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Introduction.

In $[8, 9]$ the author established the equivariant point theorem for a continuous
map between manifolds with free involution, and applied it to re-prove the theo-
rems of Milnor [6], Lee [4] and Stong [11] on groups acting freely on manifolds.
In this paper, we shall show that the following theorems on group actions are
also proved easily by making use of the equivariant point theorem.

THEOREM 1. Suppose that a group $G$ acts freely on a closed $(2n+1)-\ mm-$

stonal manifold M. Let $\sigma,$
$\tau\in G$ be elements such that $\tau^{2}=1$ and $\sigma\tau\neq\tau\sigma$ . Then

the trace of
$(\sigma\tau\sigma^{-1}\tau^{-1})^{*}:$

$\bigoplus_{k\leqq n}H^{k}(M;Z_{2})arrow\bigoplus_{k\leqq n}H^{k}(M, Z_{2})$

is zero.
This is a generalization of Theorem 1 in Montgomery-Yang [7]; they deal

with the case $G$ is a dihedral group.
We denote by $k_{2}(M)$ the mod 2 semicharacteristic of a closed $(2n+1)$-dimen-

sional manifold $M$ :
$k_{2}(M)= \sum_{k\leq n}\dim$ $H^{k}(M;Z_{2})$ mod 2.

THEOREM 2. If a 2-group $G$ acts freely on a closed onentable $(4n+1)\ovalbox{\tt\small REJECT} men-$

stonal manifold $M$ with $k_{2}(M)\neq 0$ , then $G$ is cyclic.
We denote by $k_{0}(M)$ the rational semicharacteristic of a closed orientable

$(2n+1)$-dimensional manifold, $i.e$ .

$k_{0}(M)= \sum_{k\leq n}\dim$ $H^{k}(M;Q)$ mod 2.

If $n$ is even and $M$ admits a free action of $Z_{2}$ , then we have $k_{0}(M)=k_{2}(M)$ by
the formula of Lusztig-Milnor-Peterson [5]. Therefore Theorem 2 coincides with
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Theorem (5.2) of Becker-Schultz [1], which was proved by regarding $k_{0}(M)$ as
the obstruction to the existence of two linearly independent vector fields on $M$.

THEOREM 3. Let $M$ be a closed orientable $(4n+1)$-dimenstonal manifold with
$k_{2}(M)\neq 0$ . Suppose that a finite group $G$ acts freely on $M$, with trivial action on
$H^{*}(M;Z_{2})$ . Then $G$ is the direct product of a cyclic 2-group and a group of odd
order.

This is a modification of Theorem $D$ in Davis [3]; he and Weinberger proved
Theorem 3 replacing $k_{2}(M),$ $H^{*}(M;Z_{2})$ with $k_{0}(M),$ $H^{*}(M;Q)$ respectively. To
prove it, they used the surgery semicharacteristic.

It will be understood in this paper that our actions are topological actions
on topological manifolds.

\S 1. Equivariant point theorem.

In this section we shall recall briefly the equivariant point theorem which is
used later. See [9] for details.

Let $M$ be a closed m-dimensional topological manifold on which $Z_{2}$ acts
freely, and let $\tau$ be the generator of $Z_{2}$ . Then it follows that there exists a
symplectic basis $\{v_{1}, \cdots , v_{r}, v_{1}’, \cdots , v_{r}’\}$ of $H^{*}(M;Z_{2}),$ $i.e$ . a homogeneous basis
such that

$\langle v_{i^{arrow}}\tau^{*}v_{j}, [M]\rangle=0$ , $\langle v_{i^{-}}’\tau^{*}v_{f}’, [M]\rangle=0$ , $\langle v_{i^{arrow}}\tau^{*}v_{j}’, [M]\rangle=\delta_{ij}$

for any $i,$ $j$ . For a continuous map $f$ : $Marrow M$, we define a mod 2 integer $\hat{L}(f)$

by

$L(f)= \sum_{=1}^{r}\langle f^{*}v_{i^{arrow}}\tau^{*}f^{*}v_{i}’[M]\rangle$ .

This is independent of the choice of symplectic bases of $H^{*}(M;Z_{2})$ , and is called
the equivariant Lefschetz number of $f$ . If $f^{*}=id:H^{*}(M;Z_{2})arrow H^{*}(M;Z_{2})$ then
$\hat{L}(f)=k_{2}(M)$ .

Regard $M\cross M$ as a $Z_{2}$-manifold by permutation of factors. Then an equi-
variant map $\Delta:Marrow M\cross M$ is defined by $\Delta(x)=(x, \tau(x))(x\in M)$ . Consider the
homomorphisms

$H_{Z_{2}}^{0}(M;Z_{2})arrow^{\Delta_{!}}H_{Z_{2}}^{m}(M\cross M;Z_{2})arrow H_{Z_{2}}^{m}(M;Z_{2})\hat{f}^{*}$

,

where $\Delta_{!}$ is the Gysin homomorphism and $\hat{f}=(f\cross f)\circ\Delta$ . Identifying $H_{Z_{2}}^{m}(M;Z_{2})$

with $H^{m}(M/Z_{2} ; Z_{2})$ , we define a mod 2 integer $\hat{I}(f)$ by

$\hat{I}(f)=\langle\hat{f}^{*}\Delta_{I}(1), [M/Z_{2}]\rangle$ ,

and call it the equivanant Pmnt index of $f$.
Now the equivariant point theorem is stated as follows:
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THEOREM. (1) If $\hat{I}(f)\neq 0$, then there exists an equivariant point $x$ of $f,$ $i.e$ .
$x\in M$ such that $\tau f(x)=f\tau(x)$ . (2) $\hat{I}(f)=L(f)$ .

\S 2. Applications of the equivariant point theorem.

We shall first give
PROOF OF THEOREM 1. We regard $M$ as a $Z_{2}$-manifold with the free in-

volution $\tau;Marrow M$. Then the equivariant Lefschetz number $\hat{L}(\sigma)$ of $\sigma$ : $Marrow M$ is
zero.

In fact, if $L(\sigma)\neq 0$ then it follows from the equivariant point theorem that
there exists a point $x\in M$ such that $\sigma\tau(x)=\tau\sigma(x)$ , and hence $\sigma\tau=\tau\sigma$ because the
action of $G$ is free.

Take a symplectic basis $\{v_{1}, \cdots , v_{r}, v_{1}’, \cdots v_{r}’\}$ of $H^{*}(M;Z_{2})$ such that deg $v_{i}\leqq n$

$(1\leqq i\leqq r)$ . Then we can put

$( \sigma\tau\sigma^{-1}\tau^{-1})^{*}v_{i}=\sum_{j=1}^{r}a_{ij}v_{j}$ $(a_{ij}\in Z_{2})$ ,

and the trace of
$(\sigma\tau\sigma^{-1}\tau^{-1})^{*}$ : $\bigoplus_{k\leqq n}H^{k}(M;Z_{2})arrow\bigoplus_{k\leqq n}H^{k}(M;Z_{2})$

is $\Sigma_{i=1}^{r}a_{ii}$ . On the other hand, it follows that

$L( \sigma)=\sum_{i=1}^{r}\langle\sigma^{*}v_{i^{\sim}}\tau^{*}\sigma^{*}v_{i}’, [M]\rangle$

$= \sum_{i=1}^{\tau}\langle\tau^{*}\sigma^{*}(\sigma\tau\sigma v_{i}-1***arrow v_{\ell}’), [M]\rangle$

$= \sum_{i=1}^{r}\langle\sigma^{-1*}\tau^{*}\sigma^{*}v_{i^{arrow}}v_{i}’(\sigma\tau)_{*}[M]\rangle$

$= \sum_{i=1}^{r}\langle\tau^{*}(\sigma\tau\sigma^{-1}\tau^{-1})^{*}v_{i^{arrow}}v_{i}’[M]\rangle$

$= \sum_{i=1}^{f}\sum_{j=1}^{r}a_{ij}\langle\tau^{*}v_{j^{arrow}}v_{i}’, [M]\rangle$

$= \sum_{l=1}^{\tau}a_{it}$ .
This completes the proof.

The following corollary is immediate.

COROLLARY 1. Let $M$ be a closed odd-dimensional manifold with $k_{2}(M)\neq 0$ .
If a group $G$ acts freely on $M$, with trivial action on $H^{*}(M;Z_{2})$ , then any
element of order 2 is in the center of $G$ .

We have also the following corollary which is a slight generalization of
Theorem 1 in [7].
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COROLLARY 2. SuppOse that a dihedral group $D_{2q}$ of order $2q$ acts freely on
a closed $(2n+1)$-dimensional manifold M. If $\rho\in D_{2q}$ is of order $>2$ , then the
trace of

$\rho^{*}$ : $\bigoplus_{k\leqq n}H^{k}(M;Z_{2})arrow\bigoplus_{k\leqq n}H^{k}(M;Z_{2})$

is zero.
PROOF. Take a presentation $(\sigma, \tau|\sigma^{q}=\tau^{2}=(\sigma\tau)^{2}=1)$ of $D_{2q}$ . Then $\rho=\sigma^{i}$

with $0<i<q$ , and
$\rho\tau\rho^{-1}\tau^{-1}=\sigma^{i}\tau\sigma^{-i}\tau=\sigma^{2i}=\rho^{2}\neq 1$ .

Therefore Tr $(\rho^{2*})=0$ by Theorem 1. Since Tr $(\rho^{*2})=Tr(\rho^{*})$ we have Tr $(\rho^{*})=0$ .
We shall next re-prove the following theorem of Stong [11]. (See also [8], [9].)

THEOREM 4. If $z_{2}xz_{2}$ acts freely on a closed odd-dimensional manifold $M$,

then $k_{2}(M)=0$ .
PROOF. Let $Z_{2}\cross Z_{2}=\langle\sigma, \tau\rangle$ . We regard $M$ as a $Z_{2}$-manifold with $\tau$ , and

consider the equivariant Lefschetz number $L(\sigma)$ and the equivariant point index
$\hat{I}(\sigma)$ of $\sigma$ : $Marrow M$. Then it is shown as follows that

(i) $L(\sigma)=k_{2}(M)$ , (ii) $\hat{I}(\sigma)=0$ .

Therefore the equivariant point theorem implies $k_{2}(M)=0$ .
Proof of (i). Take a symplectic basis $\{v_{1}, \cdots , v_{r}, v_{1}’, \cdots , v_{r}’\}$ of $H^{*}(M;Z_{2})$ .

Then it follows that
$r=k_{2}(M)$

and

$L( \sigma)=\sum_{i=1}^{r}\langle\sigma^{*}v_{i^{arrow}}\tau^{*}\sigma^{*}v_{i}’, [M]\rangle$

$= \sum_{i=1}^{r}\langle\sigma^{*}(v_{i^{arrow}}\tau^{*}v_{i}’)[M]\rangle$

$= \sum_{i=1}^{r}\langle v^{arrow}\tau^{*}v_{i}’\sigma_{*}[M]\rangle$

$= \sum_{i=1}^{r}\langle v_{i^{-}}\tau^{*}v_{i}’[M]\rangle$

$=r$ .

Proof of (ii). $PutM’=M/\langle\sigma\rangle$ , and let $\pi;Marrow M’$ denote the projection. Then
$\tau;Marrow M$ induces a free involution $\tau’$ : $M’arrow M’$ . Similarly to $M$, we regard $M’$

as a $Z_{2}$-manifold with $\tau’$ , and regard $M’\cross M’$ as a $Z_{2}$-manifold by permutation
of factors. Then $\Delta:Marrow M$ induces an equivariant map $\Delta’$ : $M’arrow M’\cross M’$ , and
we have a commutative diagram
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$H_{Z_{2}}^{0}(M;Z_{2})$

$\Delta_{!}$

$\succ H_{z_{2}}^{m}(M\cross M;Z_{2})arrow^{\sigma^{*}\hat}H_{z_{2}}^{m}(M;Z_{2})$

$|\pi^{*} \Delta_{\dagger}’|(\pi\cross\pi)^{*}$

$\Delta^{\prime*}$

$1^{\pi^{*}}$

$H_{z_{2}}^{0}(M’ ; Z_{2})arrow^{.}H_{z_{2}}^{m}(M’\cross M’ ; Z_{2})-H_{z_{2}}^{m}(M’ ; Z_{2})$ .
(See Lemma 1.5 in [9] for the commutativity of the left rectangle.) Thus

$\hat{I}(\sigma)=\langle\hat{\sigma}^{*}\Delta_{!}(1), [\Lambda f/Z_{2}]\rangle$

$=\langle\pi^{*}\Delta^{\prime*}\Delta_{!}’(1), [M/Z_{2}]\rangle$

$=\langle\Delta^{\prime*}\Delta_{!}’(1), \pi_{\star_{\backslash }}[M/Z_{2}]\rangle$

$=0$ .

\S 3. Free actions on manifolds of dimension $4n+1$ .
If $M$ is a closed orientable $(4n+1)$ -dimensional manifold, then

$k_{2}(M)-k_{0}(M)=\langle W_{2}(M)^{arrow}W_{4n- 1}(M), [M]\rangle$

holds, where $W_{i}(M)$ is the i-th Stiefel-Whitney class of $M([5])$ . If $M$ admits a
free action of $Z_{2}$ then

$W_{i}(M)=\pi^{*}W_{i}(M/Z_{2})$

holds for the projection $\pi;Marrow M/Z_{2}$ . (See Lemma 11.2 in [9].) Therefore in
this case we have $k_{2}(M)=k_{0}(M)$ . Using this fact and the results in the preceding
section, we shall prove Theorems 2 and 3 in this section.

LEMMA 1. Let $M$ be a closed orientable $(4n+1)$-dimenronal manifold on
which $Z_{4}=(\sigma;\sigma^{4}=1)$ acts freely. Then we have

$k_{2}(M/\langle\sigma^{2}\rangle)=k_{2}(M)$ .

PROOF. Consider the isomorphism $\sigma^{*};$ $H^{k}(M;C)arrow H^{k}(M;C)$ induced by
$\sigma:Marrow M$. Then we have

$H^{k}(M/\langle\sigma^{2}\rangle;C)\cong Ker(1-\sigma^{*2})$

where $C$ denotes the complex numbers. (See p. 38 in [2].) Since

$H^{k}(M;C)arrow H^{k}(M;C)1-\sigma^{*2}arrow H^{k}(M;C)1+\sigma^{*2}$

is exact, we have also
$H^{k}(M;C)\cong Ker(1-\sigma^{*2})\oplus Ker(1+\sigma^{*2})$ .

Since the eigenvalues of $\sigma^{*}$ are 4th roots of unity, it follows that there exists
a basis $\{u_{1}, \cdots , u_{s}, v_{1}, \cdots , v_{t}\}$ ( $t$ ; even) of $H^{k}(M;C)$ such that

$\sigma^{*2}(u_{i})=u_{i}$ $(1\leqq i\leqq s)$ , $\sigma^{*2}(v_{j})=-v_{j}$ $(1\leqq j\leqq t)$ .
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Therefore dim $(Ker(1+\sigma^{*2}))$ is even. Thus it holds

dim $H^{k}(M/\langle\sigma^{2}\rangle;C)\equiv\dim H^{k}(M;C)$ mod 2,

which implies
$k_{0}(M/\langle\sigma^{2}\rangle)=k_{0}(M)$ .

A free action of $Z_{2}$ on $M/\langle\sigma^{2}\rangle$ is induced by $\sigma$ , and $M/\langle\sigma^{2}\rangle$ is orientable,
because $\sigma^{2}$ ; $Marrow M$ preserves an orientation. Therefore we have

$k_{2}(M/\langle\sigma^{2}\rangle)=k_{0}(M/\langle\sigma^{2}\rangle)$ .
We have also

$k_{2}(M)=k_{0}(M)$ .

Hence $k_{2}(M/\langle\sigma^{2}\rangle)=k_{2}(M)$ holds.

LEMMA 2. If the quaternion group $Q(8)=(\alpha, \beta ; \alpha^{2}=\beta^{2}=(\alpha\beta)^{2})$ acts freely
on a closed orientable $(4n+1)$-dimenszonal manifold $M$, then $k_{2}(M)=0$ .

PROOF. Since $Z_{4}=\langle\alpha\rangle$ acts freely on $M$, by Lemma 1 we have

$k_{2}(11^{\text{m}}I/\langle\alpha^{2}\rangle)=k_{2}(M)$ .

Since $Q(8)/\langle\alpha^{2}\rangle\cong Z_{2}\cross Z_{2}$ acts freely on $M/\langle\alpha^{2}\rangle$ , by Theorem 4 we have

$k_{2}(\lrcorner\prime VI/\langle\alpha^{2}\rangle)=0$ .
Therefore $k_{2}(M)=0$ .

PROOF OF THEOREM 2. By $’\Gamma heorem4,$ $G$ is a cyclic group or a generalized
quaternion group. However the second alternative never occurs by Lemma 2.
Thus $G$ is cyclic.

LEMMA 3. Let $X$ be a top0l0gical space on which $Z_{2}$ acts freely, and let
$f$ : $Xarrow X$ be an equivariant map such that

$f^{q}=id$ for some odd $q$ ,

$f^{*}=id$ : $H^{*}(X;Z_{2})arrow H^{*}(X;Z_{2})$ .
Then we have

$\overline{f}^{*}=id$ : $H^{*}(X/Z_{2} ; Z_{2})-H^{*}(X/Z_{2} ; Z_{2})$

for $\overline{f}:X/Z_{2}arrow X/Z_{2}$ induced by $f$ .
PROOF. We shall assume inductively $\overline{f}^{*}=id:H^{k}(X/Z_{2} ; Z_{2})arrow H^{k}(X/Z_{2} ; Z_{2})$ ,

and prove $\overline{f}^{*}=id:H^{k\dashv 1}(X/Z_{2} ; Z_{2})arrow H^{k+1}(X/Z_{2} ; Z_{2})$ .
Let $\pi$ : $Xarrow X/Z_{2}$ be the projection, and let $w\in H^{1}(X/Z_{2} ; Z_{2})$ be the charac-

teristic class of the 2-fold covering $\pi$ . Then we have a commutative diagram
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$H^{k}(X/Z_{2} ; Z_{2})\underline{\vee w}H^{k+1}(X/Z_{2} ; Z_{2})arrow^{\pi^{*}}H^{k+1}(X;Z_{8})$

$\downarrow f^{*}=id$

$arrow w$

$\downarrow\overline{f}^{*}$

$\pi^{*}$

$\downarrow f^{*}=id$

$H^{k}(X/Z_{2} ; Z_{2})-H^{k+1}(X/Z_{2} ; Z_{2})arrow H^{k+1}(X;Z_{2})$

in which each row is the Gysin exact sequence ([10]). Let $u$ be any element of
$H^{k+1}(X/Z_{2} ; Z_{2})$ . Since

$\pi^{*}(f^{*}(u)-u)=f^{*}\pi^{*}(u)-\pi^{*}(u)=0$ ,

there exists $v\in H^{k}(X/Z_{2} ; Z_{2})$ such that

$\overline{f}^{*}(u)=u+v^{arrow}w$ .
We have then

$\overline{f}^{*2}(u)=\overline{f}^{*}(u)+f^{*}(v^{arrow}w)$

$=u^{\lrcorner}- v^{arrow}w+v^{arrow}w=u$ .
We have also

$\overline{f}^{*q}(u)=u$ ,

because $f^{q}=id$ . Since $q$ is odd we have $\overline{f}^{*}(u)=u$ . This completes the proof.
PROOF OF THEOREM 3. Let $G_{2}$ be a 2-Sylow subgroup of $G$ . Then $G_{2}$ is

cyclic by Theorem 2. We shall prove that $G_{2}$ is a normal subgroup of $G$ .
Assume now that $G_{2}$ is not normal in $G$ . Let $G_{2}=\langle\alpha\rangle$ . Put

$l={\rm Min}$ { $i|\langle\alpha^{2^{i}}\rangle$ is normal in $G$ }

and $\tilde{\alpha}=\alpha^{2^{l- 1}}$ . Then $1\geqq 1$ , and the factor group $G/\langle\tilde{\alpha}^{2}\rangle$ acts freely on the orbit
manifold $M/\langle\tilde{\alpha}^{2}\rangle$ . Therefore Lemma 1 implies that

$k_{2}(M/\langle\tilde{\alpha}^{2}\rangle)=k_{2}(M/\langle\tilde{\alpha}^{4}\rangle)=\ldots=k_{2}(M)\neq 0$ .
Let $\beta\in G$ be an element which does not normalize $\langle\tilde{\alpha}\rangle$ , and let $\tau,$ $\rho\in G/\langle\overline{a}^{2}\rangle$ be
elements represented by $\tilde{\alpha},$ $\beta\tilde{\alpha}\beta^{-1}$ respectively. It follows that $\tau^{2}=\rho^{2}=1$ and
that if the order of $\sigma=\rho\tau$ is $q$ then $\langle\tau, \rho\rangle=\langle\sigma, \tau\rangle$ is a dihedral group of order
$2q$ . In virtue of Theorem 4, $q$ is odd. We see that $\beta\tilde{\alpha}\beta^{-1}\tilde{\alpha}^{-1}$ representing $\sigma$ is
of order $2^{i}q$ for some $i$ . Since the order of $(\beta\tilde{\alpha}\beta^{-1}\tilde{\alpha}^{-1})^{2^{i}}$ is odd $q$ , it follows from
Lemma 3 that

$(\sigma^{arrow})^{*}=idi$ : $H^{\triangleright}’\backslash ’(A\backslash I/\langle\tilde{\alpha}^{arrow P}\rangle ; Z_{2})arrow H^{*}(11f/\langle\tilde{\alpha}^{2}\rangle;Z_{2})$ .

Therefore, by Corollary 2 of Theorem 1 we have $k_{2}(\lrcorner M/\langle\tilde{\alpha}^{2}\rangle)=0$ which contradicts
the previous result.

Since the 2-Sylow subgroup $G_{2}$ is normal in $G$ , the Schur-Zassenhaus theo-
rem ([12]) asserts that $G$ is the semi-direct product of $G_{2}$ and a subgroup $H$ of
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odd order. However, since the group Aut $(G_{2})$ is of even order, the homomorphism
$\Phi:Harrow Aut(G_{2})$ given by $(\Phi(\theta))(\alpha)=\theta\alpha\theta^{-1}(\theta\in H)$ is trivial. Therefore $G$ is the
direct product of $G_{2}$ and $H$. This completes the proof.
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