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§0. Introduction.

Let X be a locally compact group with a left invariant Haar measure p.
Let fo,=af:XO be a continuous affine map where f is a continuous group
automorphism of X and a€X. f, is said to be ergodic under g if it is meas-
urable and whenever ECX is a Borel set such that f,(E)=F we have either
p(E)=0 or u(X\E)=0. The shift map ¢ of Z is a translation defined on the
discrete group Z of integers by ¢(n)=n-+1.

Recently N. Aoki has answered the problem of Halmos (p. 29 of [7])
negatively, i.e., if X is a locally compact totally disconnected group which has
an ergodic continuous automorphism with respect to a Haar measure g, then X
is compact. For the affine maps, the problem of Halmos remains an open
question when X is totally disconnected.

The purpose of this paper is to prove the following :

THEOREM. Let X be a locally compact group with a left invariant Haar
measure p and fq: X O be a continuous affine map. Let o :ZO be the shift map.
If (X, fo, p) is ergodic, then either X is compact or (X, fa) is homeomorphic to
(Z, o).

In N. Aoki’s proof, concepts of the pseudo-orbit tracing property and topol-
ogical mixing for topological dynamics play an important role. We shall apply
his techniques for the proof of

REMARK 1. Let X, f, and g# be as in [lheoreml If (X, f,, p) is ergodic
and if X is discrete, either X is compact or (X, f,) is homeomorphic to (Z, o).
Indeed, if X is finite then X is compact. If X is infinite, then X={f2(x); n=Z}
for each x= X by ergodicity of (X, fq, #). We define a homeomorphism ¢ of Z
onto X by ¢(n)=f2(x) (n€Z), and then we get peo=f,°¢ on Z.

For the subclasses of abelian groups and connected groups, the following
results are known.

THEOREM A (N. Aoki and Y.Ito [2]). Let X be a locally compact abelian
group with a left invariant Haar measure p. If on X there exists an affine map
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fa(x)=af(x) (x€X) which is totally ergodic, then X must be compact.

THEOREM B (S.G. Dani [6]). Let X be a connected locally compact group.
Suppose that there exists an affine automorphism fo of X and x,& X such that the
orbit {f2(x,); neZ} is dense in X. Then X is compact.

For the proof of we shall use the definitions and the results in
topological groups and topological dynamics for locally compact spaces. If X is
a o-compact group and f: X is a bicontinuous automorphism, then there is an
f-invariant compact normal subgroup H of X such that X/H is separable and
metrizable (see [1]). When X/H is compact, so is X. If (X, fq, ) is ergodic
then f, is bicontinuous and g-measure preserving (Appendix 1) and moreover X
is o-compact. Let V be a compact symmetric neighborhood of the identity e in
X. The set H=\J,::V" is a o¢-compact open subgroup of X. Since f, is
bicontinuous, the set K=\czf%(H) is open g-compact and f;(K)=K. Since
u(XNK)=0, K is dense in X. Put F=\,.,(K\UK™)?", then F is a o¢-compact
open subgroup of X such that KCF. Since F is a closed subgroup of X, we
have F=X and so X is ¢-compact.

Let Y be a locally compact metric space with a metric function d and g be
a homeomorphism from Y onto itself. We recall that (Y, g) is topologically
mixing iff there is an M>0 for any nonempty open sets U and V of Y such
that UNg®(V)# @ for all n=M. If (Y, d) is complete and if (Y, g) is topolog-
ically mixing, then (Y, g) has a dense orbit. We say that g is expansive under
d if there is an ¢>0 such that x#y implies the existence of neZ such that
d(g™(x), g™y))>¢ and that ¢ is an expansive constant for g. For >0, a sequence
{xi}ica p (—o=a<f=00) of points of Y is called a d-pseudo-orbit under d for
g if d(g(xy), x441)<0 for i€(a, B). Given ¢>0, a pseudo-orbit {x;} is called to
be e-traced under d by a point x€Y if d(gi(x), x;)<e for ic(a, ). We say g
to have the pseudo-orbit tracing property (abbrev. P.O.T.P.) under d if for
every ¢>0 there is a 6>0 such that every d-pseudo-orbit under d for g can be
e-traced by some point in Y. Note that P.O.T.P. is defined for continuous
maps. Let X be a metric space and ¢ :Y— X be a homeomorphism for which
¢~* is uniformly continuous. If g is expansive then so is gegep~. If in partic-
ular ¢ and ¢' are uniformly continuous and g has P.O.T.P., then ¢-g-¢~* has
P.O.T.P.

Our result will be reduced to the case when X is metrizable and separable
and f, is bicontinuous. Since X has a countable base, the assumption for
(X, fa, 1) to be ergodic will be changed by the assumption that (X, f,) has a
dense orbit (see p. 26 [7)).

The conclusion of will be obtained in proving the following two
propositions.



Ergodic affine maps 365

PRrRoOPOSITION 1. Let X be a locally compact group with a left invariant Haar
measure p and X, be the connected component of the identity e in X. Let fo,: XD
be a bicontinuous affine map. If (X, fq, p) is ergodic and X/X, is compact, then
X is compact.

PROPOSITION 2. Let X be a locally compact totally disconnected metric group
with a left invariant metric function d, and fo: X O be a bicontinuous affine map.
If X is not discrete and (X, fo) has a dense orbit, then there exist an f-invariant
compact subgroup B of X and an f-invariant open subgroup Y of X with BCY such
that XY is compact, (Y /B, h) is topologically mixing and (Y /B, h) has P.O.T. P,
Here h denotes a homeomorphism on X/B defined by h(xB)=f(x)B (x€X).

§1. Proof of Proposition 1.

It is enough to show that X, is compact. To do this, assuming X, is not

compact. We see (p. 175, [10]) that there exists the maximal compact normal
subgroup N of X, such that X,/N is a Lie group. It is easy to see that N is
normal in X and invariant under f. Put Y=X/N and Y,=X,/N. Since Y /Y,
is homeomorphic to X/X,, Y /Y, is totally disconnected. Since Y, is connected
and Y /Y, is compact, there is a compact normal subgroup K of Y such that
Y/K is a Lie group. Let 7:Y D be the automorphism induced by f: XD and
put :
K,=Kf(K)f(K) - f"K) for n=0.
Since K, is a compact normal subgroup of Y, Y /K, is a Lie group. For n=0,
Y .K,/K, is open in Y /K, because the connected component of the identity of a
Lie group is open. Therefore Y K, is open and closed in Y. H=\/,..Y K, is
an open-closed subset of Y and f(H)CH holds. Since f is measure preserving,
we have f(H)=H. Denote by f,:Y D the affine map induced by f,:XO and
by fo:Y/HD the map induced by f,:YD. Since (X, f,, ) is ergodic, (V, 74)
is ergodic with respect to the induced Haar measure g=pg-x"' where = : X— X/N
is the projection. Since H is open in Y, Y /H is discrete. By Remark 1, either
(Y/H, f.) is homeomorphic to (Z, ¢) or Y/H is compact. If (Y/H, f,) is homeo-
morphic to (Z, ), then we can find an element ¥<Y such that Y/H= {fg(xH);
neZ) since (Y/H, f,) has a dense orbit. Hence xH is a wandering set of YV
for f,. Since %#H is open and closed in Y, we have ¥H={%}; i.e. H={z}.
Therefore (X/N, f.) is homeomorphic to (Z, o), hence X/N is discrete and N is
open and closed. We conclude that N=X, This contradicts that X, is not
compact. We now give a proof for the case when Y /H is compact. Since Y /H
is discrete, Y'/H is finite. Since f~%(K) is compact in ¥ and f Y(K)CH=\Unz0Y oKy,
there is an m>0 such that f*(K)CY,K,_,. Hence
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KCf(YVKn-)CYK, and so Y K,Cf(Y K.

Since YK, is open and closed, f(Y,Kn) =YK, Hence we get H=Y Kp.
Since K, is a compact normal subgroup of Y, we get K,NY,={¢} because
N=¢ and Y, contains no compact normal subgroups of Y. We have H=K,, XY,.
Since the projections of f(K,) and f~%(K,) to Y, are compact normal subgroups
of YV, they must be the trivial subgroup {¢}. Therefore we get f(K,)CKn,
and 7 Y(K,)CK, so that K,, is invariant under 7. Therefore F(&, 3)=(F(&), ()
for (¢, )€K, xY, We note that (Y/H, f,) is ergodic with respect to the
induced Haar measure ji=fg-n~' where = :Y—Y/H is the projection. Since Y/H
is finite and (Y/H, f,) has a dense orbit, there exists a natural number n such
that F2(H)=f2(H)=H and Y/H=1{H, fo(H), -+, f2"'(H)}. Since Y is the dis-
joint sum of cosets fi(H), 0=i<n—1, and since (Y, f,) has a dense orbit,
(H, ) has also a dense orbit. Since f2=af(a)-- f* '(a)f", there exists a
(b, c)e K, XY, such that

fr=, o)fr: (& 5)—> b k), cf™3)  for (k, y)EK,XY,,

then bf": K,— K, and ¢f*:Y,—Y, are affine maps and (¢c/™)(Y,)=Y, Since
(H, ) has a dense orbit, (Y,, cf™) has a dense orbit. Since Y, is connected,
Y, is compact B). This contradicts that Y, is not compact. The
proof is completed.

§2. Proof of Proposition 2.

Since X is totally disconnected and not discrete, there is a compact open
subgroup B, of X. Put B=(\;czf*B,), then B is a compact subgroup of X and
f(B)=B holds. Now define a compatible metric function d of the left coset
space X/B by

d(x B, yB)=inf{d,(xb, yb’);b, b’ B} (x, yeX).

Define the maps h:X/BO and h,: X/BO by h(xB)=f(x)B and h.(xB)=af(x)B
(x= X) respectively. Then (X/B, d) is a complete metric space and # is a
bicontinuous map on X/B. Since B,/B is a compact open set of X/B and
¢=Be€B,/B, there exists an ¢,>0 such that U.(e)CB,/B, where U, (e)=
{xeX/B; d(x, )<s,}. Then ¢, is its expansive constant for (X/B, h,). Indeed,
for ¥=xB, y=yB<X/B, if d(h%(%), h2:(¥))<e, for all n=Z, then

d(f"(y™'x)B, B)=d(f™(x)B, f*(y)B)=d(fi(x)B, fi(y)B)<e,

for all neZ. This implies that f*(y'x)eB, for all n=Z, hence x=45. If
X/B is not discrete then (X/B, h) has P.O.T.P. (see §2, [1]), hence (X/B, h,)
has P.O.T.P. (Appendix 2). We now consider the case when X/B is discrete.
Then (X/B, h,) is homeomorphic to (Z, ¢) or X/B is compact (by Remark 1). If
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(X/B, hy) is homeomorphic to (Z, ¢), then B={e} since B is open and (X, f,)
has a dense orbit. Hence (X, f,) is homeomorphic to (Z, ¢), but this contradicts
nondiscreteness of X. If X/B is compact, X is compact since B is compact.
Since f is a continuous automorphism of X, (X, f) has P.O.T.P. (N. Aoki [4]).
Hence (X, f,) has P.O.T.P. (Appendix 2). This is enough to give a proof for
(X/B, hg).

Let Per(h,) be the set of all periodic points of #,.

LEMMA 1. Per(h,) is dense in X/B.

PROOF. Take x=X/B and 2 with 0<1<e, For this 4, let d (0<d<A4) be
the number in the definition of P.O.T.P. for (X/B, h,). Since (X/B, h,) has
a dense orbit, there are x,=X/B and m, n=Z (m>n) such that

d(h3(%,), X)<0/2 and d(hg(X,o), h3(%)<0/2.
Put z,=h7*%*(%,) for i=k mod m—n) 0=k<m—n), then {z;}:cz is a d-pseudo-

orbit for (X/B, h,). Since (X/B, h,) has P.O.T.P., there exists ze X/B such
that d(h%(2), z;,)<A/2 for all j€Z. Hence

d(hi(2), hir™ ™ E)=d(hi(2), Z;)+d(Z;, hiT™ ™ (2))<A4
for all jeZ. By expansiveness of (X/B, h,), we have Z=h7""(2): i.e.

z<Per(h,), and
dz, X)=d(Z, hi(%e)+d(h5(Xo), £)<A.

For ¢ with 0<e<e, and T=xB<X/B, let W%, h,) and W¥(%, h,) be the
local stable and unstable sets defined by

WiZ, ho)={¥y€X/B; d(hi(9), hi(X)<e, j=0},
WX, ho)=1{5€X/B; d(h3’(), ha’(X)<e, j=0}.
Now define the stable and unstable sets W*(x, h,) and W*(x, h,) as
Wiz, ha)znkzjoh;"(Wi(hZ(X), ha)),
WHE, ha)=\J h2WEha™(®), ho)).
Then for every ¥ X/B we obtain (see [1]) that
Wiz, ha)Z{y’EX/B;iiin d(ha(x), ha(3))=0},
WH(%, ha)={¥€X/B ; lim d(h3"(X), ha"(¥))=0}.
REMARK 2. Since d is left invariant for X/B, we have that
WX, ho)=W?*X, h)={y<X/B ;lim d(h"(X), h™(¥))=0},

Wz, ha)=W(E, h)={3=X/B; lim d(h""(%), h™"(5)=0}.
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Hereafter we denote by E the closure of a subset E.

LEMMA 2. For pePer(h,), put Wiho)=W(p, ha) and Wilh)=W*(p, ha).
Then W5(he) and W%(hs) are open in X/B.

PrOOF. For A>0 with 0<A1<e,, let 6>>0 be the number in the definition of
P.O.T.P. for (X/B, h,). Put

UsielWi(ha)={3<€X/B ; d(§, Wi5(ha))<d/2}.

Since Per(h,) is dense in X/B, it is enough to see that if gePer(h,)N\Us:(W5(hy))
then geWs(h,). Now take x=xBeW:(p, h,) with d(X, §)<6 and put F;=h}(%)
for =0 and ¥;=h}(G) for yj=<—1. Then {J;} oz is a d-pseudo-orbit for (X/B, h,).
Hence there is y= X/B such that
d(hi(%), hi(F)<A for j=0 and d(hi@), hi(F)<A for j=-—1.

This implies that yeW?(x, ho)\W*(G, h,). Since p and § are periodic points
of he, let h(p)=p and h?%(g)=q. Since x=W(p, hy), W%, ho)=W?*p, h,) and
h7FmM(F e hz*mr (WX, ho))=h*™" (WP, ho))=W?p, h,) for all £>0. Hence

lim d(hg*™™(¥), G)Zlkim d(hz*™™(5), hg*™™(§)=
Therefore GeW*(p, ha)=W3 5(he) and W5(h,) is open in X/B. Similarly, W§(h,)
is open in X/B.

Since AT(p)=p and h,(W(h,))= W,Lau,)(ha) we have h7(W5(ho)=W5(h,).
Since (X/B, hy) has a dense orbit, there is m’ (1=m’=m) such that

X/B=W3(ho)\JhaW5(ho))\J --- \ThG " W5(ha))
is a disjoint union. Similarly,
X/B=W3(ho)\JheWi(ha))\J - UG " Wi(ha)

is a disjoint union. Since W$(h,) and W4(h,) are open in X/B and pe
W5(ha)\W%(he) holds, there is a 6 (0<d<e,) such that

Us(PYTW5(h )W ¥(ha)
where Us(p)={x=X/B; d(x, p)<d}. We note that
W§(p, ha)“Us(p)  and W%<ha>:}go h"W (D, ha)).
Then every hT-invariant closed set which contains U ;(p) coincides with Wi(/,).

Similarly, each h;™-invariant closed set which contains U;(p) coincides with
W5(he). Hence W5(he)=W}j(h,). We write

Wo(h)=Wih)=W¥(h).
LEmMMA 3. (Wi(h), h) has P.O.T.P.

PROOF. Since W,(h) is open in X/B, there is a A>0 such that U,(e)=
{#€X/B; d(x, e)<A} CWg(h). For 4/2, let 0 (0<6<4/2) be the number in the
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definition of P.O.T.P. for (X/B, h). If {%iicw.» iS a 0-pseudo-orbit for
(Wih), h), then there exist Z,cW%(@, h) and n>0 such that d(h(Z.), £a+1) <O
and d(h™"™Z,), &)<d. Put ¥,=h""*%(Z,) for 0=<k=<n and ¥,=ZXare-n fOr
n+1<k=b—a+1. Then {¥.} rec-1.6-a+n iS a 6-pseudo-orbit for (X/B, h). Since
(X/B, h) has P.O.T.P., there is an £=X/B such that d(h’(%), ¥;)<A/2 for
0<j=<b—a+n and in particular, d(%, ¢)<A. Hence xW h). Put Z=h""%(X).
Since W (h) is h-invariant, Z=h""%(%)=W,(h) and Z is a A-tracing point for
{Z:}icw@.». Therefore (Wi (h), h) has P.O.T.P.

LEMMA 4. (W(h), h) is topologically mixing.

ProOF. Let U and V be nonempty open sets of W (k). Then there exist
zeW*e, hyh\U and yeWe, h)N\V and A>0 such that U (x)CU and U ;;(5)CV.
For 4, let 0 (0<d<A) be the number in the definition of P.O. T.P. for W (h), h).
Then there exists an n,>0 such that d(&, h~"(%))<0/2 and d(&, h"(¥))<o6/2 for
n=n,. For nz=n, and j=0, since the finite sequence

{5, h(3), -, h**(F), &, h"™(®), -, h™(X), %}

is a od-pseudo-orbit for (Wi (h), h), there is a z&W (k) such that d(¥, z)<o and
d(h*®+0+i(z), £)<d. Put M=2(n,+1), then ZeU(5)CV and A*@F)eU(H)CU
for n=M. This implies that A" (V)NU+# @ for all n=M.

LemMMA 5 (N. Aoki [1]). Let Y be a locally compact totally disconnected
metric group with a left invariant metric function d and g be a bicontinuous
automorphism of Y. If (Y, g) is topologically mixing and has P.O.T.P. under
d, then Y is compact.

Let #: X— X/B be the projection. Put Y=z"'(Wh)). Then Y is open in
X since W,(h) is open in X/B. It is easy to see that Y is a subgroup of X.
Indeed, for xB and yBeW%(@, h), since d(h~%(xB), ¢)—0 and d(h~’(yB), &)—0
as j—co, we have

d(h™(y~*xB), &)=d(f(x)B, f(y)B)
=d(h 9 (xB), &)+d(h™i(yB), &)—0 as j-—oo

and so y'xBeW%@é, h). This implies that Y is a group since W¥*(e, h) is
dense in Wy(h) and Y=z "YW h)). It is easy to see that the left coset space
X/Y is compact. Indeed, since 2(X/Y)=8(X/B)/W(h)<m’ (the notation #(E)
means the cardinality of a set E), X/Y is finite. Moreover, since Y/B=W(h),
(Y, f) is topologically mixing and it has P.O.T.P. (see §2, [1]). Therefore the
conclusion of is obtained by [Proposition 2 and Lemma 5.
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§ 3. Appendices.

In this section, we prove some properties of ergodic affine maps of locally
compact groups.

APPENDIX 1. Let X be a locally compact group with a left invariant Haar
measure p and fo: XO be a continuous affine map. If (X, fq, p) is ergodic, then

(1) fq s bicontinuous, and

(2) fq is p-measure preserving.

ProorF OF (1). As the assertion is obvious if X is discrete, we assume that
X is not discrete. If f, is not bicontinuous, then f is not bicontinuous. Thus
there exists an open g-compact subgroup H of X such that f(H)CH and f~(H)
is not g-compact. Let F be the subgroup of X generated by the ¢-compact set
HUf.(H). Since f is continuous, the sets f/(F) (=0, 1, 2, ---) are ¢-compact.
The subgroup K of X generated by \J;.,f’(F) is open and o-compact. Clearly
f(K)CK. Since acsf,(H)CK, we see that f;(K)=fa )fYK)=fa'K)
=f"YK). Put P=f"(K)NK. Since f~!(K) is not o-compact, P is a nonempty
open-closed subset of X and fX(P)N\fi(P)=@ whenever k+j . Since X is not
discrete, there is a compact subset C such that p#(C)>0 and pu(P~\C)>0. The
set W=J,;ezf%(C) is a Borel set of X satisfying f;'(W)=W. However, p(W)>0
and p(X W)=zp(P~\C)>0 because P is a wandering set. This contradicts the
ergodicity of f,.

PrROOF OF (2). Since f, is bicontinuous and g is a left invariant Haar
measure, there is a 6>0 such that u(fq(E))=plaf(E)=p(f(E))=0u(E) and
([T EN=p(f N a) fUE)=pu(fE))=0""u(E) for all Borel sets ECX. If f,
is not p-measure preserving, then d#1 and X is not compact. If 0>1, then we
show that the ergodicity of f, does not hold. For 2>0, there is a nonempty open
subset U such that p(U)<4. Now let V be a compact neighborhood of the
identity e of X. Put W=\,..fz"(V). Then pW)=Zru(fa(V)=Z70"")uV)
=(1/(0—1)pu(V)<oo, Clearly, f,(W)DW and fH(X\W)N\W=@ for n=0, 1, 2, ---.
Since W is open and ¢-compact, there is a ¢-compact open subgroup H of X
such that WCH. Therefore there exists a Borel subset E of X such that
EcC X W and 0<u(E)<((0—1)/2)u(V). Then

# fUENE 3G ME)<pV)/2.

Put F=\U,ezf3(E). Then f;'(F)=F and p(F)>0. Since fENV=g for
n:07 1: 2) 3; T

pXNP2 (VS FuE)=p(VN U faME) = %w»o .

This contradicts the ergodicity of f,. For the case when 0<1, f;! is not ergodic
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since 07'>1. In any case f, must be g-measure preserving.

APPENDIX 2. Let X be a locally compact metric group with a left invariant
metric function d and f: XD be a bicontinuous automorphism. Let fo:X O be a
bicontinuous affine map defined by f.(x)=af(x) (xeX). If (X, f) has P.O.T.P.,
then (X, fo) has P.O.T.P.

PRrROOF. For ¢>0, let >0 be the number in the definition of P.O.T.P. for
(X, f). Let {x;}.cz be a d-pseudo-orbit for (X, f,). Now put

Z,=f" N a ) f* ¥ a ") flaNa'x, (nEZ),
then
d(f(zn), zps)=d(f™a™) - fla™)f(xz), fMa™) - fla™)a ' xp41)
:d(f<xn), a_lxn+1>:d(fa(xn>, Xn+1) <0 (neZ).

Hence {z,}n.cz is a d-pseudo-orbit for (X, f). Since (X, f) has P.O.T.P., there
exists a ze X such that d(f™(z), z,)<e (neZ). Hence

d(fi(2), x2)=d(fi(2), af(a) -+ [P a)z,)=d(f"(2), z2)<e
for all neZ. The proof is completed.
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