1},$ $\cdots$ , $f_{n}$ under the following relations

i) $[h, h’]=0$ $(h, h’\in \mathfrak{h}_{k})$ ,
ii) $[h, e_{i}\sim]=\alpha_{i}(h)\tilde{e}_{i}$ and $[h,\tilde{f}_{i}]=-\alpha_{i}(h)\tilde{f}_{i}$ $(h\in \mathfrak{h}_{k}, 1\leqq i\leqq n)$ ,
iii) $[e_{i}\sim,\tilde{f}_{j}]=0$ if $i\neq j$ ,
iv) $[\tilde{e}_{i},\tilde{f}_{i}]=\alpha_{i}^{\vee}$ .

There exists the largest proper ideal X of $\sim \mathfrak{g}_{k}$ intersecting with $\mathfrak{h}_{k}$ trivially. The
Kac-Moody algebra $\mathfrak{g}_{k}$ is defined by
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$\mathfrak{g}_{k}=\mathfrak{g}_{k}\sim/\mathfrak{x}$ .

Let $\tilde{p}$ be the canonical projection from $\sim \mathfrak{g}_{k}$ onto $g_{k}$ . We put

$e_{9}=\tilde{p}(e_{i}\sim)$ and $f_{i}=\tilde{p}(\tilde{f}_{i})$ $(i=1, \cdots , n)$ .
Since $\tilde{p}|\mathfrak{h}_{i}$ is injective, we identify $\mathfrak{h}_{k}$ with $\tilde{p}(\mathfrak{h}_{k})$ . Then, $\mathfrak{g}_{k}$ is generated by
$\mathfrak{h}_{k},$

$e_{1},$
$\cdots$ , $e_{n},$ $f_{1},$ $\cdots$ , $f_{n}$ . We call $\{e_{1}, \cdots , e_{n}, f_{1}, \cdots , f_{n}\}$ the Chevalley generators

and $\mathfrak{h}_{k}$ the Cartan subalgebra of $\mathfrak{g}_{k}$ .
Let $\Delta=\Delta(A)$ be the root system of $(\mathfrak{g}_{k}, \mathfrak{h}_{k}),$ $\Delta_{+}=\Delta_{+}(A)$ the set of positive

roots corresponding to the simple system $\Pi$ of $\Delta$ , and $\mathfrak{g}_{k}=\mathfrak{h}_{k}\oplus\sum_{a\in\Delta}^{\oplus}\mathfrak{g}_{k}^{\alpha}$ the root
space decomposition. We put $\mathfrak{n}_{\pm.k}=\mathfrak{n}_{\pm.k}(A)=\Sigma_{\alpha\in\Delta_{+}}\mathfrak{g}_{k}^{\neq\alpha}$ . Let $\omega_{k}$ be the involu-
tive automorphism on $\mathfrak{g}_{k}$ defined by $\omega_{k}(e_{i})=-f_{i}$ ($i=1,$ $\cdots$ , n) and $\omega_{k}(h)=-h$

for all $h\in \mathfrak{h}_{k}$ . Note that if $k$ ‘ is an extension field of $k$ , then we see that
$\mathfrak{g}_{k’}=k’\otimes_{k}\mathfrak{g}_{k},$ $\mathfrak{h}_{k’}=k’\otimes_{k}\mathfrak{h}_{k}$ and so on.

We denote by $W=W(A)$ the Weyl group of $\mathfrak{g}_{k}$ . Let $\Delta^{re}=\Delta^{re}(A)$ be the
union of W-orbits in $\mathfrak{h}_{k}^{*}$ through $\Pi$ , and $\Delta^{im}=\Delta^{im}(A)$ the complement of $\Delta^{re}$ in
$\Delta$ . Each element of $\Delta^{re}$ (resp. $\Delta^{im}$) is called a real (resp. imaginary) root.

Throughout this paper, we assume that $A$ is symmetrizable, that is, there
exists a diagonal matrix $D$ with entries in $Q_{>0}$ such that $DA$ is a symmetric
matrix.

REMARK. For a symmetrizable GCM $A$ , it was proved in [2] that the
ideal X is generated by $($ad $\tilde{e}_{i})^{1}e_{j}$ and $($ad $\tilde{f}_{i})^{1-a_{ij}}\cdot\tilde{f}_{j}(i\neq j)$ .

Since $A$ is assumed to be symmetrizable, there exist standard invariant
bilinear forms on $\mathfrak{g}_{k}$ (see [5, \S 3] and [8, \S 3]). We fix one of them and denote
it by $(\cdot|\cdot)_{k}$ . This form is non-degenerate and symmetric, and moreover, it
holds that for any $\alpha,$ $\beta\in\Delta\cup\{0\}$ ,

$(\mathfrak{g}_{k}^{a}|\mathfrak{g}^{\beta_{k}})=0$ if $\alpha+\beta\neq 0$ ,

where $\mathfrak{g}_{k}^{0}=\mathfrak{h}_{k}$ . In particular, $(\cdot|\cdot)_{k}|\mathfrak{h}_{k}\cross \mathfrak{h}_{k}$ is non-degenerate, and so it defines
a linear isomorphism $\nu_{k}$ from $\mathfrak{h}_{k}$ onto $\mathfrak{h}_{k}^{*}=Hom_{k}(\mathfrak{h}_{k}, k)$ . We denote by the same
notation $(\cdot|\cdot)_{k}$ the induced bilinear forms on $\mathfrak{h}_{k}$ and on $\mathfrak{h}_{k}^{*}$ . These bilinear
forms on $\mathfrak{h}_{k}$ and $\mathfrak{h}_{k}^{*}$ are both invariant under the action of $W$, and $\nu_{k}$ is
W-equivariant.

Let $\alpha\in\Delta$ . For any $x\in \mathfrak{g}_{k}^{\alpha}$ and any $y\in \mathfrak{g}_{k}^{-\alpha}$ , there holds that

(1.1.1) $[x, y]=(x|y)_{k}\nu_{k}^{-1}(\alpha)$ .
Moreover, it holds that

(1.1.2) $\alpha\in\Delta^{re}$ if and only if $(\alpha|\alpha)_{k}>0$ ,

(1.1.3) $\alpha\in\Delta^{im}$ if and only if $(\alpha|\alpha)_{k}\leqq 0$ .
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Here, $(\cdot|\cdot)_{k}$ is Q-valued on $\mathfrak{h}_{Q}^{*}$ and $\Delta$ is contained in $\mathfrak{h}_{Q}^{*}$ . So, the inequalities in
(1.1.2) and (1.1.3) have a sense.

In this paper, the required properties of $(\cdot|\cdot)_{k}$ are (1.1.1), (1.1.2) and (1.1.3)

only.

1.2. Unitary forms. From now on, we concentrate on the case where
$k=R$ or $k=C$ . If $k=C$ , then the subscript $k$ should be omitted, that is, we
write $\mathfrak{g}$ for $\mathfrak{g}_{C}$ and $\mathfrak{h}$ for $\mathfrak{h}_{C}$ etc.

We denote by $\omega_{0}$ the conjugate linear extension of $\omega_{R}$ to $\mathfrak{g}$ . Let $f$ be the
set of fixed points of $\omega_{0}$ . Then, $f$ is a real Lie subalgebra of $\mathfrak{g}$ and we have
$\mathfrak{g}=C\otimes_{R}f$ . We call $f$ the unitary form of $\mathfrak{g}$ . If $\mathfrak{g}$ is finite-dimensional, then $f$

is a compact real form of $\mathfrak{g}$ .
We define a sesquilinear form $(\cdot|\cdot)_{0}$ on $\mathfrak{g}$ by

(1.2.1) $(x|y)_{0}=-(x|\omega_{0}(y))$

for $x,$ $y\in \mathfrak{g}$ . $(\cdot|\cdot)_{0}$ is a Hermitian form and its restriction to $\mathfrak{n}_{+}+\mathfrak{n}_{-}$ is positive
definite (cf. [6, Theorem 1]). By invariance of $(\cdot|\cdot)$ under $\mathfrak{g}$ , the form $(\cdot|\cdot)_{0}$

has the following property. For any $x,$ $y,$ $z\in \mathfrak{g}$ , it holds that

(1.2.2) $([x, y]|z)_{0}=-(y|[\omega_{0}(x), z])_{0}$ .
In particular, the restriction of $(\cdot|\cdot)_{0}$ to $f$ is invariant. We call the property
(1.2.2) the contravariance of the form $(\cdot|\cdot)_{0}$ .

\S 2. Irreducible highest weight modules with dominant integral highest
weights,.

This section is devoted to the construction of contravariant Hermitian forms
on highest weight modules with highest weights $\lambda\in \mathfrak{h}_{R}^{*}$ .

At first, we recall the definition of Verma module $M(\lambda)$ as a quotient of
$U(\mathfrak{g})$ by a certain left ideal $L_{\lambda}$ , and then we define a contravariant Hermitian
form on $U(\mathfrak{g})$ . It is proved that the kernel of the form contains the left ideal
$L_{\lambda}$ and so it induces a Hermitian form on $M(\lambda)$ . By an easy argument, we
see that this form induces the unique (up to constant factors) contravariant
form $(\cdot|\cdot)_{\lambda}$ on the irreducible quotient $L(\lambda)$ of $M(\lambda)$ .

Let $\lambda\in \mathfrak{h}_{R}^{*}$ be dominant integral. Then, it was proved in [6, Theorem 1]

that the form $(\cdot|\cdot)_{\lambda}$ is positive definite. In the last of this section, we estimate
the norm of the action of each root vector of a root $\alpha$ , as a linear map from
a weight space $L(\lambda)_{\mu}$ into $L(\lambda)_{\mu+\alpha}$ with respect to the restriction of $(\cdot|\cdot)_{\lambda}$ . Since
any weight space is finite-dimensional, this norm is finite. Using this estimation,
we see that all the elements of $\mathfrak{g}$ have finite norms as operators on $L(\lambda)$ if and
only if dim $\mathfrak{g}$ is finite.
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2.1. Irreducible highest weight modules. At first, we recall the definition
of Verma modules for $\mathfrak{g}$ . Let $\lambda\in \mathfrak{h}^{*}$ , and $L_{\lambda}$ be the left ideal of $U(\mathfrak{g})$ generated
by $\{h-\lambda(h)|h\in \mathfrak{h}\}$ and $\mathfrak{n}_{+}$ . Here, for a Lie algebra $\mathfrak{a},$

$U(\mathfrak{a})$ is the universal
enveloping algebra of $\mathfrak{a}$ . The Verma module $M(\lambda)$ is defined by

(2.1.1) $M(\lambda)=U(\mathfrak{g})/L_{\lambda}$ ,

where $U(\mathfrak{g})$ is considered as a $U(\mathfrak{g})$-module by left multiplications.
We denote by $L(\lambda)$ a unique irreducible quotient of $M(\lambda)$ and by $P(\lambda)$ the

set of all weights of $L(\lambda)$ .
For each $\lambda\in \mathfrak{h}^{*}$ , we define a subset $S(\lambda)$ of the index set $\{$ 1, $\cdots$ , $n\}$ of the

GCM $A=(a_{ij})_{1\leq i.f\leq n}$ by

(2.1.2) $S(\lambda)=\{i|(\lambda|\alpha_{i})\neq 0$ , or there exists a sequence $i_{0},$ $\cdots$ , $i_{p}=i$

such that $(\lambda|\alpha_{i_{0}})\neq 0$ and $a_{i_{q}t_{q+1}}\neq 0$ for all $q=0,$ $\cdots$ , $P-1$ }.

Let $A_{1}=(a_{ij})_{i.j\in SC\lambda)}$ and $A_{g}=(a_{ij})_{i.j\in t1\ldots..n\}-S(\lambda)}$ . Then, we have

(2.1.3) $\{\begin{array}{l}\mathfrak{g}=\mathfrak{g}(A_{1})\oplus \mathfrak{g}(A_{2}) (direct sum of ideals),\mathfrak{h}=\mathfrak{h}(A_{1})\oplus \mathfrak{h}(A_{2}).\end{array}$

Moreover, we see that $\mathfrak{g}(A_{z})$ (resp. $\mathfrak{n}_{\pm}(A_{1})$) acts trivially (resp. faithfully) on
$L(\lambda)$ , and that $L(\lambda)$ is irreducible as a $\mathfrak{g}(A_{1})$-module. These facts imply that,
in case we treat $L(\lambda)$ , we may assume $S(\lambda)$ to be equal to the whole set
$\{1, \cdots n\}$ .

2.2. Contravariant Hermitian form. For any $x\in \mathfrak{g}$ , we put

(2.2.1) $x^{*}=-\omega_{0}(x)$ .
$\mathfrak{g}\ni xarrow x^{*}\in \mathfrak{g}$ is an involutive conjugate linear antiautomorphism.

Let $V$ be a g-module, and $\langle\cdot, \cdot\rangle$ a sesquilinear form on $V$ . If $\langle\cdot, \cdot\rangle$ satisfies
the following property, then we call it a contravariant form. For all $v,$ $w\in V$ ,
$x\in U(\mathfrak{g})$

(2.2.2) $\langle xv, w\rangle=\langle v, x^{*}w\rangle$ ,

where $U(\mathfrak{g})\ni xarrow x^{*}\in U(\mathfrak{g})$ is the unique antiautomorphism induced by (2.2.1).

Denote by $P$ the projection from $U(\mathfrak{g})$ onto $U(\mathfrak{h})$ with respect to the decom-
position $U(\mathfrak{g})=U(\mathfrak{h})\oplus(U(\mathfrak{g})\mathfrak{n}_{+}+\mathfrak{n}_{-}U(\mathfrak{g}))$ . Since $\mathfrak{h}$ is abelian, we can identify $U(\mathfrak{h})$

with the polynomial ring $C[\mathfrak{h}^{*}]$ on $\mathfrak{y}*canonically$ . For each $\lambda\in \mathfrak{h}^{*}$ , put

(2.2.3) $\langle x|y\rangle_{\lambda}=P(y^{*}x)(\lambda)$ .
Clearly, $\langle\cdot|\cdot\rangle_{\lambda}$ is a contravariant sesquilinear form. Moreover, we have

LEMMA 2.2.1. If $\lambda\in \mathfrak{h}_{R}^{*}$ , then $\langle\cdot|\cdot\rangle_{\lambda}$ is a Hermitian form.
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PROOF. By definition, $*$ is equal to the identity on $U(\mathfrak{h}_{R})$ and $U(\mathfrak{h})=$

$C\otimes_{R}U(\mathfrak{h}_{R})$ . So, $U(\mathfrak{h})$ is $*$-invariant and the restriction of $*toU(\mathfrak{h})$ is equal to
the conjugation with respect to $U(\mathfrak{h}_{R})$ . Therefore, we have

(2.2.4) $P(x^{*})=P(x)^{*}$ ,

(2.2.5) $y^{*}(\lambda)=\overline{y(\lambda)}$

for all $x,$ $y\in U(\mathfrak{h})$ and all $\lambda\in \mathfrak{h}_{R}^{*}$ . The lemma is clear from (2.2.4) and (2.2.5).
Q. E. D.

LEMMA 2.2.2. Let $\lambda\in \mathfrak{h}_{R}^{*}$ . The left ideal $L_{\lambda}$ of $U(\mathfrak{g})$ is contained in

$Ker\langle\cdot|\cdot\rangle_{\lambda}=$ { $x\in U(\mathfrak{g})|\langle y|x\rangle_{\lambda}=0$ for all $y\in U(\mathfrak{g})$ }.

PROOF. By definition, $P(y^{*}x)=0$ for all $x\in \mathfrak{n}_{+}$ and $y\in U(\mathfrak{g})$ . Hence
$\mathfrak{n}_{+}\subset Ker_{\backslash }’\cdot|\cdot\rangle_{\lambda}$ .

For any $h\in \mathfrak{h}$ and any $x\in \mathfrak{n}_{+}$ , we have

$xh=hx+[x, h]\in U(\mathfrak{g})\mathfrak{n}_{+}$ ,

and so it holds that

(2.2.6) $(\mathfrak{n}_{-}U(\mathfrak{g})+U(\mathfrak{g})\mathfrak{n}_{+})U(\mathfrak{h})\subset \mathfrak{n}_{-}U(\mathfrak{g})+U(\mathfrak{g})\mathfrak{n}_{+}$ .

Therefore, we have

(2.2.7) $P(y^{*}x)=P(y^{*})x$

for all $x\in U(\mathfrak{h})$ and $y\in U(\mathfrak{g})$ .
Let $h\in \mathfrak{h}$ . It follows from (2.2.7) that

$P(y^{*}(h-\lambda(h)))(\lambda)=P(y^{*})(\lambda)\cdot(h-\lambda(h))(\lambda)=0$ .

for all $y\in U(\mathfrak{g})$ . Hence $\{h-\lambda(h)|h\in \mathfrak{h}\}\subset Ker\langle\cdot|\cdot\rangle_{\lambda}$ .
$Ker\langle\cdot|\cdot\rangle_{\lambda}$ is a left ideal of $U(\mathfrak{g})$ by its contravariance and contains gener-

ators of left ideal $L_{\lambda}$ as proved above. Therefore, the lemma holds. Q. E. D.

Let $\lambda\in \mathfrak{h}_{R}^{*}$ . By Lemma 2.2.2, $\langle\cdot|\cdot\rangle_{\lambda}$ defines a contravariant Hermitian form
on $M(\lambda)$ , which will be denoted by $(\cdot|\cdot)_{\lambda}$ .

LEMMA 2.2.3. $Ker(\cdot|\cdot)_{\lambda}$ is the largest prOper submodule of $M(\lambda)$ .
PROOF. Since $(\cdot|\cdot)_{\lambda}$ is contravariant, $Ker(\cdot|\cdot)_{\lambda}$ is a submodule of $M(\lambda)$ .

Let $v_{0}$ be the canonical image in $M(\lambda)=U(\mathfrak{g})/L_{\lambda}$ of 1 in $U(\mathfrak{g})$ . By definition,
$(v_{0}|v_{0})_{\lambda}=1$ , and so the submodule $Ker(\cdot|\cdot)_{\lambda}$ is proper.

Let $V$ be a proper submodule of $M(\lambda)$ and $\mu$ a weight of $V$ . Then $\mu<\lambda$ ,
and so, for any weight vector $v$ of weight $\mu$ , there exists $x\in U(\mathfrak{n}_{-})\mathfrak{n}$-such that
$v=xv_{0}$ . Since $(U(\mathfrak{n}_{-})\mathfrak{n}_{-})^{*}=U(\mathfrak{n}_{+})\mathfrak{n}_{+}$ and $\mathfrak{n}_{+}v_{0}=0$ , we have
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$(v|v_{0})_{\lambda}=(v_{0}|x^{*}v_{0})_{\lambda}=(v_{0}|0)_{\lambda}=0$ .
Hence, $V$ is orthogonal to $v_{0}$ and to $U(\mathfrak{g})v_{0}=M(\lambda)$ with respect to $(\cdot|\cdot)_{\lambda}$ because
$(\cdot|\cdot)_{\lambda}$ is contravariant. This proves the lemma. Q. E. D.

By this lemma, $(\cdot|\cdot)_{\lambda}$ on $M(\lambda)$ induces a non-degenerate contravariant
Hermitian form on $L(\lambda)$ . We denote it by the same notation $(\cdot|\cdot)_{\lambda}$ . The
following proposition was proved in [6, Theorem 1], by means of which we
can construct our groups corresponding to the unitary form $f$ in the next
section.

PROPOSITION 2.2.4 [6, Theorem 1]. If $\lambda$ is dominant integral, then the
Hermitian form $(\cdot|\cdot)_{\lambda}$ on $L(\lambda)$ is Positive definite.

In the rest of this paper, we always assume that $\lambda=\Lambda$ is a dominant
integral element of $\mathfrak{h}_{R}^{*}$ such that $(\Lambda|\alpha)>0$ for some $\alpha\in\Delta_{+}$ .

2.8. Estimate of the norm of the action of root vectors on $L(\Lambda)$ . Let
$\alpha\in\Delta_{+}$ . Take a root vector $x_{\alpha}\in \mathfrak{g}^{a}$ such that $\Vert x_{a}\Vert_{0}=1$ . From (1.1.1), we have

(2.3.1) $\{\begin{array}{l}[x_{a}, x_{\alpha}^{*}]=\nu^{-1}(\alpha),[\nu^{-1}(\alpha), x_{\alpha}]=(\alpha|\alpha)x_{a}, [\nu^{-1}(\alpha), x_{\alpha}^{*}]=-(\alpha|\alpha)x_{\alpha}^{*}.\end{array}$

Hence, the subspace $\mathfrak{g}(x_{a})=Cx_{a}^{*}+C\nu^{-1}(\alpha)+Cx_{\alpha}$ is a subalgebra of $\mathfrak{g}$ such that

(2.3.2) $\{\begin{array}{l}\mathfrak{g}(x_{a})\cong sl_{2}(C) if (\alpha|\alpha)\neq 0,\mathfrak{g}(x_{\alpha})\cong H_{3} if (\alpha|\alpha)=0,\end{array}$

where $H_{s}$ denotes the 3-dimensional Heisenberg algebra over $C$ , that is, $H_{\theta}$ is
the 3-dimensional complex Lie algebra with a basis $\{a, b, c\}$ such that $[a, b]=c$

and $[c, a]=[c, b]=0$ .
Note that the choice of $x_{a}$ is not unique since dim $\mathfrak{g}^{\alpha}$ is not necessarily

equal to 1.
Let $\mu\in \mathfrak{y}*$ and $L(\Lambda)_{\mu}$ and $L(\Lambda)_{\mu+a}$ the weight spaces of weight $\mu$ and $\mu+\alpha$

respectively. It holds that

$v\in L(\Lambda)_{\mu}\cap(x_{a}^{*}L(\Lambda)_{\mu+a})^{\perp}\Leftrightarrow v\in L(\Lambda)_{\mu}$ and $(v|x_{a}^{*}u)_{\Lambda}=0$ for all $u\in L(\Lambda)_{\mu+\alpha}$

$\Leftrightarrow v\in L(\Lambda)_{\mu}$ and $(x_{\alpha}v|u)_{\Lambda}=0$ for all $u\in L(\Lambda)_{\mu+\alpha}$

$\Leftrightarrow v\in L(\Lambda)_{\mu}$ and $x.v=0$ (since $x_{\alpha}v\in L(\Lambda)_{\mu+a}$).

Hence, $L(\Lambda)_{\mu}$ is decomposed into an orthogonal sum as
(2.3.3) $L(\Lambda)_{\mu}=\{v\in L(\Lambda)_{\mu}|x_{a}v=0\}\oplus(x_{a}^{*}L(\Lambda)_{\mu+\alpha})$ .
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For $v\in L(\Lambda)_{\mu}-\{0\}$ such that $x_{a}v=0$ , the $sub- \mathfrak{g}(x_{\alpha})$-module $U(\mathfrak{g}(x_{a}))v$ of $L(\Lambda)$

is the irreducible highest weight module with highest weight $\mu|C\nu^{-1}(\alpha)$ , because
it has a non-degenerate contravariant Hermitian form $(. |\cdot)_{\Lambda}|U(\mathfrak{g}(x_{\alpha}))v$ .

From the above argument, we see that

PROPOSITION 2.3.1. As a $\mathfrak{g}(x_{\alpha})$-module, $L(\Lambda)$ is an orthogonal direct sum of
irreducible highest weight modules of the form $U(\mathfrak{g}(x_{\alpha}))v$ with $v\in L(\Lambda)_{\mu}$ such
that $x_{a}v=0$ .

We estimate the norm of the action of $\mathfrak{g}(x_{\alpha})$ on each irreducible component
$U(\mathfrak{g}(x_{\alpha}))v$ .

For $i\in Z_{\geq 0}$ , we put

(2.3.4) $\{\begin{array}{ll}v_{i}=\Vert x_{a}^{*i}v\Vert_{\overline{\Lambda}^{1}}x_{a}^{*i}v if x_{\alpha}^{*i}v\neq 0v_{i}=0 if x_{a}^{*l}v=0.\end{array}$

Then, $\{v_{i}|v_{i}\neq 0\}$ is an orthonormal basis of the space $U(\mathfrak{g}(x_{a}))v$ , and it holds
that for $ieZ\geq 0$ that

(2.3.5) $\{\begin{array}{l}x_{\alpha}v_{i}\in Cv_{i-1}, x_{\alpha}^{*}v_{i}\in Cv_{i+1},\nu^{-1}(\alpha)v_{i}=(\mu-i\alpha|\alpha)v_{i},\end{array}$

where $v_{-1}=0$ . We define $\xi_{i}\in C$ by

(2.3.6) $x_{a}^{*}v_{i}=\xi_{i}v_{i+1}$ .
By contravariance of $(\cdot|\cdot)_{\Lambda},$

$x_{\alpha}$ is the adjoint operator of $x_{a}^{*}$ on $L(\Lambda)$ . Hence,

(2.3.7) $x_{\alpha}v_{i}=\overline{\xi_{i-1}}v_{i- 1}$ ,

where $\xi_{-1}=0$ . $(2.3.5)\sim(2.3.7)$ imply that

(2.3.8) $|\xi_{i}|^{g}=(i+1)((\mu|\alpha)-2^{-1}i(\alpha|\alpha))$ .
If we take $\Lambda$ as $\mu$ and if $(a_{ij})_{i.j\in StA)}$ is not of finite type, there exists
$\alpha\in\Delta_{+}^{im}((a_{ij})_{i,j\in S(\Lambda)})$ such that $(\Lambda|\alpha)>0$ (cf. [5, Chap. 4]), and so (2.3.8) together
with (1.1.3) implies the following theorem.

THFOREM 2.3.2. Let $\mathfrak{g}$ be a Kac-Moody algebra with a symmetrizable general-
ized Cartan matrix, $\mathfrak{h}$ its Cartan subalgebra and $\Lambda\in \mathfrak{h}^{*}$ is a dominant integral
element. Under the same notations as in \S 1.1, the following conditions (i), (ii)

and (iii) are equivalent to each other.
(i) $[\mathfrak{g}, \mathfrak{g}]\subset B(L(\Lambda))$ , the set of bounded linear operators on $L(\Lambda)$ .
(ii) $\mathfrak{g}\subset B(L(\Lambda))$ .
(iii) $S(\Lambda)=\emptyset$ or $(a_{ij}).J\in sc\Lambda)$ is the Cartan matrix of a finite dimensional

complex semisimple Lie algebra.
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\S 3. Groups associated with the unitary form $f$ of $\mathfrak{g}$ .
This section is the main part of this paper. We show that the exponential

map from $f$ into the group $U(\Lambda)$ of all unitary operators on $H(\Lambda)$ , the com-
pletion of $L(\Lambda)$ , can be defined by means of the usual power series expansion,
where $\Lambda$ is a dominant integral element of $\mathfrak{h}_{R}^{*}$ . The groups in the title are
defined as the closed subgroups $K^{A}$ of $U(\Lambda)$ generated by expf, for various $\Lambda$ .

These groups correspond to the unitary form $f$, and their “complexifications”,
corresponding to $\mathfrak{g}$ itself, are not discussed here. In our groups $K^{\Lambda}$ , exp $x$ is
defined for every element $x$ of $f$ , contrary to the case of Kac-Moody groups
where the exponential is defined only for elements of $\mathfrak{h}$ and root vectors of
real roots but not even for their linear combinations in general (cf. [9]). It
seems to us that our construction of the groups has an advantage at this point.

3.1. Definition of the exponential map. Denote by $H(\Lambda)$ the completion
of the pre-Hilbert space $L(\Lambda)$ . In the following, we will show that the expo-
nential map exp from $f$ into the group of unitary operators on $H(\Lambda)$ can be
defined by means of the usual power series expansion.

Let $\alpha\in\Delta_{+}$ and $x\in \mathfrak{g}^{a}$ . From the proof of [6, Theorem 1], we have the
inequality

(3.1.1) $\Vert xv\Vert_{\Lambda}^{2}\leqq 2^{-1}(|\Lambda+\rho|^{2}-|\mu+\rho|^{2})\cdot\Vert x\Vert_{0}^{2}\cdot\Vert v\Vert_{\Lambda}^{2}$ $(\mu eP(\Lambda), v\in L(\Lambda)_{\mu})$ ,

where $|\lambda|^{2}=(\lambda|\lambda)$ for $\lambda\in \mathfrak{h}^{*}$ and $\rho$ is an element of $\mathfrak{h}_{R}^{*}$ which takes the value 1
on each simple coroot.

Fix an inner product $(\cdot|\cdot)_{1}$ on $\mathfrak{h}$ such that

(3.1.2) $|(h|h’)|\leqq\Vert h\Vert_{1}\Vert h’\Vert_{1}$ $(h, h’\in \mathfrak{h})$ .
We denote by the same notation $(\cdot|\cdot)_{1}$ the inner product on $\mathfrak{y}*defined$ by
$(\lambda|\lambda’)_{1}=(\nu^{-1}(\lambda)|\nu^{-1}(\lambda’))_{1}$ for $\lambda,$ $\lambda’\in \mathfrak{h}^{*}$ . Then, we have

(3.1.3) $|\lambda(h)|=|(\nu^{-1}(\lambda)|h)|\leqq\Vert\nu^{-1}(\lambda)\Vert_{1}\Vert h\Vert_{1}=\Vert\lambda\Vert_{1}\Vert h\Vert_{1}$

for any $\lambda\in \mathfrak{h}^{*}$ and any $h\in \mathfrak{h}$ .
For $h,$ $h’\in \mathfrak{h}$ and $y,$ $y’\in \mathfrak{n}_{-}+\mathfrak{n}_{+}$ , put

(3.1.4) $(h+y|h’+y’)_{1}=(h|h’)_{1}+(y|y’)_{0}$ .
Then, $(\cdot|\cdot)_{1}$ is an inner product on $\mathfrak{g}$ and (3.1.1) is rewritten as
(3.1.1) $\Vert xv\Vert_{\Lambda}^{2}\leqq 2^{-1}(|\Lambda+\rho|^{2}-|\mu+\rho|^{2})\cdot\Vert x\Vert_{1}^{2}\cdot\Vert v\Vert_{\Lambda}^{2}$ .
From (1.1.1), it holds that

(3.1.5) $xx^{*}=x^{*}x+\Vert x\Vert_{1}^{2}\cdot v^{-1}(\alpha)$ .
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Hence, we have
$\Vert x^{*}v\Vert_{\Lambda}^{2}=(xx^{*}v|v)_{\Lambda}$

$=(x^{*}xv|v)_{\Lambda}+(\Vert x\Vert_{1}^{2}\nu^{-1}(\alpha)v|v)_{A}$

$=\Vert xv\Vert_{\Lambda}^{2}+(\mu|\alpha)\Vert x\Vert_{1}^{2}\Vert v\Vert_{\Lambda}^{2}$ ,
whence the inequality

(3.1.6) $\Vert x^{*}v\Vert_{\Lambda}^{2}\leqq 2^{-1}(|\Lambda+\rho|^{2}-|\mu+\rho|^{2}+2(\mu|\alpha))\Vert x^{*}\Vert_{1}^{2}\Vert v\Vert_{\Lambda}^{2}$

holds because $\Vert x^{*}\Vert_{1}=\Vert x\Vert_{1}$ by definition.
From (3.1.2), there holds that

(3.1.7) $(|\Lambda+\rho|^{2}-|\mu+\rho|^{2})^{1/2}\leqq\Vert\mu\Vert_{1}+\Vert\rho\Vert_{1}+\Vert\Lambda+\rho\Vert_{1}$ .

On the other hand, an easy calculation implies

$|\Lambda+\rho|^{2}-|\mu+\rho|^{2}+2(\mu|\alpha)=|\Lambda+\rho|^{2}-|\mu+\rho-\alpha|^{2}-2(\rho|\alpha)+(\alpha|\alpha)$ .
Here, if $\alpha$ is an imaginary root, then it holds that

$-2(\rho|\alpha)+(\alpha|\alpha)\leqq-2(\rho|\alpha)<0$

since $(\alpha|\alpha)\leqq 0$ by (1.1.3). If $\alpha$ is a real root, we have

$2(\rho|.\alpha)(\alpha|\alpha)^{-1}=\rho(2(\alpha|\alpha)^{-1}\nu^{-1}(\alpha))\geqq 1$

and so it holds that
$-2(\rho|\alpha)+(\alpha|\alpha)\leqq 0$

since $(\alpha|\alpha)>0$ by (1.1.2). In any case, the inequality $-2(\rho|\alpha)+(\alpha|\alpha)\leqq 0$ holds.
Therefore, we have

(3.1.8) $(|\Lambda+\rho|^{2}-|\mu+\rho|^{2}+2(\mu|\alpha))^{1/2}\leqq$ I $\mu\Vert_{1}+\Vert\rho\Vert_{1}+\Vert\alpha\Vert_{1}+\Vert\Lambda+\rho\Vert_{1}$ .
Put $C_{\Lambda}=\Vert\rho\Vert_{1}+\Vert\Lambda+\rho\Vert_{1}$ . By (3.1.3), (3.1.1) and $(3.1.6)\sim(3.1.8)$ , the following
inequality holds for any $\alpha\in\Delta\cup\{0\},$ $x_{\alpha}\in \mathfrak{g}^{\alpha},$ $\mu\in P(\Lambda)$ and $v\in L(\Lambda)_{\mu}$ (we Put
$\mathfrak{g}^{0}=\mathfrak{h})$ :
(3.1.9) $\Vert x_{a}v\Vert_{\Lambda}\leqq(\Vert\mu\Vert_{1}+\Vert\alpha\Vert_{1}+C_{\Lambda})\Vert x_{a}\Vert_{1}\Vert v\Vert_{A}$ .
Let $x=\Sigma_{a\in\Delta\cup\{0\}}x_{a}\in \mathfrak{g},$ $x_{\alpha}\in \mathfrak{g}^{\alpha}$ , and $\Delta(x)=\{\alpha\in\Delta u\{O\}|x_{\alpha}\neq 0\}$ . For $\mu\in P(\Lambda)$ and
$veL(\Lambda)_{\mu}$ , we have by (3.1.9)

$\Vert x^{m}v\Vert_{\Lambda}\leqq\sum_{(\beta_{1}\ldots..\beta_{m})\in\Delta(x)}m\Vert x_{\beta_{m}}\cdots x_{\beta_{1}}v\Vert_{\Lambda}$

$\leqq\Sigma\{r^{m_{I}}$ (Il $\mu+\beta_{1}+\cdots+\beta_{j- 1}\Vert_{1}+\Vert\beta_{j}\Vert_{1}+C_{\Lambda}$ ) $\Vert x_{\beta_{j}}\Vert_{1}\}\cdot\Vert v\Vert_{\Lambda}$

$\leqq\Sigma\{\Pi(\Vert\mu\Vert_{1}+C_{\Lambda}+\Vert\beta_{1}\Vert_{1}+\cdots+\Vert\beta_{j}|1_{1})\Vert x_{\beta_{j}}\Vert_{1}\}$ . lvli $\Lambda$ .
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LEMMA 3.1.1. There holds that

(3.1.10) $\Vert x^{m}v\Vert_{\Lambda}\leqq\prod_{j=1}^{m}(\Vert\mu\Vert_{1}+C_{\Lambda}+j\cdot\sup_{\in}\Vert\beta\Vert_{1})\beta\Delta(x)(\#\Delta(x))^{m}\cdot\Vert x\Vert_{1}^{m}\cdot\Vert v\Vert_{\Lambda}$

From this inequality, we have the following corollary.

COROLLARY 3.1.2. Fix $0<\epsilon<1$ and $v\in L(\Lambda)$ . Then, the series

$\sum_{m=0}^{\infty}\Vert(m!)^{-1}x^{m}v\Vert_{\Lambda}$

converge uniformly and are bounded on the set

$\{x\in \mathfrak{g}|(_{\beta}\sup_{\in\Delta(x)}\Vert\beta\Vert_{1})\cdot(\#\Delta(x))\cdot\Vert x\Vert_{1}\leqq\epsilon,$ $\Vert x\Vert_{1}\cdot(\#\Delta(x))\leqq(1-\epsilon)^{-1}\}$ .

Let $0<\epsilon<1$ and put

(3.1.11) $B_{\epsilon}=B_{\text{\’{e}}}(A)= \{x\in \mathfrak{g}|(_{\beta}\sup_{\in\Delta_{Cx)}}\Vert\beta\Vert_{1})\cdot(\#\Delta(x))\cdot\Vert x\Vert_{1}\leqq\epsilon$ ,

$\Vert x\Vert_{1}\cdot(\#\Delta(x))\leqq(1-\epsilon)^{-1}\}$

(3.1.11’) $B=B(A)= \bigcup_{0<\epsilon<1}B_{\epsilon}=\{x\in \mathfrak{g}|(_{\beta}\sup_{\in\Delta(x)}\Vert\beta\Vert_{1})\cdot(\#\Delta(x))\cdot\Vert x\Vert_{1}<1\}$ .

We note that $B$ and $B_{\epsilon}$ are not convex although they are symmetric and
absorbing.

By Corollary 3.1.2, for $x\in B$ , we can define a linear map exp $x$ from pre-
Hilbert space $L(\Lambda)$ into its completion $H(\Lambda)$ by

(3.1.12) $( \exp x)v=\sum_{m=0}^{\infty}(m!)^{-1}x^{m}v$ , $veL(\Lambda)$ .

If $x\in B\cap f$, by the standard calculation, we see that exp $x$ is an isometry.
Hence, exp $x$ is extended to an isometry from $H(\Lambda)$ into $H(\Lambda)$ uniquely, which
will be denoted again by exp $x$ .

We prove the following two lemmas, key to define our group associated
to $f$ .

LEMMA 3.1.3. For every $x\in B\cap f,$ $exp.x$ is an unitary operatOr on $H(\Lambda)$ and
we have

$(\exp x)^{-1}=\exp(-x)$ .
PROOF. For $u,$ $v\in L(\Lambda)$ , we have
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$(( \exp x)u|v)_{\Lambda}=\sum_{m=0}^{\infty}(m!)^{-1}(x^{m}u|v)_{\Lambda}$

$= \sum_{rn=0}^{\infty}(m!)^{-1}(u|(-x)^{m}v)_{\Lambda}=(u|(\exp(-x))v)_{\Lambda}$ .

Since $\exp(\pm x)$ are both isometries, the equality

(3.1.13) $((\exp x)u|v)_{\Lambda}=(u|(\exp(-x))v)_{\Lambda}$

is also true for $u,$ $v\in H(\Lambda)$ . Hence, there holds that

$v\in((\exp x)H(\Lambda))^{\perp}\Rightarrow(\exp(-x))v\in H(\Lambda)^{\perp}$

$=(\exp(-x))v=0$ $\Rightarrow v=0$ ,

whence $((\exp x)H(\Lambda))^{\perp}=0$ . Since exp $x$ is an isometry, the image $(\exp x)H(\Lambda)$

is closed and so $(\exp x)H(\Lambda)=H(\Lambda)$ . Therefore, exp $x$ is an unitary operator
and, from (3.1.13), the lemma holds. Q. E. D.

LEMMA 3.1.4. For any $x,$ $y\in B\cap f$ , if $[x, y]=0$ , then exp $x$ and exp $y$ com-
mute. Moreover, if $x+y\in B\cap f$ , then there holds the equality

$(\exp x)\cdot(\exp y)=\exp(x+y)$ .

PROOF. Let $u,$ $v\in L(\Lambda)$ , then

$((\exp x)(\exp y)u|v)_{\Lambda}=((\exp y)u|(\exp(-x))v)_{\Lambda}$

$=$ $\sum_{p.q=0}^{\infty}(p!\cdot q!)^{-1}(y^{p}u|(-x)^{q}v)_{\Lambda}$

$= \sum_{m=0}^{\infty}\sum_{p\geq 0,q\geq 0.p+q=m}(p!\cdot q!)^{-1}(y^{p}u|(-x)^{q}v)_{\Lambda}$

$= \sum_{m=0}^{\infty}$

$\sum_{p.q}(p!\cdot q!)^{-1}(x^{q}y^{p}u|v)_{\Lambda}$

$= \sum_{m=0}^{\infty}(m!)^{-1}((x+y)^{m}u|v)_{\Lambda}$ .

The similar calculation leads us to the equality

$(( \exp y)(\exp x)u|v)_{\Lambda}=\sum_{m=0}^{\infty}(m!)^{-1}((y+x)^{7n}u|v)_{\Lambda}$ .

Hence, $(\exp x)(\exp y)u-(\exp y)(\exp x)u\in L(\Lambda)^{\perp}=H(\Lambda)^{\perp}=0$ for all $u\in L(\Lambda)$ and
so for all $u\in H(\Lambda)$ . Thus, the first statement is true. The second statement
is clear from the above equalities. Q. E. D.

Let $U(\Lambda)$ be the group of unitary operators on $H(\Lambda)$ equipped with the
strong topology of operators. We define the map exp from $f$ into $U(\Lambda)$ as
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follows. For any $x\in f$, there exists a positive integer $m$ such that $m^{-1}xeB$

and then, we put

(3.1.14) $\exp x=(\exp m^{-1}x)^{m}$ .
By Lemmas 3.1.3 and 3.1.4, this definition is independent of the choice of $m$

and it holds that for any $x,$ $y\in f$

(3.1.15) $(\exp x)^{-1}=\exp(-x)$ ,

(3.1.16) $(\exp x)(\exp y)=\exp(x+y)$ if $[x, y]=0$ .

3.2. Groups $K^{\Lambda}$ and $H^{\Lambda}$ . Denote by $K^{\Lambda}=K^{\Lambda}(A)$ the closed subgroup of
$U(\Lambda)$ generated by expf, and put $H^{\Lambda}=H^{\Lambda}(A)=\exp\sqrt{-1}\mathfrak{h}_{R}$ . By (3.1.15) and
(3.1.16), $H^{A}$ is a subgroup of $K^{\Lambda}$ .

Let $T$ be the l-dimensional torus. We consider the direct product group
$T^{P(\Lambda)}$ , where $P(\Lambda)$ is, as before, the set of all weights of $L(\Lambda)$ . For any
$(c_{\lambda})_{\lambda\in P(\Lambda)}\in T^{P(\Lambda)}$ , we define an element $c$ of $U(\Lambda)$ by

(3.2.1) $cv=c_{\lambda}v$ $(v\in L(\Lambda)_{\lambda})$ .
The map $(c_{\lambda})arrow c$ is an isomorphism from $T^{P(\Lambda)}$ into $U(\Lambda)$ as topological groups.
By this isomorphism, we regard $T^{P(\Lambda)}$ as a compact subgroup of $U(\Lambda)$ . It is
clear that $H^{\Lambda}$ is a subgroup of $T^{P(\Lambda)}$ :
(3.2.2) $H^{\Lambda}=\{(e^{\lambda(h)})_{\lambda\in P(\Lambda)}=\exp h\in T^{P(\Lambda)}|h\in\sqrt{-1}\mathfrak{h}_{R}\}$

and that $exp;\sqrt{-1}\mathfrak{h}_{R}arrow T^{P(\Lambda)}$ is continuous.
Let $\underline{F}(\Lambda)$ be the subgroup of $\mathfrak{y}*generated$ by $P(\Lambda)$ . We have the follow-

ing lemma.

LEMMA 3.2.1. The subgroup $E(A)$ is expressed as

$-(\Lambda)=Z\Lambda+$
$\sum_{i\in S(\Lambda)}Z\alpha_{l}$ .

Proof is exactly the same as that of [3, \S 15, Lemma (15.2)].

By this lemma, we see that $--(\Lambda)$ is discrete if and only if the set
$\{\Lambda, \alpha_{i}(ieS(\Lambda))\}$ is linearly independent or else Q-linearly dependent. Hence,
$E(A)$ is always discrete if $A$ is of affine type or is non-degenerate because in
both cases the above set is linearly independent. In case where $-\cdot-(\Lambda)$ is
discrete, $H^{\Lambda}$ is compact as shown below.

THEOREM 3.2.2. Assume $\Xi(\Lambda)$ to be discrete. Then, $H^{\Lambda}$ is compact, and the
dual of the compact abelian group $H^{\Lambda}$ is isomorphjc to $\Xi(\Lambda)$ .
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PROOF. Let $X$ be the kernel of $exp;\sqrt{-1}\mathfrak{h}_{R}arrow T^{P(\Lambda)}$ . By (3.2.2), $X$ is
equal to { $h\in\sqrt{-1}\mathfrak{h}_{R}|\lambda(h)\in 2\pi\sqrt{-1}Z$ for all $\lambda\in P(\Lambda)$ }. Hence, by the Pontrjagin
duality of locally compact abelian groups, we have

(3.2.3) $\overline{--(\Lambda)}\cong(\sqrt{-1}\mathfrak{h}_{R}/X)^{\wedge}$ ,

where $-means$ the closure in $\mathfrak{y}*$ and $-$ the dual of a locally compact abelian
group. Therefore, if $E(A)$ is discrete, $\sqrt{-1}\mathfrak{h}_{R}/X$ is compact. Then, $\sqrt{-1}\mathfrak{h}_{R}/X$

is isomorphic to $H^{\Lambda}$ as a topological group because exp induces a continuous
bijective homomorphism from $\sqrt{-1}\mathfrak{h}_{R}/X$ onto $H^{A}$ , and any continuous bijection
from a compact space onto a Hausdorff space is homeomorphic. Q. E.D.

3.3. Irreducibility of the action of $K^{\Lambda}$ on $H(\Lambda)$ . Fix a positive number
$\epsilon<1$ and recall the definition (3.1.11) of the set B. on which the series
$\sum_{\gamma n\Leftarrow 0}^{\infty}\Vert(m!)^{-1}x^{2n}v\Vert_{\Lambda}$ converge and are bounded for any $veL(\Lambda)$ . For any $x\in f$,
there exists a positive number $\delta<1$ such that if $t\in R$ and $|t|<\delta$ then $txeB_{\epsilon}$ .
Hence, for any $v\in L(\Lambda)$ and $t_{0}eR$ , the map $\{t\in R||t-t_{0}|\leqq\delta\}\ni tarrow(\exp tx)v\in H(\Lambda)$

is analytic.
By a standard calculation, we get

(3.3.1) $d((\exp tx)v)/dt=(\exp tx)(xv)$ $(veL(\Lambda))$ .
Making use of this formula, we can prove the irreducibility of the natural
action of $K^{\Lambda}$ on $H(\Lambda)$ as follows.

THEOREM 3.3.1. The natural action of $K^{\Lambda}$ on $H(\Lambda)$ is irreducible.

PROOF. Let $T$ be a bounded linear operator on $H(\Lambda)$ which commutes with
the action of $K^{A}$ . In particular, $T$ commutes with $H^{\Lambda}$ and so each weight
space is invariant under $T$ . Hence, $T$ dePnes a linear operator on $L(\Lambda)$ which
we denote by the same symbol $T$ . Therefore, by (3.3.1), for any $x\in f$ and
any $v\in L(\Lambda)$ , both sides of the equality $(\exp tx)Tv=T(\exp tx)v$ are differentiable
at $t=0$ , and we get the equality $xTv=Txv$ . Since any linear operator on $L(\Lambda)$

commuting with $f$ (and so with g) is a scalar multiples of the identity operator,
the restriction $T|L(\Lambda)$ is a scalar operator and so is $T$ itself. Q. E. D.

\S 4. Relations with the Kac-Moody groups.

In this section, we discuss the relation between the group $K^{\Lambda}$ and the
subgroup of the Kac-Moody group which should correspond to the unitary
form $f$ .

4.1. Definition of the Kac-Moody group. At first, we recall the definition
of Kac-Moody groups corresponding to $\mathfrak{g}$ given in [9].



100 K. SUTO

Let $\tilde{G}$ be the free product group of root spaces of real roots as additive
groups. We denote by $i_{\alpha}$ the inclusion $\mathfrak{g}^{\alpha}arrow\tilde{G}$ for each $\alpha e\Delta^{re}$ , the set of real
roots. Let $(\pi, V)$ be an integrable representation of $\mathfrak{g}$ , that is, a representation
of $\mathfrak{g}$ such that $\pi(x)$ is a locally nilpotent operator for any root vector $x$ of any
real root $\alpha$ . (The irreducible highest weight g-module $L(\Lambda)$ is an example of
such a representation.) Then, $\pi$ is integrated to a representation of $\tilde{G}$ by

$\pi(i_{a}(x))=\exp\pi(x)$ .

The Kac-Moody group $G_{0}$ is the quotient of $\tilde{G}$ by the intersection of kernels
of all representations of $\tilde{G}$ defined from integrable representations of 9 in such
a way as described above.

4.2. The subgroup of $G_{0}$ corresponding to the unitary form. We denote
again by $\omega_{0}$ the automorphism on $G_{0}$ induced by $\omega_{0}$ on $\mathfrak{g}$ . Let $K_{0}$ be the set of
fixed points of $\omega_{0}$ in $G_{0}$ . Then, $K_{0}$ should be the subgroup of $G_{0}$ corresponding
to the subalgebra $f$ of $\mathfrak{g}$ . It was proved in [9, Corollary 4] that $K_{0}$ is generated
by $\exp(\mathfrak{g}(\alpha)\cap f)(\alpha\in\Delta_{+}^{re})$ . Here, we write $\mathfrak{g}(\alpha)$ for $\mathfrak{g}(x_{\alpha})$ , the subalgebra generated
by $x_{\alpha}$ and $x_{\alpha}^{*}$ , in \S 2.3 because, if $\alpha e\Delta^{re}$ , then dimg’ $=1$ and so $g(x.)$ depends
only on $\alpha$ and not on the choice of $x_{\alpha}e\mathfrak{g}^{\alpha}$ . Hence, if we denote by $\pi_{\Lambda}$ the
representation of $G_{0}$ on $L(\Lambda),$ $\pi_{\Lambda}(K_{0})$ can be regarded as a subgroup of $K^{\Lambda}$ .

The Kac-Moody group in [9] is minimal in a certain sense, and larger
$g^{roups}$ had been given by Garland [3] in case of non-twisted affine type, the
simplest class of infinite-dimensional Kac-Moody algebras, and by Tits [10] in
general case. Existence of the largest group was proved by Mathieu [7].
Roughly speaking, these groups are formal extension of the group in [9] in
the direction of positive roots (but not in the direction of negative roots).

Their subgroups corresponding to $f$ remain to be the same, not extended
from $K_{0}$ .

4.3. Relation between $K_{0}$ and $K^{\Lambda}$ . By definition, $H^{\Lambda}$ normalizes $\pi_{\Lambda}(K_{0})$

and so $H^{\Lambda}\cdot\pi_{\Lambda}(K_{0})$ is a subgroup of $K^{\Lambda}$ . Since $\mathfrak{g}(\alpha)\cap f$ (a $e\Delta^{re}$) and $\sqrt{-1}\mathfrak{h}_{R}$

generate $f$ as a Lie algebra, the following problem naturally arises.

PROBLEM 4.3.1. Does the closure of $H^{\Lambda}\cdot\pi_{\Lambda}(K_{0})$ equal $K^{\Lambda\rho}$

If the Campbell-Hausdorff formula holds for $K^{A}$ , the problem is clearly
affirmative. Of course, it is quite possible that the formula does not hold in
our infinite-dimensional case and the problem might be solved negatively. How-
ever, the formula holds formally for any Lie algebra (cf. Cartier [1]). To
give an exact meaning to the formula, we need a suitable topology on the Lie
algebra $f$ with which the convergence of the formal series will be considered.

Such a topology has not been found for $f$ until now. The difficulty lies in
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the following point. If $\alpha\in\Delta^{im}$ , then $m\alpha$ is also a root for any non-zero integer
$m$ (see [4, \S 4, Lemma 14]). Therefore, for any $h\in \mathfrak{h}$ such that $\alpha(h)\neq 0$ , we
have

$\sup_{\in}|\beta(h)|=\infty$ .

This means that the eigenvalues of ad $h$ are not bounded. Hence, for any
vector topology of $f$, ad $h$ is not bounded as an operator on $f$ . Therefore, if
$\Delta^{im}\neq\emptyset$ , that is, dim f $=\infty$ , there is no topology in which $f$ is a normed Lie
algebra. This fact causes so much difficulty to define a suitable topology on $f$ .

\S 5. Relations with the groups constructed on lowest weight modules.

In this section, first we define a conjugate linear bijection $\Omega_{0}$ from the
highest weight module $L(\Lambda)$ onto the lowest weight module $L^{*}(\Lambda)$ with lowest
weight $-\Lambda$ which commutes with the action of $f$ . Here, $\Lambda$ is a dominant
integral element of $\mathfrak{h}_{R}^{*}$ as before.

By making use of this bijection, it is proved that there exists a contra-
variant inner product on $L^{*}(\Lambda)$ , and that the group $K^{\Lambda}$ constructed in \S 3 is
represented unitarily and faithfully on the completion $H^{*}(\Lambda)$ of the pre-Hilbert
space $L^{*}(\Lambda)$ . This representation of $K^{\Lambda}$ can be identified, through $\Omega_{0}$ , with
the contragredient of its natural unitary representation on $H(\Lambda)$ .

5.1. Irreducible lowest weight modules. For an arbitrary $\lambda\in \mathfrak{h}^{*}$ , we put

(5.1.1) $M^{*}(\lambda)=U(\mathfrak{g})/U(\mathfrak{g})(\mathfrak{n}_{-}+\{h+\lambda(h)|h\in \mathfrak{h}\})$ .

Then, $M^{*}(\lambda)$ is a lowest weight module with lowest weight $-\lambda$ , and has the
same universality in the category of lowest weight modules as $M(\lambda)$ has in
that of highest weight modules. We denote by $L^{*}(\lambda)$ the unique irreducible
quotient of $M^{*}(\lambda)$ , which is the unique (up to equivalence) irreducible lowest
weight module with lowest weight $-\lambda$ .

Let $P^{*}$ be the projection from $U(\mathfrak{g})$ onto $U(\mathfrak{h})$ according to the decomposition
$U(\mathfrak{g})=U(\mathfrak{h})\oplus(\mathfrak{n}_{+}U(\mathfrak{g})+U(\mathfrak{g})\mathfrak{n}_{-})$ . We define a sesquilinear form $\langle\cdot|\cdot\rangle_{\lambda}^{*}$ on $U(\mathfrak{g})$ by

(5.1.2) $\langle x|y\rangle_{\lambda}^{*}=P^{*}(y^{*}x)(-\lambda)$ .

By the same argument as in \S 2.2, it is shown that, for $\lambda\in \mathfrak{h}_{R}^{*}$ , the form $\langle\cdot|\cdot\rangle_{\lambda}^{*}$

is Hermitian and induces the unique (up to scalar multiples) non-degenerate
contravariant Hermitian form $(\cdot|\cdot)_{\lambda}^{*}$ on $L^{*}(\lambda)$ .

5.2. Conjugate linear f-homomorphism from $L(\lambda)$ onto $L^{*}(\lambda)$ . In this
subsection, we assume that $\lambda\in \mathfrak{h}_{R}^{*}$ .
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We denote by the same notation $\omega_{0}$ the unique extension to $U(\mathfrak{g})$ of the
conjugate linear automorphism $\omega_{0}$ of $\mathfrak{g}$ in \S 1.2. For every $h,$ $h’\in \mathfrak{h}_{R}$ , it holds
that

$\omega_{0}(h+\sqrt{-1}h’-\lambda(h+\sqrt{-1}h’))=-h+\sqrt{-1}h’-\lambda(h)+\sqrt{-1}\lambda(h’)$

$=-h+\sqrt{-1}h’+\lambda(-h+\sqrt{-1}h’)$ .
Hence, we have

(5.2.1) $\{\begin{array}{l}\omega_{0}(\mathfrak{n}_{+})=\mathfrak{n}_{-},\omega_{0}(\{h-\lambda(h)|h\in \mathfrak{h}\})=\{h+\lambda(h)|h\in \mathfrak{h}\}.\end{array}$

Therefore, $\omega_{0}$ defines a conjugate linear bijection $\Omega_{0}$ from the highest weight
module $M(\lambda)$ onto the lowest weight module $M^{*}(\lambda)$ . It is clear that there holds

(5.2.2) $\Omega_{0}(xv)=\omega_{0}(x)\Omega_{0}(v)$ $(x\in \mathfrak{g}, v\in M(\lambda))$ ,

and so $\Omega_{0}$ induces a conjugate linear bijection from $L(\lambda)$ onto $L^{*}(\lambda)$ , which we
denote by $\Omega_{0}$ again. This new $\Omega_{0}$ satisfies (5.2.2) with $veL(\lambda)$ .

By definition, we have

(5.2.3) $\omega_{0}(\omega_{0}(x)^{*})=x^{*}$ ,

(5.2.4) $P(x^{*})=P(x)^{*}$

for all $x\in U(\mathfrak{g})$ and

(5.2.5) $\omega_{0}(y^{*})={}^{t}y$

for all $y\in U(\mathfrak{h})$ , where $P$ is the projection from $U(\mathfrak{g})$ onto $U(\mathfrak{h})$ in \S 2.2 $and.the\lrcorner$

map $U(\mathfrak{g})\ni yarrow^{t}y\in U(\mathfrak{g})$ is the unique antiautomorphism given by $\mathfrak{g}\ni yarrow-y\in \mathfrak{g}$ .
Moreover, we have the following lemma.

LEMMA 5.2.1. As projections from $U(\mathfrak{g})$ onto $U(\mathfrak{h})$ , we have

$\omega_{0}\cdot P\cdot\omega_{0}=P^{*}$ .
PROOF. For any $x\in U(\mathfrak{g}),$ $\omega_{0}(x)$ is written as

$\omega_{0}(x)=y_{1}+y_{2}$

with $y_{1}\in U(\mathfrak{h})$ and $y_{2}\in \mathfrak{n}_{-}U(\mathfrak{g})+U(\mathfrak{g})\mathfrak{n}_{+}$ . Hence, we have

$x=\omega_{0}(\omega_{0}(x))=\omega_{0}(y_{1})+\omega_{0}(y_{2})$ ,

$\omega_{0}(y_{1})eU(h)$ and $\omega_{0}(y_{2})e\omega_{0}(\mathfrak{n}_{-}U(\mathfrak{g})+U(\mathfrak{g})\mathfrak{n}_{+})=\mathfrak{n}_{+}U(\mathfrak{g})+U(\mathfrak{g})\mathfrak{n}_{-}$ .
Therefore, it holds that

$P^{*}(x)=\omega_{0}(y_{1})=\omega_{0}(P(\omega_{0}(x)))$ . Q. E. D.
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Now, we can prove the following lemma, which plays the principal role in
the proof of the main result of this section.

LEMMA 5.2.2. It holds that

(5.2.6) $(\Omega_{0}(v_{1})|\Omega_{0}(v_{2}))_{\lambda}^{*}=(v_{2}|v_{1})_{\lambda}$ $(v_{1}, v_{2}\in L(\lambda))$ .

PROOF. Let $x,$ $y\in U(\mathfrak{n}_{-})$ and $v\in L(\lambda)_{\lambda}$ the canonical image of $1\in U(\mathfrak{g})$ . Then,

$(\Omega_{0}(xv)|\Omega_{0}(yv))_{\lambda}^{*}=P^{*}(\omega_{0}(y)^{*}\omega_{0}(x))(-\lambda)$ (by definition)

$=((\omega_{0}P\omega_{0})(\omega_{0}(y)^{*}\omega_{0}(x)))(-\lambda)$ (by Lemma 5.2.1)

$=({}^{t}(P(x^{*}y)))(-\lambda)$ (by $(5.2.3)\sim(5.2.5)$)

$=P(x^{*}y)(\lambda)=(yv|xv)_{\lambda}$ . Q. E. D.

COROLLARY 5.2.3. If $\lambda e\mathfrak{h}_{R}^{*}$ is dominant integral, then $(\cdot|\cdot)_{\lambda}^{*}$ is posjtive-

definite.
Thus, we can consider the completion $H^{*}(\Lambda)$ of $L^{*}(\Lambda)$ for the dominant

integral $\Lambda$ . By (5.2.2) and Lemma 5.2.2, we have the following theorem, one
of our main results, which establishes the duality between highest weight
modules and lowest weight modules same as in the finite-dimensional case.

THEOREM 5.2.4. Let $\Lambda\in \mathfrak{h}_{R}^{*}$ be a dominant integral element. Then, the group
$K^{A}$ is represented faithfully and unitarily on $H^{*}(\Lambda)$ , and this representati0n is the
contragredient of the natural one on $H(\Lambda)$ .
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Added in Proof. Recently, similar evaluations as (3.1.1), (3.1.1), (3.1.6)

and (3.1.9) are given by E. R. Carrington of Rutgers University. She kindly
sent me a handwritten manuscript (without title), and I am grateful to her.
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