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0. Introduction.

Let S be a measurable space and let {r;}cs be a family of transformations
from the unit interval I into itself which are nonsingular with respect to the
Lebesgue measure m on I. Given a measure preserving transformation ¢ and
an S-valued random variable & on a probability space (2, &, P), consider a model
of a random dynamical system whose time evolution is given by

Xnt1=Tep 0 @ (Xn) for n=1,
where &,=&-0""1,
Following S. Kakutani [4], we introduce a skew product transformation T
on I X £ which is defined by

T(x, ©)=(Tg; %, O0) for (x, w)eIxQ.

Since projzeT™x, ©)=T¢, @ Tep-@ " Te; X, We investigate the asymptotic
behavior of the dynamical system (T, mXP) instead of the above random
dynamical system. This was done in [3], [6], and [7], in the simplest case
when §&,’s are independent and identically distributed. The aim of this paper
is to show that even if {£,}5-, is a stationary sequence of dependent random
variables, the skew product transformation T has (m X P)-absolutely continuous
invariant measures under some mild conditions and T admits various spectral
decompositions according to the ergodic property of {£,}%-.. To do this as in
previous paper [6], we introduce the so-called Perron-Frobenius operator .£ of
T and investigate the asymptotic property of .L*® for @<= L (mxP). However,

instead of estimating .£"® itself we here estimate SB.[”(Dd(me) for Be

B(I)xZF. In Basic Lemma we will give a fundamental inequality on which the
whole proof depends heavily (see section 3).

In section 1 we will give the definitions of some basic concepts. The main
results are collected in [Theorem 211. Sections 3 and 4 are devoted to the proof of
[Theorem 2.1. In section 5 we will give an application of the theorem to random
stochastic matrices.
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1. Preliminaries.

We call the collection (X, 8, g, T) (or (T, p) if there occurs no confusion)
a dynamical system if (X, B, p) is an abstract Lebesgue space and T is a -
nonsingular transformation on X. In particular we call it a one-dimensional
dynamical system if X=I :the unit interval, $#= @(J):the topological Borel field
on I and pg=m:the Lebesgue measure on /.

Let (S, 8(S)) be a Polish space and let {(I, (), m, 75)}ses be a family of
one-dimensional dynamical systems. Assume that the map SXI=(s, x)—orx sl
is B(SXI)| B(I)-measurable. Given another dynamical system (2, &, P, ¢) where
P is ¢g-invariant and given an S-valued random variable &, consider the following
time evolution :

(L.1) X n41=Tpp 10 (Xn) nzl, where £,=§-0"*.

The sequence of random iterations {rg 7;, _ - 7¢ }7=1 is called a random dynamical
System.
We define a skew product transformation T :IX02—-IX$ by

(1.2) T(x, ©)=(t¢,w(x), 0W).

Since 7y’s are m-nonsingular, (X2, B(I)XF, mXP, T) becomes a dynamical
system. Note that
(1.3) projzoT™(x, w):‘l'en(mﬂ'en_l(w) tTe X -

Next we introduce the Perron-Frobenius operator which plays an important
role in this paper. Let (X, 8, 4, T) be a dynamical system. The Perron-
Frobenius operator Lr,, of T with respect to p is defined by

d
(L.4) .L'T,;,gs:wgﬁmgsdg for each ¢ Li(p).

We list some basic properties of the Perron-Frobenius operator which will be
used later :

(1) .Lr,, is characterized by the following identity
(L.5) Sgb.cT,,,gsdg:Sgbawdy for any ¢eL=(z) and
for any ¢ Li(p).
@) Let (T, ) be another dynamical system. Then we have
(16) ITG?,IL[:IT,‘Uo‘f?,[J’

(3) For ¢=L¥y), Lr, ,p=¢ if and only if gy is T-invariant.
(4) Let v be a p-absolutely continuous 7T-invariant probability measure with
density A. Then we have

(17) h.nygb:ITﬂ(hg[)) p-a.e.
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2. The main results.

We begin with the definition of the space @ of nondegenerate piecewise C?
transformations. We say t€9 if there is a partition 0=a,<a,< :-- <a,=1
such that the restriction 7|, ;4 i8S @ C* function and can be extended to
[a:-1, a;] as a C? function for each 7 and

—‘(%\>0.

2.1 d(t)=inf

T#aq

We say that a partition 0=¢,<a;< - <a,=1 is the minimal partition for

r if it is minimal in the sense of refinement among all partitions satisfying the

above. If = belongs to 9 and 0=q¢,<a;< --- <a,=1 is the minimal partition

for 7, it is obvious that 7{(q,;_, a, iS strictly increasing or strictly decreasing.
For r€9 put

(2.2) ,8(7):(1(7)—1{1721,3;}%((ai”ai”—l)-1)+max sup!(rlﬂii-l.ai))ol }

1sisk infl(?l?é,--l,ap)’l
where 0=a,<a;< --- <a,=1 is the minimal partition for z.
From now on we assume that the family {r;},es IS contained in 9@ and put
2.3) a(s)=d(z;)™!
and for each n and for s,, s, +++, $,ES, put
(2'4) ﬁn(sly Sgy *tty Sn):,B(TSlTSz T Tsn)-

To get the results we need the following two assumptions.
oo 1 n
(A  Me=sup{Me&[—oo, o]; 3 P{=- % log a8z —M}<oo}>0.
n=1 n i=1

(A.2) There is a positive constant K such that supa(s)<K, supfB,(s)=K and
for some integer N>Mgtlog2 (if M,=c0 we regard My'log2 as 0),

sup _ Bw(sy, Sg v, sy)SK.
81,82, SNES :

The assumption (A.l) implies that there is a constant ¢>1 such that
A(Te, @ Tep_qt@ " Tey) =c™ eventually for P almost all we2. The condition
(A.2) is rather technical and it is automatically satisfied if S is a finite set. If
&.’s are independent, (A.1) and (A.2) can be replaced with simpler assumptions

(A1) Slog a(&,)dP<0.
(Agy For some N> (——logZ)(Slog até)dP)”,
By, &o -+, Ex)ELY(P) and Bi(&)e LY(P).

It is easy to see that (A.1)" implies (A.l) if one investigates the speed of con-
vergence in the strong law of large numbers.
Here we give some examples in which the assumption (A.1) is satisfied.
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EXAMPLE 1. Suppose that {z,};cs is uniformly expandingi.e. d(z,)=a(s)"'=¢

for some constant ¢>1 for all s€S. It is easy to show that M, is not smaller
than logc¢>0.

ExampLE 2. Let 2=1{0, 1, ---, p—1}, P{i}=1/p for =0, 1, ---, p—1 and
g:2-80 is defined by ¢(¢)=:+1 mod p. Let S=2 and & be the identity map.
(A.1) is satisfied if TT2-ta(i)<1.

EXAMPLE 3. Let Q={weC; |w|=1}, P be the Haar measure on £, and
o :2—8 be an irrational rotation, i.e. cw=aw where a is not a root of 1. And
let S=8 and & be the identity map. (A.l) is satisfied if there is a continuous

function ¢ on £ such that a<¢ and Slog¢dP<0. This can be verified as
follows: Put e,(w)=w*, k=Z, then it is clear that ¢,=(a*—1)"%ezeo—e;). We
have

2
JefF—1n"
Thus for any 0>0, there exists n, such that n=n, implies

P{ 1 i ekoai—gedel >5}:

n i=1

L fowor-fosr]:

Without loss of generality we may assume that ¢ is bounded from below by
some positive constant. Then f=Ilog¢ is also continuous on £. By the Stone-
Welerstrass theorem, for any ¢>>0, there exists f., a finite linear combination

of ey’s such that sup| f(@)—f.(@)| <s. Hence if s<lS fdP[ / 4,

P{—l— 2 logaecoi>—+ SfdP}

H/\
3 ]H

Pl &= Lrar| g frar]}

I

P2 oo ~{r.ap|>=|[rap|~2¢}=0
if n is large enough. This implies that (A.l) is satisfied.

EXAMPLE 4. Let =S¥, ¢:2—282 be the shift and & be the projection on
the first coordinate. (A.l) is satisfied if one of the following conditions is valid.
(1) {&.}%=1 is strongly mixing with mixing coefficients {¢(n)}7-; satisfying

§]n¢(n)<oo and Slog adP<0.
(i) {&.}%=: is uniformly mixing with mixing coefficients {¢(n)}5~, satisfying
2 g(m)<co and {logadP<0.
For the proof see [2, Ch. 18].
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Now we are ready to state our results.

THEOREM 2.1. Let {U, BU), m, to)}ses be a family of one-dimensional
dynamical systems such that {ts}scs is a subset of D and the map SXI>(s, x)—
tsx €l is B(SXI)| B(I)-measurable. Let (2, &, P, ¢) be a dynamical system such
that (2, &, P) is an abstract Lebesgue space and P is g-invariant. Let & be an
S-valued random variable on (2, F, P) and T the skew product transformation
defined by (1.2). Assume that (A.1) and (A.2) are satisfied. Then,

(1) There exists at least one (m X P)-absolutely continuous T-invariant finite
measure. In the rest of this paper such a measure will be abbreviated as an
a.c.i. measure of (T, mXP) etc.

(2) If the dynamical system (@, P) is ergodic, there exists a finite number of
a.c.i. probability measures Q,, Q,, -+, Q; of (T, mXP) such that

(1) for each i=1, 2, ---, I, the dynamical system (T, Q;) is ergodic;

(ii) 2f Q is an a.c.i. countably additive set function of (T, mXP), then Q

can be written as a linear combination of Q;’s.

3) If (o, P) is totally ergodic and @Q; is one of the probability measures
stated above, there is an integer N; and a collection of disjoint sets Ly, L1, -
Li y,-1:CBU)XF such that

(i) TL; ;=L 4+10 O=j<N;—1), TL;ny,-1=Lss;

(i) for each j=0, 1, ---, N;—1, the dynamical system (T*i, Q; ;) is totally

ergodic where Qi,J:N,-QiILi,j.

(4) Moreover, if the dynamical system (o, P) is exact, so is the dynamical
system (T¥i, Q; ;) which is stated above. For the definition of exactness see [8].

2

3. Existence of (mXP)-absolutely continuous 7-invariant measures.

In this section we prove the statement (1) of [Theorem 2.1. To begin with
we need a lemma due to Lasota and Yorke [56] Put BV={¢=L(m);
Vé=inf {3 ; §=¢ m-a.e:;} <o} where V¢ denotes the usual total variation of
 on I. V¢ is called the total variation of ¢ belonging to L'(m). For €9,
let L. » be the Perron-Frobenius operator of = with respect to m.

LEMMA 3.1. If 7 is in D, then we have

(3.1 VL np=2d(@) 'V o+BOPlm  for al $EBV.
Let 0 be a positive constant such that

(3.2) 20-VM05<1,

where N and M, are the values appearing in the assumptions (A.1) and (A.2).
For any pe N and for any n=p put
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3.3 23= U {a@)a,-) -+ alg,-) 221091},
j=p~
The basic lemma throughout the paper is the following :

BASIC LEMMA. Suppose that (A.1) and (A.2) are satisfied. Let @ be in
L¥mX P) with V(®)=sup,coV®(-, w)<oco. Then, for any p&N, there is a
positive constant K, which is independent of @ such that

(3.4) SB.L‘”(Dd(me)

éSQnH Dy, mdP+Kyp(mX Po(®)(B)+Cp™*V(®)(m X P)(B)
p

for every n=p, where L=Lr mwp, C=28K¥-1 p=0Y2" and P,(D) is the
measure on (2, F) defined by

(3.5 PO)=| | |0lndP  for TIeq.

PrOOF. Without loss of generality we may assume that @©=0. Put
[sy, Sa =+, Spl={wER; &i(w)=s; i=1, 2, ---, n}. Since (S, B(S)) is a polish
space and (2, ¢, P) is an abstract Lebesgue space, the partition 7,={[si, sz, -,
Snl; $:€S, 1=i=<n} becomes a measurable partition of 2. Let (2,,, F,,, Py,)
be the factor space of (2, F, P) with respect to 7, and let
{Pes,, 55, 31} 51, 59,, s57€7, DE the Rohlin decomposition of P corresponding to 7.
Then for any A= 8(I) and I' %, we have

(3.6) SAXr.E”@d(me)
:SdPﬂnSdP[-?p"'.snjl(a“ﬂl")ﬂQZSAofsn e Ly, @dm
‘I‘SdP,]nSdP[sl,...,snjl(a~n1’)n(g\gg)84_£sn -fsl@d"’l

for n=p, where .fsi:.cfsi, m- The first term of the above equation is dominated
by Sgnll@lll,mdP. So we have to estimate the second term. We can write
y4

p=qgN+r 0<r<N) and n=jN+k (0£k<N). Using repeatedly
we see that

VL - LD

SiN+R
j-1 L
= ZZ% 2'a(Sjnen) - a(Scg-1y Nar+1)

XﬁN(S<j—z)N+k, Ty 3<j—l—1)N+k+1)”@”1, m

+2ja(st+k) a<3k+1)\/-fsk .Esl@
and

VL, L @Z2%alsy) -+ als) VO+{Bi(ss)+2a(s 1) Br(Sk-1)+
—{—2"—1&(3;;) 4(32)51(31)} ]{@]]1 m e
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If we2\02%, by (A.2) and we can see

Zla(st+k)'“a(s(j—l)N+k+1)§al for I>q.
So we have
2la(st+k)"'a(s(j—l)N+k+1),BN(S(j-l)N+k, t, SG-l-DN+R+1)
{ 'K I>q
<
| 2tK N+ l§(].
Thus
K<2q+1K(q+1)N_,1) 5q+1K(1__aj-q—l)
.se <
R < 1-3
K@V-1KN-1_1) ;
5| Ol m
2N N3N/ (D).
Put

K29+ K @+D¥ _1) K KQN¥-1KN-11)
SK"—1 T 1=s T k-1 1

Since |@lle, n=V@+ldli,n for =BV, it follows that the second term of the
right hand side in (3.6) is not larger than

Ky=

Kgn()| 101, ndP+ComT(@m AP,

o

where C=2V-1K¥-1 and p=0"*". Therefore

SAXF.En(Dd(mXP)§SQZI[@]]l,mdP+Kpnz(A)S 1 ndP

+Co™(D)ym(A)PT).

From this inequality, it is easy to prove the inequality [3.4).

Now we are ready to prove the statement (1) in [Theorem 2.1.

PrOOF OF (1) IN THEOREM 2.1. To begin with we note that for every
@ L (mXxP) with V(D)<oo, {(1/n)X=t.LiD}5_, is weakly sequentially compact
in L*{mxP). In fact,

(3.7) P(Qg)éj:%ilf’{a(sn)a(gn_l) e, ) Z(271) DIV}
< 5 Plawa) - alg)z @9

3 1 3 -13\1/2
+ BP{5 5 logatg)zlog 270}

But log (2-%0)"¥>—M,, since 2e¢ ¥Y0<d<1. So from the assumption (A.l)
sup,P(27)—0 as p—oo. Now given &>0, take sufficiently large p so that

Sonll@l!,,mdP<s and fix it. It is easy to see that mXxP,(P)(B)<e and
“D
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Co™V(D)mx P)B)<e if (mxP)(B) is small enough. Thus we have

lim sup sup
el0 n Bi(mxP)(B)<e

SB.,E"(Dd(mXP)l=0
from Basic Lemma. Therefore

limsup sup
€0 n B:(mxP)(B)<e

g L ,m@d<nz><P)|:0.

BN i=0

Hence {(1/n)Xrt.Li@}%_, is weakly sequentially compact in Li(mxXP) (see [1,
p. 2947]). By the Kakutani-Yosida Theorem, (1/7#)>71.L*® converges strongly in
L'imx P). From the formula

S—?ll— RZ—: ,Ei@d(me):S Dd(mxP).

Therefore take @ in L'(nxP) such that &=0 and S(I)d(mXP):l, then
Q*=lim,..(1/n)3= L0 satisfies LP*=0* and S(D*d(me):L This implies

that @*(m X P) is an a.c.i. probability measure of (T, mXP).

4. The spectral decomposition.
As before we always assume (A.1l) and (A.2).

LEMMA 4.1. For peN, put

7p=Sup lim sup—711—7_12_)1 PR and ep=limsup P(2%)
n-oo i=p

n—oo

where Q% is the set defined by (3.3).

(1) Let k be a positive integer. If the dynamical system (a*, P) is ergodic,
we have

@.1) ], 07 d0nxP)| < trp+ Kyl x PYBHI ¥ e
for all Be ()X ZF, where K, is the constant which appeared in Basic Lemma,

and @* is any L*-invariant function of L'(mXP).
(2) If the dynamical system (g, P) is exact, we have

(4.2) lim sup SB .L’"@d(mXP)’

7 —00

<{ep,+K, lirgqswup(mXP)(Bn)} 1D, mxp

for any @=L mXP) and any sequence {B,}%2-, of sets in B(I)XF.
Proor. (1) First of all we assume that V(®)<oco. Then by Basic Lemma
for fixed pN and any n=p,

SB-I—E‘,IJ“(Dd(me)i

ni=p
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1=
S 5 10 nd P Koy 5 X @B

+7¢§> 0 EN (@) mX P)(B).
Therefore

4.3) |, @denxp)| <hmsup(1 Smk 1D]s, mdP

Ky S mx Pul@)(B)),

where @*=lim,_ .(1/n)27=+.L?*® whose existence is guaranteed by the result in
the previous section. Since the set of all @ with V(@)<oo is dense in Li(mX P),
the inequality holds for all @eL'mxP). Note that P,(D)I)

:S _nrll@]ll,mdp if 'eg. Since (g%, P) is ergodic,

lim— 5 P (@)= |01, ndP

=P D1, mxp
which proves that if Be 3(I)X &
(4.4) Llf?en Z (mX Pip(D)(B)=(m X P)(B)|Pll1. mxp-
Next we prove that
(4.5) 1911, m(@)=1D]1, mxp Pa.e.

if @ is L*invariant. Indeed, we have
[ 11, n@dPw)
={ 1016, @)dm(x)aP@)
:Lxrw |2 1)(x, @)d(mx P)x, ©)
={ ., 121t 0)dimx P,
={ 12l nt@)eP),

which shows that [|@]|; »(w)P(dw) is a ¢*-invariant measure. Since (¢*, P) is

ergodic, @)1, n(@)=DP|1, mnxp. By [4.3), [4.4), and (4.5) we have [4.1}.

(2) Since (o, P) is exact, it is known that

«.6) tim( | B9 15 07 @)— @, mer | dP=0.
If Bea()X4g,
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(mX P (D))(B)

Il

P (D)(Bz)dm(x)

’
)
S

S EA® ml o P @)dm(x)
z)

)Ilq)lll, n(w)dP(w)dm(x)

o~ (B
g

where B,={ws2; (x, )€ B}. Thus we have

| X Po(D))(B)—(mX PYB)| D1, mp

o,

Sg-n(gz,@(l@lh.mlo""%—llcbnl,mxp)dP(w) dm(x).

By and we have

4.8)

lim(m X Po(@)(B)=(mX PY(B)[ D1, mxp

n—co

uniformly in Be 8(I)X%. Next we can see that

4.9 lim| {1271 911, w(@dP— PO Bl mp| =0

uniformly in I'e%. In fact

and

[ 171211 naP

F(_L’"] Q) x, @dmxP)x, w)

|D(x, wd(mXP)x, w)

i

=nrxI)

Nl n@dP )

fl

I
)
.
.

X

E(|Ps, mlo"F)dP

n
n

Il

so from [4.6) we see [4.9). From Basic Lemma and we have

lim sup SB L*@d(m X P)’ élimsupggnll@lll,mdP
n n—co 2

T —00

K| @1, mplim sup(m X P)(By)

for all @= L'mX P). Substituting .L'@ for @ in the above we have

lim sup

n—co

SBn.C"@d(m X P) 1 §1ir5ﬁswupsgg|[.£’@ 1, mdP

By and the above we get the inequality [4.2).

Now we can prove the statements (2), (3), and (4) in
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PROOF OF THE STATEMENT (2). Assume that (¢, P) is ergodic. In order
to prove this statement it is enough to show that there are only finitely many
a.c.i. probability measures of (T, m X P) which are mutually singular. Suppose
that there were infinitely many such measures. Then we could find a sequence
of .L-invariant functions {@,}5-:CL'mXxP) and a sequence of sets {B,}%-1
C3(I) X F such that B, are mutually disjoint, each @, are supported in B,, and

S@nd(mXP):-l. It is obvious that (mXx P)(B,)—0 (n—o0). Since it is clear

that lim,..y,=0 from [3.7) in the proof of the statement (1), we can choose
b to be so large that 7,<1/2. On the other hand, since (g, P) is ergodic, from

the inequality
1=(, Oudinx P71+ Ky(mx PXB,) S5+ Kymx P)(By)

for each n€N, which is a contradiction. Hence the statement (2) of
2.1 is valid.

PROOF OF THE STATEMENT (3). If the statement (3) were not true, we
could find sequences {k,}5-1CN, {@,}5-.CL'mXP) and {B,}3-.CBU)XF
satisfying that (i) &, is a divisor of k,.;, (i) @, is .L*r-invariant, supported in

B, and S(Dnd(me)-:l, (ili) B,DB,+; and (mXP)B,)—0 (n—o0). Applying

the inequality [4.1] to (¢%», P), @, and B, we can reach a contradiction as in
the preceding argument.

PROOF OF THE STATEMENT (4). Suppose that (¢, P) is exact. First we
claim that if @ is an a.c.i. probability measure of (T, mX P) with density ¥,
the Borel field 9.=N\3-:T "(B(I)XF) has only finitely many atoms with
respect to Q. If this is not the case, we could find a sequence {B;}51C D
such that B,C{¥'>0}, mXP)B,N\B)=0 if k+!, and 0<Q(B;)—0 (k—co).
Put @,=Q(B)'15,. Then from the formula [1.7), we have

Sranﬂ(@kvf)d(mxP>=§Tn3km,Q@k)dc)

,dQ

ST“nTan
=1
since T-"T"B,=B,. Therefore from the inequality we have

1=lim supg L L@ P)S (- K, lim sup(n X P)(T™ By}
k -0

T -0 "

On the other hand
limsup(m X PYT*B,;)=0

k—oo n

since mxXP and Q are equivalent to each other on {¥>0}, and Q(T"B,)
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=Q(T-"T"B;)=Q(B;)—0 (k—c0). Consequently, we have 1=¢, for all p=N.
This is a contradiction since &,—0 as p—oo.

Since L;;€9., without loss of generality we may assume that Q=0Q;, ;
i.e. (T, Q) is already totally ergodic. From the above claim 9. is generated
by a finitely many sets B;, B,, -+, B, with Q(B;)>0 and Q(B;NB;)=0 if i+,
7, j=1, 2, ---, ». We may assume that Q(B;)=min{Q(B;); 1=</<r}. Then one
can easily show that T-/B,=B, for some 1<;=r. But the ergodicity of (77, Q)
implies that Q(B;)=1and j=1. Hence we have r=1. This completes the proof.

5. An application to random stochastic matrices.

In this section let S denote the totality of %X % stochastic matrices. Let
(2, F, P, 6) be a dynamical system where P is c-invariant and & be an S-valued
random variable. As before the S-valued stationary sequence is defined by
&,=E&-¢™ ' for n=1. For matrix valued random variable & E& denotes the matrix
(E&;;). We are concerned with the asymptotic behavior of the expectation of
random products &,&,:--&,. If &,’s are independent and identically distributed,
then E(£.&,---&,)=E(&)" and the asymptotic behavior of E(£,)" is well studied
in the theory of Markov chain. For the general case we can see the following
but do not have a detailed description of its behavior.

PROPOSITION. FE(£.,§,-++&,) converges in the sense of arithmetic mean.

PrROOF. For each s=(s;;), consider the following one-dimensional trans-
formation

6.1 7s(x)= 4 (x~2—1 — —-~—1—j§ sil)+]—_—1—
%)
. =1 q 1 iz i—1 q 1 ¢
<< .
=t T & sy <— Ty T 25w

with s;;#0, 1=/=k, and 1=;=k, ¢=0,1,2, 3.

Then it is easy to see that the map (s, x)—t,x is B(SXI)| 8()-measurable and

B1(sySs -+ Sn)ij:m<(7sn1'sn-, Tsl)_l[*]i: %}m[ i—1 1 ]) .

k E "k
Thus
1l =

B 3 (B Gy

1l -1 J i—1 i
,_; ES’I’}’[((TEL'L'sl_I"‘TEI) |:’—'—k ,—k-]ﬂ[ b ,?])dp

1 =
’—‘7[‘ lz:__:lSlt(j—l)/k,j/k]x.Q“’Tll[(i-l)/k,i/k]x.anl dP
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1 =
— L
T ?__}1St(j—n/k,j/ijgefnmxplm-n/k,i/ijgdmdP-

Therefore we can complete the proof if the strong convergence of
1/ n) 2t LY mxp® is established for @ L(m X P).

Since d.,=4, (A.1) is satisfled. But since B(s)=(k/4)max; ;si}, the as-
sumption (A.2) is not satisfied. But in this case we can prove that

VLP=Z2d:NV G+ k1Pl m for ¢=BV,

using the special property of 7, defined in [5.1). In other words the inequality
(3.1) is valid with B(r) replaced by k. Using the above inequality and noting
that 2d(rs)"*<1/2, we can show that the proof of Basic Lemma does work with
N=1. Thus all the results in the preceding sections are valid in our case. In
particular, (1/n)X72=1.L% ..p@ converges strongly in L'(m X P) for @<= L*(m X P).
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