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§1. Introduction.

The geometric method of Enss for differential operators in L%(R") is now
well established. In this article we extend it to a class of differential operators
in [LAR™]™, m=2. Our class includes the Dirac operator with an electric
field in [L*(R®*)]*; for details refer to example 2.2.

Spectral theory and scattering theory were considered for the operator
P?/24+W, on L*R") where W, is a short range potential in [1, 2, 3, 4, 5]. For
general operators of the form h (P)-+W,on L%R") with h,(co)=cc refer to [6, 7].
For a hint of developing the geometric method for opepators in [L*R"™)]™ refer
to [6].

For the operator P2?/2-+W, the boundedness of the eigenvalues is proved in [8].

For the operator P%/2+W,+W.(Q) where, now, W, is a smooth long range
local potential the theory is developed in [9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
General operator of the form h(P)+W(Q, P)+Wr(Q, P) with hy(co)=0c0 is con-
sidered in [19]. For an account of all these results see [20, 21].

For a class of operators of the form h,(P)+W, where A, need not have any
limit at co the geometric theory is developed in [22, 23].

Finally we sketch the contents of the article. In §2 we state the assump-
tions on the operator H and state the main theorem we intend to prove. In §3
we reproduce some technical theorems from [19]. These will be repeatedly used
in §4 and §5. Existence of the wave operator is proved in §4 where asin §5
we prove asymptotic completeness.

§2. Statement of the result.

On the free and perturbed operators H, and H on the Hilbert space [L*R")]™,
n, m=1 we make the following set of assumptions Al, A2, ---, A9.

Al. Hy: R"—> H,(C), where M ,(C) is the space of all mXm matrices with
entries from the complex numbers C, is a C* function and for each & in R™ the
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matrix H,(&) is Hermitian.

A2. The eigenvalues and eigenvectors of H, can be chosen to vary in a C®
manner : More precisely, for each &, in R™ there exists an open set L(§;) in R"
with &, in L(&,), m real valued C* functions h,, -+, hn: L(&)— R and m vector
valued C*> functions e;, -+, en: L(&)—C™ such that

H@)e &) =h&es®  j=1, -, m, &in LE&).

In the last identity e¢; are treated as column vectors and this convention we shall
follow throughout.

From the theory of differentiable manifolds we borrow the term chart. A
chart is (by our definition) a triple (L, U, h) where L is an open subset of R?”,
U:L—->M,(C) is a C~ function with U(§) being unitary for each & h:L—R™
where h=(h,, ---, hy) is a C> function satisfying

Hy(&UE)=U(§) diag (hy(8), -+, hn(§))  for each £ in L.

The columns of U will be denoted by e,, -+, ¢, so that we have

Hy(&)e(§)=h(E)e,8).

For any chart (L, U, h) we define the critical set and critical values by

C(L, U, h)

I

j@l {=L : hj&)=0 or the matrix h’(§) is singular} ,

CSL, U, h)= Q {hj¢) : éL, h(§)=0 or the matrix A7 is singular} .
J:

Note that the usual definition of critical set or critical value does not depend on
the second derivative. We impose

A3. G=\U{LNC(L, U, h) : (L, U, h) is a chart} is an open subset of R"
with R"\G having (Lebesgue) measure 0.

A4. The closure of C,H, is a countable subset of R where C,(H,) =
\U{C(L, U, h):(L, U, h) is a chart}.

The vaguely elliptic property of H, is guaranteed by

A5, If {A(8), -+, 2x(&)} is the set of eigenvalues of H,(§) then lim .. inf;
| 2;(€)] =oco. Also there exists a polynomial p such that X;|2;,(8)| =< p(é).

If the eigenvalues of Hy(§) have atmost polynomial growth then, since H,(&)
is Hermitian, it is clear that each entry of H, has at most polynomial growth.

Let @, P denote the position and momentum operators on LZ2%R"™) given by
Q=(Qy, =+, Qr), P=(Py, -+, Pr), (Q;/)x)=x;1(x), (P;f)x)=—i(D,[)x), D;=0/0x;.
The operator Hy(P) will be denoted by H,.

A6 (Condition on the long range). W:R"—R is a C> function and for some
0 in (0, 1] we have for each a
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[{(DW)(x)| S K (14| x|)"'at-0

for suitable constants K,. Here a=(a,, -, a,), |a|=a;+ --- +a, and D*=
D%1... Dzn, K will always stand for a generic constant.

Note that if A6 holds for some ¢ then it also holds when & is replaced by
any 0; in (0, 6]. So decreasing ¢ (if necessary) we (may and do) assume that
o {1, 1/2,1/3, ).

By W(Q) we mean the operator W(Q)I where I is the identity operator on
LLAR™)]™: for (fy, -, fw) in [LAR™)]™, f;€ L*R™) we have W(Q)(fy1, =, fn)
=W(@Q)f1, -, W(Q)fn)

A7 (Condition on the short range). The operator W, on [L¥R™]™ has
Dom W ;DDom (1+P%¥ for some N>0 and for some ¢,>>0 the operator
Ws(1+P?)~¥(1+Q?) **0/2 defined on Dom (1+|Q|)***° is bounded.

A8. The operator H=H,+W  ,+W(Q) (defined as sum) on [S(R™]™, where
S is the Schwartz space of rapidly decreasing smooth functions, has a self adjoint
extension denoted by the same letter H.

A9. (H+:i)'—(H,x7)™! is a compact operator.

With all these conditions we have

THEOREM 2.1. Let Al to A9 hold. Then

(@) There exist functions X(t, +): R"— M,(C) taking values in the Hermitian
matrices such that

.Qi=st-lim exp [7tH]exp [—X(t, P)] exists.
(b) Range 2.=%(H), the continuous subspace for H.

(c) Any eigenvalue of H in R \Cy(H,) is of finite multiplicity and such eigen-
values can not accumulate in RN\C,(H,).

ExAMPLE 2.2 (Dirac operator in an electric field). Take n=3, m=4. For
§=(&, &, &) in R*® define H((§) by

1 0 & &b

1 El+152 —53
Hé)= .
& 51_‘252 —1 0
i+, —& 0 —1

Choose £ in (—1/2, 1/2), ¢ in CT(R?®) with ¢ real valued, ¢p=1 for |x|<1 and 0
for |x|=2. Put Wyx)=ke(x)| x|, W(x)=Fk[1l—¢(x)]|x|"*. Then H=
H)(P)+W(Q)+W(Q) satisfies all the assumptions Al to A9. In fact the eigen-
values are h,(&)=h,(&)=—h,(&)=—h(&)=(1+&%'2 on the whole of R® and the
eigenvectors can be chosen in a C~ manner on the whole of R®. = A simple calcula-



418 PL. MUTHURAMALINGAM

tion shows that A%(§)=((0*h;/06,0¢,)), k, m=1, 2, 3, is nonsingular at every
point & of R®. For details refer to §6 of chapter 10 of [24]. With H, as above
the self adjointness of H,+V(Q) for V:R*—> R is extensively studied. For a
recent article refer to [25] and references therein. With H, as above and W
satisfying A6, [Theorem 2.1(a) has been proved in for H=H,+W +W.

REMARK 2.3. In §3, 4, 5 we state the propositions for the positive time only.
Once they are proved we implicitly assume that the corresponding propositions
for negative times are stated and proved.

§3. Some technical results for operators on L% R™").

Let G, be any open subset of R” and A :G,— R any C* function such that
[|A’'(€)] >0 and |det h”(&)| >0 for each & in G,. Let V:R"—R be any C func-
tion such that for some 4, in (0, 1)\{1, 1/2, 1/3, ---} the inequalities |D*V (x)|
=<K, 1-+]|x|)'@1-% hold for all «. Now choose a positive integer m, such that
M0 <1< (me+1)0,.

Let C be a fixed compact subset of G, such that for some >0 we have

(3.1) Cyp={p in R™ : dist(p, C)=3b} CG,.
Let
3.2) 3a=inf{|h'(&)| : £€Cs} .

Assume further that C,, satisfies

3.3) sup{|A'(§)—h'(E) | 1 |6:—6: =2b, &1, £:ECan} =a27V2.
For the “momentum” ¢ in G, time f=¢,=0 and the (inductive) sequence m=
0,1, 2 ---, m, define the function Y by

Y(O; tO, t’ 6):01

Y, b, t, = dsVsh@+Vim—1, 1, 5, 8).

Put

X(tﬂy t} é):th(s)_i_y(m(); tO; t! E)
so that

0X(ty, t, £)/0t=h(E)+V(th'(E)+Y im,—1, t,, t, §)).
Then we have
LEMMA 3.1. Let C, b, X be as above. Then there exists t_y,=t_;(Csp)=0 such

that for each t,=t_;, f in S(R™) and ¢ in CF(G,) with supp oC {§ in G,: dist(§, C)
<b} the following hold:
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(i) Sj dt|(141Q[) s exp [—iX(t,, t, PYJp(P)f| <00 for each ¢>0,
0

(i) Sjodtll [V(Q)—V(h'(P)+Y p(me—1, o, 1, P))]exp [—iX(to, t, P)]e(P)f| <co.

PROOF. Refer to of [19]. Q.E.D.
We can improve the above Lemma to

THEOREM 3.2. Let ¢=C3(G,) and f€SR™). Then there exists t_,=1_,(¢p)
such that (i) and (ii) of Lemma 3.1 is valid for our new ¢.

Proor. Follows from by using the techniques of the partition
of unity [27]. Q.E.D.

LEMMA 3.3.
(i) ltim{Y(mo, 0,1 &—Y(my, t,, t, &)} exists on G, for each t,=0,
(ii) ltim{Y(mo, 0, t+s, &)—Y(m,, 0, t, &)} =0 in G, for all s.

PrOOF. Follows from of [19]. Q.E.D.

The above results will be used for proving the existence of wave operators
in §4 while for completeness in §5 we need the following results.

For “the position” x in R™ and “momentum” & in G, and time t=¢,=>0 define

Y(O) tO: t: x: E)":O )
Ym, to, 1, x, 9=SZ ds V(x+sh'@)+LYim—1, 1, s, x, &)
0
for m=1, 2, -+, m,,

X(tO’ t: X, &):x'$+(t—t0)h(§)+y(m07 tO; t: X, E)

so that
X<t0y tO, X, S):x'e)
0X(ty, t, x, £)/0t=h(E)+V (x+th'(€)+Yim,—1, 1y, t, x, §)).
Note that
Y(m7 tO; t’ 07 S):Y(mr tOy t; &)
but

X(to, 8, 0, £)=X(to, t, £)—1,h(8).

We introduce now a positive operator valued measure on the Borel subsets
of R*"XR" due to [4, 28].

Let b*>0 be given. Choose n in S(R™) such that #, the Fourier transform
of » given by
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ﬁ(k):(Zfr)'”’”de exp [—ik-x]p(x)
has
(3.4) supp 7 {k in R” i k| =45
. DlklS
and

Inle={axipoore=1.
Define for (x, k) in R*XR" the function %, by

Nar(y)=n(y—x)exp ik -(y—x)]
so that

Nas(p)=7(p—k)exp [—ix-p].
For any Borel subset M of R™X R" define an operator T(M) by the weak integral
TOD=@r) ™| dxdk< , 7uyse

For various properties of the positive operator valued measure T refer to [4, 8,
14, 15, 16, 18, 19, 20, 22, 23, 28].
For MCG, and >0 define the subset E(M, =+, r) of R*XG, by

EM, =, n)={(x, k) : keM, x-h'(k)=0, |x|=r}.

For any subset L of G, with {§ : dist(§, L)<b*/8}CG, and ¢ in CHG,) define
two operators A(t,, ¢, L, ¢, -+, r) and B(t, ¢, L, ¢, +, 7) by

[Alto, t, L, ¢, +, 1)/1@)

=(1 191y 0o dx dBCF, o |dE HE—RIp®) exp (Tg-6— X , %, D),
[B(to, 1, L, ¢, +, 1)f1(@)

={dxdr<t, 1o {deviQ -Vt @+vim~1, 1, 1, %, 6)10@

-(E—k)exp (i[qg-E— X, t, x, §)]).
For the evolutions A and B we state

LEMMA 3.4. Let Cg be as in (3.1), (3.2), (3.3) and b* of (3.4) be ‘any element’ in
0, b] and ¢ be in CF(G,). If the diameter of Csyy is small enough then there exists
t-1=t-1(Csp)=0 such that for all ty=t_, we have

(i) tim\ dt]Alt,, t, C, o, +, 1) =0,
to ¢

T—0
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(ii) lim sup | A(¢,, t, C, ¢, +, n)[=0,
T L2l

(ii) nmS‘:’ dt|Blte, t, C, o, +, )] =0.
r=ooJty

The corresponding statements for the negative time hold with the same 7.
PROOF. Refer to Lemma 6.1 of [19]. Q.E.D.

THEOREM 3.5. Let ¢&€CT(G,). Then there exist 7 of (3.4) n=n(supp ¢) and
t1=t_i(Supp @)= such that for all t,=t_, we get

(i) tim " dr) At , Go, g, +, I=0,
T-00) Lo

(ii) lim zsulpHA(tO’ tr GO} 50) +; r)H:O ’
T t2tg

(i) lim|” dt) B(to, 1, G, ¢, -+, 1| =0.

The corresponding statements for the negative time hold with the same 7.

Proor. We prove (i) only. For (ii), (ifi) it is similar. Denote the open
{closed} ball of centre x and radius » by S(x, ») {S[x, ]} so that S(x, )=
{y:ly—=x|<r} and S[x, r]={y:|y—=x|=r}. For each x in G, we can find b=
b(x)>0 so that for C=S[x, b], holds. If 2>0 is any preassigned
number by taking min{b(x), 4} if necessary we can assume that b(x)=<A

Let L be any compact subset of G, and 1>0. Since L is a compact subset of
G, we can choose points x;, ===, x, in G, so that L\ J9_,S(x;, b;/8) where b;=b(x;)
are as above and b;<A. Let b=min{b,, -, by} /8. Choose 7 so that b* of 7 in
(3.4) satisfies 0<<b*=b.

Clearly {&:dist(§, L)=b} C\U,;S(x;, b;/4). Choose ¢; in CT(S(x;, b;/4)) so that
o1+ - +o,=1 on {§:dist(§, L)<b}. Then for any ¥ in CF(G,) we see that

Alty, t, LU, +, N=Z Alto, t, L, T;, +, 7)
(3.5 J
= %}A(to, t, S[xy;, b1, Ty, +, 1)

and a similar expression for B(t,, t, L, ¥, +, r). By and (3.5) we
get that ‘

(3.6) lim Sj dtlAG, t, L, ¥, +, )| =0.

700

Now let ¢=C%(G,). Choose 2>0 so that {§:dist(§, supp¢)=44} CG, and
take L={§:dist(§, suppp)<4}. For this L and 2 choose 5 so that holds.
Now it is easy to see that A(t,t, Go, ¢, 4, 7) makes sense and A(ty, ¢, Go, @, +,7)
=A(, t, L, ¢, +, r). This completes the proof of the theorem. Q.E.D.



422 PL. MUTHURAMALINGAM

We can slightly generalise this theorem for proving Lemma 54 (). If
¢y, -+, @5 are in CH(G,), we can take 1>0 so that {§:dist(§, \U;supp ;) <44} CG..
Now take L= {&:dist(&, \Usuppe;)<4}. For this L and 2 choose % as before.
Then the theorem holds with the same 7 when ¢ is replaced by any of ¢, -, ¢s.

LEMMA 3.6. For ¢ in C3(G,) and A as in Theorem 3.5 define J=(1+4|Q])**A.
Then

(1) LJG, ¢, @, +, 1)

={ dxar £, o de @ik exp (Tg-6— X, 1, x, O],

E(Gy, +,T

(i1) s-lim exp (LE—t)h(P)+Y (m,, o, t—t,, P)D]J(to, t, ¢, +, ) exists for each r.

The corresponding statements for the negative time hold with the same 7.
PROOF. (i) Obvious. (ii) Similar to the proof of Lemma 6.2 (iii) of [19].
Q.E.D.

§4. Existence of the wave operator.

First we construct a modified free evolution. Since o0& {1, 1/2, ---} by the
assumption A6 we can choose a positive integer m, such that

4.1) me0 <1< (my+1)0.

Let (L, U, h) be a chart. For & in L and time {=t,=0 define X,(¢,, ¢, &),
Tt Xm(tO: t: &) by
Xjto, t, E)=th;(E)+Y ;(my, 1, 8, &),
(42) Yj(O; tO) ty S):O)

Yj(p; tO) t} é)ZSiodSW(Sh;(E)+V5Y](p~1’ tOy s) 5)) for p::lr Tty mO'

Now define Z(L, U, h;t, t, & for & in L by

Z(L; U; h ; tO; t; E)
4.3)

=U(§) diag (exp [—iXi(t, £, §)], -+, exp [—iXn(ty, ¢, )DU*E).

If (L,U, h) and (M, V, g) are two charts then we show that Z(L,U, h;t,t, -)
=Z(M,V,g;t,,t, -)on LNMinLemma 4.3 So we (can and do) define Z(¢,,¢,&)
=Z(L,U, h;t,t & for & in L and show in that £2,=s-lim,..
exp [itH]Z*(0, t, P) exists.
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LEMMA 4.1. Let G, be any open subset of R™ and a:G,—C, p,q:G,—R
be C* functions such that a(€)p(&)=a(&)q(&) for all €in G,. Let A:R°—R be any
C> function. Define A,, A, on G, by A(&)=A(p(&), 0p/d&,, -+, 0p/0&,, 0*p/0E:.
0%p/0&,08,, --). Then

(1) a(§){—1+exp(£i[A,E)—ALE)] =0 for & in G,
(ii) aexp[+iAy,]=aexp[+iA4,] on G,.

Proor. (i) Let N={,=G,:a(é)=0}. For & in N the conclusion is clear.
On the open set G,"N we have p=¢ by the assumption. So again the result
is obvious on G\N,. (ii) Easily follows from (i). Q.E.D.

LEMMA 4.2. Let Gy, A be as above. Let B:Gy— Mn(C) be C* and for each
& the matrix B(§) be unitary. Let py, =+, DPm, G1, ***, Gm be C* real valued func-
tions on G, satisfying

B(§) diag (ps(8), -+, pm(8))=diag(q:(8), -, qn)BE)  for & in G,.
Then we get on G,

B diag (e**4py, -+, e**rp)=diag (e**ay, -+, e**4an)B.

( by blm )

B=| : .

bml bmm

Then a simple calculation shows that b;.(p.—g;)=0 on G, for all %, ;. Now

by Lemma 4.1 we get b;zexp [+1A,, ]=exp [+iAy1b; on G, for all j, k. Now
the result is clear. Q.E.D.

ProoF. Let

LEMMA 4.3. For any two charts (L, U, h), (M, V, g) we have Z(L, U, h;
tO) t: ')=Z(My V; g;tO, t; ') on LmM

PROOF. By definition of chart we have for & in LNM
H(&)=U(§) diag (hy(§), -, ha(ENU*E)

=V(§) diag (g1(8), -+, gmnENV*(&)
so that

VXEU(E) diag (hy(§), -+, hn(§)=diag(gi(&), -, gn@HVHEUE).

Now the result follows from Q.E.D.
Now define Z(t,, t, -) on R® by

4.4 Z¢,t,=Z(L, U h; 1t t & if §€L and (L, U, h) is a chart.

Set
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(4.5) Z:8)=20,1,8&) for ¢=0,
(4.6) V.,=exp [—itH] for all real ¢.

For any vector f=(f,, -+, fw)’ [i.e. f is written as a column vector] with
the functions f; in L*R™) define

4.7 suppf =\jJ supp f; .
For any chart (L, U, h) define L,CL by

4.8) Lo=\{6€L : hj(§)+0 and det hj(§=#0} .

LEMMA 4.4. Let (L, U, h) be a chart and f[S(R™)]™ be such that supp f
is a compact subset of L, Then there exists t_y=t_,(f)=0 such that for all t,=
t_q, s-limLV¥Z(t,, t, P)f exists.

PRrROOF. For each ¢,=0 for the vector Z(t,, t, P)f we have supp[Z(t,, t, P)f]"
csuppf and [Z(t,, t, P)f1*(€) is a C~ function of & So Z(t, t, P)fe[S(R™]I™
cDomH. Put g=U*P)f so that ge[S(R™)]™ and supp §Csuppf. A simple
calculation shows that

. d
_th-tO_dTV?‘—cOZao, t, P)f

:W3(1+P2)_N(1+Q2) (1+50)/2(1+Q2)-(1+50) /2 72:‘:‘{ (1+P2)N
-exp [—iX;(t, t, P)]e;(P)g;
+ J% [W(Q)—W({th)(P) VY (mo—1, to, t, P))]

-exp [—1 Xt t, P)le;(P)g;.

From the above identity, using we infer that for some t_,=¢_,(F)=0
and for all ¢t,=t_,, we get

fr a4 vz, Pt <eo.

Now the result is clear. Q.E.D.

THEOREM 4.5.
(1) R.=s-lim,..V¥Z, exists where Z,=Z(0, t, P),
(ii) Q. is an isometry,
(ili) V. 2,=2.U; for all real s where U,=exp[—isH,],
(iv) RangeQ.C 4 ..(H), the absolutely continuous subspace for H.
PrOOF. (i) For a given chart (L, U, h) let L, be as in [4.8). Then by
3.3 (i) we see that g(t,)=s-lim;... Z*(t,, t, P)Z(0, t, P)p(P)f exists for each ¢ in
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C%(L,) and £ in [S(R™)]™ and that supp §(¢,) is compact in L, By using
4.4 we deduce that s-lim,.. V¥Z,p(P) exists for each ¢ in C5(L,). Now by the
techniques of the partition of unity we see that s-lim;... V¥Z,p(P) exists
for ¢ in C3(\J{L,:(L, U, h) is a chart}). Now the result is clear by the assump-
tion A3. (ii) Obvious. (iii) Let (L, U, h) be a chart and ¢&C%(L,). Then by
(i) we get V 2,0(P)=2.Up(P). Now the result follows as in (i).
(iv) By the assumption A3 the operator H, has only absolutely continuous spec-
trum. Now the result is standard [24, 297. Q.E.D.

§5. Proof of asymptotic completeness.

Let (L, U, h) be a chart and L, be as in [(4.8). For x in R", £ in L,, t=t,
=0 define X, ¢, x, &), -+, Xu(ty, t, x, &) by, with m, as in

Xj<t07 t’ x; s):x'§+(t—t0)h1(§)+yj(m0> tO: t; x’ E):
(5-1) Yj<0; tO, t; x) E):O:
Yj(p; tO; t’ x: E):Sz dSW(x—I-Sh_;(&)—}_vEY](p_l} Z‘0) S; x; E))

for p:l’ 2, e, My
Note that

(5 2) { Xj(to; t; X, E):x'g)
' 0X,(to, t, x, £)/0t=h,(E)+W (x +thYE+TY (mo—1, to, t, x, &)).

For b* in (0, 1) [to be chosen properly later] let » be as in (3.4). Let o<
C%(L,) be real valued. Define I(t,, t, ¢, +, r) for t=t,=0, »>0 by

[I(t07 t’ 907 +y 7’)f](f]) )
6.3) =3, L drdki<Ey e dEp@nE— k)

-exp (1[g-E—X;(to, t, xj, £)1)e;(&)
where

(5.4) Ei(L,, +,7n={(x, k) : keL,, x-Vhi(k)=0, |x|=r}.
A simple calculation shows that
(6.5) Iy, to, @, +, r)=U(P)p(P)diag (T(E«(Lo, +, 7)), **+, T(Eu(Lo, +, 7)) .

LEMMA 5.1. Given ¢, L, as above there exists some d=d(p)>0 and t_,=t_,(¢)
20 so that for any n of (3.4) with b*=d and t,=t., we get

(i) 1imSZdz[\%Vf_tol<to, g, +7)|=0,

700,
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(ii) lim Su?”Vl—tOI<t0; tOy 907 _}_: r)_1<t0y t,' Spy +; 7’)“:0,

T—oo {2

(iif) lim supl[(1+[ Q)71 (y, ¢, ¢, +, NI =0.
oo t2ip

The corresponding statements for the negative time hold with the same .
PrROOF. (i) It is easy to see that for £ in [L*(R™)]™ we get

. d
[V e g VE G 1, 0, +, r)}f](q)
(5.6) =W P YA QD+ Q) (1P, £, o, +, 1)F} ()

+ ; SEj(Lo, 1) dxsdks<f 5 Ny

[ de W@ W xRy @Y Som—1, 1 1, 5, €]

p&)H(E—k)exp(ilg-E—X,lto, t, x5 §)Des(&)

where

{A+1QN = 0(1+PVI, t, @, +, NF} ()

6D =S| dxdkCfy )

Ej(Lg
-Sd$¢(5)(1+52)’v7?(5—kj) exp (iLg-§—X,{t,, 1, x5 §)es(8).

Now the result follows from [(5.6), [5.7), and the assumption A7.

(ii) Follows from (i). (iii) Put N=0 in to get an expression for the operator

(1+1Q[) 1 I, t, ¢, +, ) and apply Q.E.D.
For any measurable function f:[0, co)—[0, co) define &(f) by

(5.8) &(f)=lim sup s—lgzdt 7.

& stands for the ergodic average. &(f) shall also be denoted by &(f(#)) in the
sequel.

LEMMA 5.2. Let ¢, Lo, I(t,, t, ¢, +,7) be as in Lemma 5.1. Put T.=
diag (T(Ey(L,, £, 0)), -+, T(En(Lo, £, 0))). Then for each f in 4 (H)

(i) ELIT +pPYUXP)VES|]=0,
(ii) EUIT-p(PYU*(P)V f11=0.
Proor. (i) By [Lemma 5.1 (ii), (iii) and (5.5) we get
lim sup |diag (T(E(Lo, 4, 7)), ==+, T(En(Lo, +, 7))

r—oo tZtg

(@(PYUX(P)VE (14 Q) 0| =0.
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So by using density of Range (14| Q) "¢ we deduce that for each g in [ L2(R™")™
lim sup Idiag (T(E1(Lo, +, 7))@(P), =+, T(E (Lo, +, P)e(PYUXP)V¥g|=0.
Now the result follows by the compactness of
T{(x;, kj) : kyje Ly, x;-hi{k;j)=0, |x;| =r}¢(P)

for each j=1, .-, m, each »>0 and RAGE Theorem [29]. (ii) Similar to (i).
Q.E.D.

LEMMA 5.3. Let ¢, Lo, It, t, ¢, 4, ¥) be as in T emma 5.1. Then

(i ) w1<t07 90; +, r)zszljorgl Z;k—tol(tO: t; SD; +7 7’) exisl‘s.
(ii) (o, ¢, +, r)=slim V¥, I, t, ¢, +, r) exists.
. t o0

(iil) .t o, +, r=82.0,, o, +, r).
@iv) lim [1—=2.2HU(P)p(P)diag (T(E«(Lo, +, 7)), =+, T(En(L,, +, ¥))]=0.

(v) A=8.2%UP)p(P)T. is compact.

The corresponding statements for the negative time hold with the same 7.

Proor. (i) For any ¢ in C%(L, with ¢gp=¢ it is easily seen that
H(P) (L, t, @, +, r)=I(ty, t, ¢, +, r). With the above observation the result follows
by using (ii). (ii) Follows from (i). (iii) Follows from
(i) and (ii). (iv) Similar to the proof of Lemma 6.2 (vii) of [19]. (v) Follows
from (iv) by the compactness of

O(P)T {(x;, k) = |x;|=r, x;-hj(k;)=0, k€ Lo}
for each j. Q.E.D.

LEMMA 5.4. (i) Let (L, U, h) be a chart and L, as in (4.8). Then for ¢
in C3(Ly) and f in I (H) one has EL|(1—2.2%)p(P)V.f]1=0.

(ii) Let G be as in assumption A.3 and ¢=CT(G). Then for f in I .(H)
we get E[(1—2.:2%)p(P)V.f]1=0.

(iii) H.(H)©ORange2.={fc4(H):E[llpP)V. fII1=0 for each ¢ in C3(G)}.

(iv) H.(H)ORange2.,={fcH.(H):[|leP)V.fII1=0 for each ¢ in C3(G)}.
Here ¢ is a matrix ((¢;x)j, k=1, ,m- @ 18 in CT(G) means each ¢;; is in CH(G).

Proor. (i) Clearly we can assume ¢ to be real valued. Given such ¢
choose a real valued ¢ in C3(L,) such that ¢gp=¢. Let fe 4 (H). Now choose
b* in (3.4) so that we have (v) holds for ¢ and (i) holds
for ¢ i.e. (1—Q.,20U(P)p(P)T. is compact and E[|T-H(P)U*(P)V,f|]1=0. Now
by RAGE Theorem and boundedness of U*(P)¢(P) we have
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5.9 elA—=2,.25UP)p(P)T . UX(P)P(P)V . f]=0.
Again, using the boundedness of (1—2,2%)U(P)p(P) we trivially have
(5.10) ELA—=2,:25UP)p(P)T -UX(P)P(P)V:f1I1=0.

Now add and and use T.+T_=1, pp=¢ to get the result. (ii) Follows
from (i) by the techniques of partition of unity [27]. (iii) Let f=L.H.S. and
9=C%(G). Put ¢=¢@ so that $=C3(G). Then

lpPYV fIP=KA—=2.L0PWV . f, Vi 5| =|A—=2. 20PN 1 -

By (ii) we see that feR.H.S. Thus L.H.S.cCR.H.S.
Let feR.H.S. and g=Range 2,. Put g=£.h. Then for any real valued

¢ in CY(G) we have
Sy @=Vif, Vig=Zh)+<p(P)V f, Zhy+<Vif, Z:,[1—p(P)]h>.

Now using the hypothesis on f and g=£.,h we conclude

I<f, g1 =I1—oP)1AllifIl
for each real valued ¢ in C3(G). Since R™ G has measure zero we get <{f, g»
=0. Thus R.H.S.cL.H.S.
(iv) Let E;, be the matrix units i.e. 1 at the jkth place and 0 everywhere
else. Then (iv) follows from (iii) by noting @=((¢;:)=2;,r¢;+E;x and
0=2;0E;; Q.E.D.

THEOREM 5.5. Range 2,= 4% .(H)=Range £..

ProOOF (For the positive sign only). Let fe 4 (H)SRange 2.. Let C,(H,)
be as in assumption A4. Choose ¢=C3(R\C,(H,). Put @(P)=¢(H,). Then ¢
eC3(G). So by (iv)

(5.11) ELIYH)V . f11=0.

By assumption A9 and Stone Weierstrass theorem the operator ¢(H)—¢(H,) is
compact. So by RAGE Theorem

(5.12) ELILYH)—P(H)IV  f111=0.

From [5.1I) and we get 0=¢(H)f for each ¢ in CS(R\C4(H,). Since
C.(H,) is countable and fe& 4. (H) we conclude f=0. This completes the proof.

Q.E.D.
THEOREM 5.6. Any eigenvalue of H not in C,(H,) is of finite multiplicity.

Such eigenvalues can accumulate only at the points of Co(H,). :
ProoF. Let E be the orthogonal projection onto the point subspace for H.
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Let (L, U, h) be a chart and ¢=C5%(L,) be real valued. Then by
(v) we can choose n of (3.4) such that (1—2.2¥U(P)e(P)T. is compact. Since
1—Q2.Q2%=FE by Theorem 5.5 we get EU(P)¢(P) is compact. So E¢(P) is com-
pact. Clearly now Eg¢ is compact for each ¢ in C7(G). So E¢(H,) is compact for
each ¢ in C5(R\C,(H,)). Since ¢(H)—¢(H,) is compact we get EQ(H) is com-
pact for each ¢ in C5(R\C,(H,)). Now the result is clear. Q.E.D.

By using the same techniques we can prove a general theorem when W(Q)
is replaced by a general pseudo differential operator W(Q, P) with a smooth
symbol W(x, &€). More precisely we have

THEOREM 5.7. Define A*6, A*8 and A*9 by
A*6 (condition on the long range). W :R"XR"—R is a C* function. There
exist a polynomial q¢:R™*— R and 6 in (0, 1] such that

(W (x, O =A+1x1)"%(&)
for all x, & Also for each compact subset B of R™ and multi-indices a, B
|DgDEW (x, &)| <K(B, a, )1+ 1x])"'#%  for (x, &) in R"XB

holds for suitable constants K(B, a, B). In such a case define W(Q, P) on S(R™) by

(W@, P)fYgy=(2m) | de f&W (g, & explig-9).

(Assume that) W(Q, P) maps S(R™) into L*(R™).

A*8. Same as A8 with W(Q) replaced by W(Q, P).

A*9, Same as A9 for new H.

Let Al, ---, A5, A*6, A7, A*8, A*9 hold. Then is true for (the
new) H.
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Note added after submission.

In the assumption A4 the definition of critical values involves the second
derivatives. Let us for simplicity take m=1, n=2 i.e. H,=h,(P) where
ho: R*—>R is C*. Then C, is countable, where

Co=1{ho(&) : ho(§)=0 or det h§(£)=0}

for ho(&y, £)=(1+ED)7, r>0 or ho(&, &)=61+&+a(E1+E5), a>0 or ho(éy, &)=
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Ei+&5+a(82+£2%), a>0 but not for the elliptic case ho(§;, §2)=£&1+82. The aim of
this note is to overcome this highly unsatisfactory state of affairs.

Let G, be any open set of R* and hy:G,— R any C* function such that
[hy(€)] >0 for each & in G,. (Note that we have removed the condition |det 2{(£)]
>0 on G, which was imposed in §3). Then using the techniques of we
can prove For example refer to the proof of Lemma 3.5 in [31].

With G, as above we can prove, using the techniques of [30],
A similar result is proved as Theorem 5.5 in [32].

Now proceeding exactly as in §4 and §5 we see that the assumptions A3
and A4 can be improved to the assumptions A’3 and A’4: for any chart (L, U, h)
we define the critical set C and critical values C, by

m

CL, U, m=\J €L : h&)=0},

Jj=1

CAL, U, )= (’3 {h(&) : £ L, h)(®)=0} .

A’3. G=\U{L~NC(L, U, h):(L, U, h) is a chart} is an open subset of R™ with
R™G having (Lebesgue) measure zero.
A’4. The closure of C,(H,) is countable where

Co(Hy)=\U{C,(L, U, k) : (L, U, h) is a chart} .
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