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1. Introduction.

In this paper we will consider the following system of equations in three
space dimensions:

(L.1) idd/dt— A = — ¢,
(1.2) A2 /de*+ Ay = |2,

Where A, and A, denote positive selfadjoint elliptic operators of order 2 with
Dirichlet-zero conditions over a bounded or unbounded domain QCR:. If A=
—A and A,=—A-+I, where A denotes the spatial Laplacian, and are
the so called Klein-Gordon-Schrédinger (K-G-S) equations with Yukawa coupling
in which ¢ describes complex scalar neucleon field and ¢ describes real scalar
meson field.

The first study for the K-G-S equations was done by I Fukuda and M.
Tsutsumi [7]. They considered the initial boundary value problem for the
K-G-S equations under the initial conditions ¢(0, x)=¢,(x)e Hy2(Q)NH**¥Q),
60, x)=@,(x)s HY(QNH>%2), ¢,(0, x)=¢,(x)= H{-*(2) and the boundary con-
ditions ¢(¢, x)=¢(t, x)=0 for x<df and t=R. Here £ is a bounded domain in
R? and 02 is a smooth boundary of £. By using Galerkin’s method, they
proved the existence of global strong solutions of the K-G-S equations under
the above conditions. The initial condition on ¢,(x) is unnatural and should be
changed into the natural condition such as ¢,(x)e HiA(Q)NH**(Q).

The second study was done by J.B. Baillon and J. M. Chadam They
proved the existence of global strong solutions of the initial value problem of
the K-G-S equations under the initial conditions ¢,(x)e H**(R®) and ¢,(x)e
H**R® and ¢,(x)e H"*(R®). They obtained the above result by using L?-L¢
estimates for the elementary solution of the linear Schrodinger equation. The
L?-L? estimates are very useful methods to the initial value problem for the
K-G-S equations (see, e.g., A. Bachelot [1]). But such L?-L? estimates are
not obtained in the case of initial boundary value problem. Therefore it does
not seem that their method is directly applicable to the initial boundary value

problem and [1.2).
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Our purpose in this paper is to show the existence of global strong solutions
to and which include the K-G-S equations, under the same initial con-
ditions as [2] and the same boundary conditions as [7]. We will get the result
by using estimates of the nonlinearity in fractional order Besov spaces developed
by P. Brenner and W. von Wahl [4], nonlinear interpolation theorem obtained
by W. von Wahl [10], [11], and the inequality of H. Brezis and T. Gallouet
(see also H. Brezis and S. Wainger [6]).

We introduce the following standard notations. For a multiindex a=
(@y, as, as) we set |a|=2%.,a, and D*=0%10520¢3, where 0,=0d/0x;. Let 2 be
an open set of R® with smooth compact boundary 02 and s=0, 1<p=<co. For
simplicity, we denote the space of complex valued functions and real valued
functions by the same symbols. H*?(R?®), H*?(2) and H{ ?(2) (s'>1/2) are
the usual Sobolev spaces of fractional order s or s’ of LP? functions. Let
1<p, g<oo and s=0, s=[s]+o, where [s] denotes the largest integer smaller
than or equal to s and 0<o<1. The Besov space B%%R?) consists of tempered
distributions u such that

o A\
llulls,q,p—'——||uHLP(Rg)—l—(SOt'”qsup 2 IID“(uk-—u)]I%p(ga,—> !

1kRISt |@150s] t

is finite, where u,=u(x+k) (see [9]). The norms of L?(2) and H*?(Q) are
denoted by |- ||, and || ||, 5, respectively. We simply denote the norms of L?(R?)
and H*?(R?® by the same symbols as those of L?(2) and H*?(Q), respectively.
For any Banach space X, C*(I; X) denotes the space of k£ times continuously
differentiable functions from I to X.

2. Initial boundary value problem for (1.1) and (1.2) in L* Q).

Let a? ;(x) and a*(x) (1=7, j<3, k=1, 2) be infinitely differentiable real
valued functions on R® and every derivative of them is bounded in R3, more-
over we assume

CIEI* = 20 j=mat (066, = CHER,  at (x) = af (),
where £ R® and C>0. We define the operators A, and A, by
2.1) Apu = =233 ;-10(ak, j(x)(0u/0x;))/0x;+ a*(x)u

for ue D(A)=Hy*(Q)NH*¥Q), k=1, 2.

Then A; and A, are selfadjoint operators in L2%(£2). For our purpose it is no
loss of generality to assume that a*(x)=1>0 in 2, and that

2.2) Clluli,s = (Agu, @ (= [ (Awadz),  #=1,2,
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where C>0. Therefore, the fractional powers A, are defined in the standard
manner, and we have the relations (see [4])

(2.3)  H{*Q)C D(A) C H***9), 0=p=1,

2.4) H*»¥Q)= D4, 0=p<1/4),

(2.5)  HyQNH***(Q) = D(49), (1/2)=p=1,

2.6)  Clulsps = I Afulls = Culop.,  usD(AY), 0=p=l1, p+1/4.

Here and in the sequel C is a positive constant and will change from line to
line.

We will consider the initial boundary value problem for and with

the operators A, and A, defined by satisfying [(2.2).
Our main result is the following

THEOREM. Suppose that o= D(A,) is complex, ¢o=D(A,) and ¢, D(A}'?)
are real. Then there exists a strong solution of (1.1) and (1.2) such that

¢ € C(R; D(A)NCHR; LX),
¢ € C(R; D(ANNCHR ; DAY )NNCHR; LX) .

We now summarize some lemmas needed below to prove the The
following two lemmas are derived by direct calculations of the nonlinearity in
fractional order Besov space. We follow P. Brenner and W. von Wahl [4].

LEMMA 1. Let ue HV%* Q). Then we have
(2.7) [12]2]less,2 = Cllulls, 2l wllzse,e -

PrOOF. Let u be extended to the whole of R® as a function of H"**(R?)
by means of the H"*?Q)-extension operator (see, e.g., [9]). We denote the
extension by » and the resulting extension of |u]? to R?® also by |u|% If
|12 2] mers.2crsy can be estimated in the desired way our lemma is proved. By
Theorem 6.4.4 in [3] and the definition of the Besov space we obtain

(2.8) (%5 = Chla 2§12 sup 114 lz—lulzua‘—? v

From Hélder’s inequality we have

2.9) Haal*= il < Clulelus—uls.
and give
2.10 Iiet#ha < CluliClul( {1740 sup s —ul3)

= Clluli+Cllullellullers,o.o



492 N. Havasur and W. von WaAHL

By Theorems 6.4.4, 6.5.1 in [3] and we have This completes the
proof.

LEMMA 2. Let us H®¥%Q) and ve H¥>2(QNL>(2). Then we have
(2.11) - vlisr10,2 = Cllutllisro, o{[[V]]ar2, 2+ [V]]eo)

Proor. [2.11) is derived in the same way as in the proof of
Indeed we have

dt>1/2 .

J-vlisrns < Cluvlet C([t-¥5 sup. 38 1D%(wvy—u-0)35
0 kISt t

laTs1
On the other hand we have for |a|£1
(2.12) 1D*(ur-vi—u-v)lle = [Ws—0) D*uplls+us D*@r—0)l2
+ilus—u)- D*villo+llv- D*(ue—wlls
By Hélder’s inequality the right hand side of is estimated by
lve—=vlloll D*usllsret luellsll D*Ws—v)llsor1st s —ulle|l D*vlls+ [0l D*(up — 1)z«

Therefore ||u:v]|ys/10,» is dominated by

= di\1/2
(2.13) Clu-vla+Cllul,en(] 17 sup lvs—v1%F)

o0 di\Y/
+Clulo |t sup 2 1D a0l )

|kISt 1a1sl t

i d\1/2
+Clol,o | 10 sup s —ulz)

+Cnv”°°(5:t‘3/5|5“p 2 D"(uk—u)ll%%t')u2

kist lalsl

= Cllullzllvlleotlulls, si2livlisrio, 2 10 1%l 1619 1 18710, 2, 30718
A ll%llsr10,2, 61Vl 1, s 1% [l 18/10, 2, 2/ V]| e0) «
and Theorems 6.4.4, 6.5.1 in [3] imply
ll2-v]l1sr10,2 = Cllullollv ]t 118730, 2|0l sr2, 2+ 1| 2]l 13710, 2|V ]]o)
= Cllullisizo,2(|vllsr2, 0+ vlls) «

This completes the proof.

LEMMA 3 (The Brezis and Gallouet inequality). Let ue H¥>*Q)N\H%*%(Q).
Then we have

(2.14) lulle = C(1'|j'”u”s/z.z\/log(l"“”u"sls,z)) .
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PROOF. Proof is obtained in the same way as is the proof of (see also
[6]. Let R>0 and u(x>:§a(e>e”-fdg. Then

2.15) oz lahs |, _1e@la+]  1ae)de
= Q18D 12@) 11+ 181)*rde
1§I<R

| A 1D @ (L 185z

By the Schwartz inequality and (2.15) we have

Jule = lt+1g07eal(]  a1gn-dg)”

Hla+ighmal((  a+ign-de)”

1812
= Cllullsre, oV 10g A4+ R)+Cllullss, :(1+R)-Y5.
Proof is completed by taking R=max(1, |u|§s, ).

We have to take into consideration boundary values to prove the main
result, therefore we need the following nonlinear interpolation lemma which

follows from (see also [10], [11].
LEMMA 4. Let us D(A}?. Then we have
(2.16) 1A u]®]. = Cll A2 ullf.
ProOF. Let u, ve D(A}®). Then we obtain by Sobolev’s inequality and
(2.6)
(2.17) fu-vlle < lulallvlle < Clullssellvlsr. = ClAY ul] AY®], .
If u, ve D(A}'®), a formal calculation yields
o(u-v)/0x; = (Ou/0x;)-v+u-(0v/0x;),
18(u-v)/8x:lls = Vil sarslvll ot Nl o V0l 0ss -
This gives by Sobolev’s inequality and (2.6)
10Cu+0)/0xells < Cliulsr,ellvlore, < ClAEu ]l AF*0 .
This estimate also justifies the preceding calculations and we get

lu-vllse = CIl A ullol| A2l .
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If u,veD(A,), then u-v is in H}% Q) as it easily follows from the boundedness
of u, v. Thus approximating u, v in the norm |A}®:|l, by un, vaED(A,), We
see that u,-v, converges to u-v in H}% Q) if m—oo. Thus u-ve Hy*(2) and

(2.18) 1 A2*(u-v)lls = Cll AY®ullo] AF 0] .

The preceding estimates and also show that M(u, v)=u-v is an
analytic mapping from D(A3®)xXD(A3?) into L* Q) and from D(A3'®)x D(AL®)
into D(A}/?), respectively, in the following sense:

1. On any ball (]|A%u|3+|A|3)'2<R (p=3/8, 5/8) the expressions M(u, v)
stay bounded in the following sense: We have [M(u, v)|[;=w((| A} ul+
[A*0]5)'?) if 0=3/8 and |[A}*M(u, v)|.<w((| A3*ul3+]lA3*v]3"?) if 0=5/8
with some monotone non-decreasing function w.

2. The mapping {—»M(u+Lu/, v+Lv’) is holomorphic from C into L*£)
(D(AY?)=Hy (D) if u, w’, v, v'E D(AY*) (D(AF).

Then it follows by interpolation result in [12, Satz V.2, p. 213 and the remark
on p. 2147 that M is also an analytic mapping from D(A}/?)X D(A}/?) into D(AL%)
fulfilling the estimate

A4 (u-v)lle = w((| A ulli+ | AF*v]5)®)

with the same w as above. Inserting for v the function # we arrive at the
desired estimate. This completes the proof.

3. Proof of Theorem.

We consider the following integral equations

BL g0 = (exp—idiigo—i| (exp—iAi(t—)g(s)p(s)ds

3.2)  $(1) = (CosAYt)gy+(A52 sin A;/Zt)¢1—S:(A;I/2 sin AY2(t—s))| (s)| *ds.

(3.1) and (3.2) are the integral equations corresponding to and respec-
tively. By the result of I E. Segal [8], there exists a strong solution of (3.1)
and (3.2) in some time interval [—T, T] such that

¢ C[—T, T1; DANNCY-T, T1; L}Q),
¢ € AL—T, T1; D(ANNCH—T, T]; DA WNCH[—T, T1; L¥2)).

It follows by a standard argument that the strong solution of (3.1) and (3.2)

satisfies and in L¥2). Therefore the is proved if the de-
sired a prior estimates of the local strong solution of (3.1) and (3.2) are obtained.
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First we give a priori estimates of |Al”%)(t). A2, and |@.(D)]..
From we have

3.3 l¢@Dllz = llgoll.,  for any te[-T, T].
Using and we have
(A, §)+(A1d, )+ (A, $0)+(Bii, G0) = d(1P1, @)/dt,

for any te[—T, T],
from which we get

3.4) d(Re(Ap, §)+(Asp, ¢)/2+(:, ¢0))/dt = d(|P|?, @)/dt,
for any te[-T, T].
By Holder’s inequality, Sobolev’s inequality and (2.6) we have
(3.5) Sgltﬁlzlsﬁldx = [18llell@lters = Cll A @1l E I3
= Cll A2 ll.)| APl Ilgls*,  for any te[—-T, T].
By (2.6), and (3.5) we have
3.6) 1A%z, 1| AL2@Des Pl =C,  for any te[—T, T].

Next we show the desired a priori estimates. We apply and
(2.6) to (3.2) to obtain

t

@7 14330l = C+C{ 14141901 lds
< c+cl 14y gislsds
= c+c| 1 atrgslzds

=Cc, for any te[—-T, T].

Here and in what follows C(-) is a continuous monotonically non-decreasing
function from the non-negative reals into itself. From (3.1), and (2.6)
we have

38  1Argnl S CHC| I AFREE6(s) uds
< C+C{ 199 s ads

= C+C 19 harao (s I9()1)ds,
for any te[—T, T]
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By (2.6), and

B9 JARgH. = C+OD) | A1 () 1+~ g AT TATGEI)ds
for any te[—T, T].

From (3.2), Lemma 1|, [3.6) and (2.6) we have

¢

(3.10) 143761, = C+C [ 14371 9(s) s
< C+C{ 1) Pl ods
= c+cf,

“Sb $)3s6,2ds

0

< c+eflarmgs)lds,  for any te[~T, T1.

We denote by f(¢) the right hand side in and by g(¢f) the right hand side
in Simple calculation gives

(3.11) dG@)/dt < C(T)GH)A++Tog(1+G@))), for any te[—T, T],
where G({)=f()+g(t). From (3.11) and Gronwall’s inequality we easily get

Gt =C), for any te[—-T, T].
Thus we have

(3.12) APl 1A 9. = C(T),  for any te[—T, T].
By (3.2), (2.6), Sobolev’s inequality and we have

(3.13) 146l < C+C{ 116(5) 1.5

< CH+C{ 195 vz s
< CHC | Areg(s)lsds
=Cc, for any te[—T, T].
In the same way as in the proof of [3.13) we see
|4l = C+OT |1 Ag(s)lds,  for any te[—T, T1.
Hence we have
(3.14) 1A:¢®)). = C(T),  for any te[—-T, T].

Therefore, by (3.1), (3.2), Sobolev’s inequality, (2.6), [3.13) and (3.14) we easily
get
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(3.15) D@2, 19D, 142200l = C(T), for any te[—~T, T].
fTheorem follows from [3.13), (3.14) and (3.15). This completes the proof.
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