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For a homomorphism from the group $Z^{N}$ to a Boolean power $Z^{(B)}$ , the first
author introduced a property “Infinite linearity” in Section 2 of [2], where $Z^{N}$

is the direct product of countable copies of the group $Z$ of integers and $B$ is a
complete Boolean algebra. There it was proved that $(\omega, \omega)$-weak distributivity
of $B$ implied infinite linearity of every homomorphism from $Z^{N}$ to $Z^{(B)}$ . In
this paper we show that the same thing holds for a countably complete Boolean
algebra $(ccBa)B$. It is known that any ccBa $B$ is a quotient of a certain countably
additive field $F$ of subsets of the Stone space of $B$ by the ideal of subsets of
first category. This quotient map induces a homomorphism $\pi$ from $Z^{(F)}$ to $Z^{(B)}$ ,

where the Boolean power $Z^{(F)}$ is isomorphic to the group consisting of all F-
measurable functions from the Stone space to $Z$ and $\pi$ corresponds to the
quotient homomorphism modulo first category. We show that infinite linearity
of $h$ : $Z^{N}arrow Z^{(B)}$ is equivalent to the existence of a lifting homomorphism
$\tilde{h}$ : $Z^{N}arrow Z^{(F)}$ of $h,$ $i$ . $e.,$

$h=\pi\cdot\tilde{h}$ . Infinite linearity of $h$ also implies the existence
of lifting homomorphisms of other quotient homomorphisms onto $Z^{(B)}$ with a
certain property. Finally we show $(\omega, \omega)$-weak distributivity of certain quotient
Boolean algebras. According to them we get another proof and an improvement
of a result of [6] concerning a lifting problem of homomorphisms.

Our notation and terminology are common with those of [2], so see [2] for
undefined notations. All groups in this paper are abelian and homomorphisms
are group theoretic ones.

1. Infinite linearity and lifting.

Differing from [2], we only concern proper sequences of countable length.
First we restate a few definitions for a countable case and prove some properties
of proper sequences of countable length of $Z^{(B)}$ for a countably complete
Boolean algebra $(ccBa)$ B. $B$ always stands for a $ccBa$ .

$*)$ This author was partially suPported by Grant.in-Aid for Scientific Research (No. 58-
340010), Ministry of Education.
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DEFINITION 1. An element $x$ of a Boolean power $Z^{(B)}$ is a function from
$Z$ to $B$ such that $a\in Zx(a)=1$ and $x(a)\Lambda x(b)=0$ for $a\neq b$ . For $x,$ $y\in Z^{(B)},$ $x+y$

is the element of $Z^{(B)}$ such that $x+y(a)=x(b)\Lambda y(c)a=b+c$

A sequence $(x_{n} : n\in N)$ is a proper sequence of $Z^{(B)}$ if there exists a
partition $P$ of 1 such that $b\leqq x_{n}(0)$ for almost all $n$ for each $b\in P,$ $i.e.$ , $P=1$ ,
$bAc=0$ for distinct $b,$ $c\in P$ and $\forall b\in P(\exists m\forall n\geqq m(b\leqq x_{n}(0)))$ .

PROPOSITION 1. Let $(x_{n} : n\in N)$ be a sequence of elements of $Z^{(B)}$ .
$(x_{n} : n\in N)$ is a proper sequence iff $\bigwedge_{mn\geqq m}x_{n}(0)=1$ .

PROOF. Let $(x_{n} : n\in N)$ be a proper sequence and $P$ a related partition of 1.
Suppose that $\bigwedge_{mn\geqq m}x_{n}(0)\neq 1$ , then $0 \neq b=-\bigwedge_{nm\geqq m}x_{n}(0)$ . Since $P=1$ , there

exists a $c\in P$ such that $b\Lambda c\neq 0$ . There exists $m_{0}$ such that $b \wedge c\leqq\bigwedge_{n\geqq m_{0}}x_{n}(0)$ ,

because $c\in P$. Now $0 \neq b\Lambda c\leqq(-\bigwedge_{mnm}x_{n}(0))\Lambda\bigwedge_{n\geqq m_{0}}x_{n}(0)=0$ which is a contra-
diction.

For the other direction of the proof, we only need a pairwise disjoint refine-
ment of $\{\bigwedge_{n\geqq m}x_{n}(0) : m\in N\}$ and it is easy to get it.

Let $\overline{B}$ be the canonical completion of $B,$ $i$ . $e.,\overline{B}$ is a complete Boolean algebra
which includes $B$ as a subalgebra and for any non-zero element $b$ of $\overline{B}$ there
exists a non-zero element of $B$ that is less than or equal to $b$ .

We remark that $Z^{(B)}$ is a subgroup of $Z^{(\overline{B})}$ naturally.

PROPOSITION 2. Let $(x_{n} : n\in N)$ be a sequence of elements of $Z^{(B)}$ . The
sequence $(x_{n} : n\in N)$ is a proper sequence of $Z^{(B)}$ iff it is a proper sequence of $Z^{(\overline{B})}$ .

PROOF. Since the infinite sums are preserved under the canonical completion,
the proposition is clear by Proposition 1.

We use the following notations as in [2]. $\ovalbox{\tt\small REJECT} x=\check{a}I=x(a)$ for $x\in Z^{(B)}$ and
$a\in Z$, and [ $x=y\ovalbox{\tt\small REJECT}=(x(a)\wedge y(a))a\in Z$ for $x,$ $y\in Z^{(B)}$ . This notation is convenient

when we use a Boolean extension of the universe.

PROPOSITION 3. Let $(x_{n} : n\in N)$ be a proper sequence of $Z^{(B)}$ , then there
exists a unique $y\in Z^{(B)}$ such that

$\bigwedge_{n\geqq m}x_{n}(0)\leqq I\sum_{k=1}^{m- 1}x_{k}=yI$ for $e\iota$)$ery$ $m\in N$ .

PROOF. Let $c_{1}= \bigwedge_{n\geq 1}x_{n}(0)$ and $c_{m+1}= \bigwedge_{n\geqq m+1}x_{n}(0)-c_{k}k=m_{1}$ then $m\in Nc_{m}=1$ and

$c_{m}\Lambda c_{n}=0$ for $m\neq n$ . By the countably completeness of $B$ there exists a unique

element $y\in Z^{(B)}$ such that $c_{m+1} \leqq[\sum_{k=1}^{m}x_{k}=yI$ where $\sum_{k=1}^{0}x_{k}=0$ .
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DEFINITION 2. For a proper sequence $(x_{n} : n\in N)$ of $Z^{(B)}$ , $\sum_{n\in N}x_{n}$ is the

element of $Z^{(B)}$ given by Proposition 3.

DEFINITION 3. For a homomorphism $h:Z^{N}arrow Z^{(B)}h$ is infinitely linear, if
$(h(e_{n}) : n\in N)$ is a proper sequence and $h( \sum_{n\in N}a_{n}e_{n})=\sum_{n\in N}a_{n}h(e_{n})$ .

A ccBa $B$ has the slender property, if every homomorphism from $Z^{N}$ to
$Z^{(B)}$ is infinitely linear.

PROPOSITION 4. Let $h$ : $Z^{N}arrow Z^{(B)}$ be a homomorphism. Then, the following
three prOpOsjtiOns are equivalent:
(1) $h$ is infinitely linear;
(2) $(h(e_{n}) : n\in N)$ is a proper sequence;
\langle 3) V $\bigwedge_{n\geq m}\ovalbox{\tt\small REJECT} h(e_{n})=\check{0}\ovalbox{\tt\small REJECT}=1$ hol&.

This is clear by Proposition 6 of [2], Propositions 2 and 3.

PROPOSITION 5. Let $(x_{n} : n\in N)$ be a pr0per sequence of $Z^{(B)}$ . Then, there
exists a unique infinitely linear homomorphism $h$ : $Z^{N}arrow Z^{(B)}$ such that $h(e_{n})=x_{n}$

for $n\in N$.
Let $\omega$ be the least infinite ordinal, $i$ . $e.$ , the set $N\cup\{0\}$ . A ccBa $B$ satisPes

the $(\omega, \omega)$-weak distributive law (we abbreviate it by $(\omega,$ $\omega)$-WDL), if
$\bigwedge_{m<\omega}b_{mn}=_{f\in}\bigvee_{\omega_{\omega}}\bigwedge_{mn<\omega<\omega}b_{mn}n\leqq f(m)$ holds for any $b_{mn}\in B(m, n<\omega)$ .

THEOREM 1. If a ccBa $B$ satisfies $(\omega, \omega)- WDL$ , then $B$ has the slender
property.

PROOF. Let $h$ : $Z^{N}arrow Z^{(B)}$ be a homomorphism. Then, there exists an
element $\overline{h}$ of the Boolean extension $V^{(\overline{B})}$ such that [ $\overline{h}$ : $\check{Z}^{N}arrow Z$ is a homomor-
phisml $(\overline{B})=1$ and $\ovalbox{\tt\small REJECT}\overline{h}(\check{x})=h(x)\ovalbox{\tt\small REJECT}^{(\overline{B})}=1$ for each $x\in Z^{N}$ . Suppose that V $\bigwedge_{n\geqq m}[h(e_{n})=\check{0}\ovalbox{\tt\small REJECT}$

$\neq 1$ . Since $n\in Na\in Z\wedge\ovalbox{\tt\small REJECT} h(e_{n})=\check{a}\ovalbox{\tt\small REJECT}=1$ , there exists a function $f$ : $Narrow N$ such that

$0 \neq(-\bigwedge_{mn\geqq m}[h(e_{n})=\check{0}\ovalbox{\tt\small REJECT})\wedge\bigwedge_{n\in N|a|\leqq}_{f(n)}[h(e_{n})=\check{a}\ovalbox{\tt\small REJECT}$ . This implies that $0\neq\ovalbox{\tt\small REJECT}\forall m\exists n\geqq m$

\langle $h(e_{n})\neq 0)$ and $\forall n\in N(|h(e_{n})|\leqq\check{f}(n))\ovalbox{\tt\small REJECT}^{(\overline{B})}$ . APply Lemma 4 of [2] to $Z^{\check{N}}$ in
$V^{(\overline{B})}$ , then we get a contradiction.

Next we show that infinite linearity is equivalent to the existence of a lifting
homomorphism.

For a quotient of a Boolean algebra by its ideal, we refer the reader to [5].

An ideal $I$ of a ccBa $B$ is countably complete, if $X\in I$ for any countable subset
$X$ of $I$. Let $B/I$ be the quotient of a ccBa $B$ by its countably complete ideal $I$

and $[]$ : $Barrow B/I$ the quotient map. Then, $B/I$ is a ccBa and $[]$ preserves
countable sums, $i$ . $e.$ , for any countable subset $X$ of $B[X]=[x]x\in X$ Let

$(Z^{(B)})_{I}$ be the subgroup of $Z^{(B)}$ such that $x\in(Z^{(B)})_{I}$ iff $-x(O)\in I$, and $\pi$ : $Z^{(B)}$
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$arrow Z^{(B)}/(Z^{(B)})_{I}$ be the canonical homomorphism. Then, $Z^{(B)}/(Z^{(B)})_{I}$ is isomorphic
to $Z^{(B/I)}$ . Therefore, we identify them.

LEMMA 1. If $(x_{n} : n\in N)$ is a pr0per sequence of $Z^{(B)}$ , then $(\pi(x_{n}):n\in N)$

is a proper sequence of $Z^{(B/I)}$ and $\pi(\sum_{n\in N}x_{n})=\sum_{n\in N}\pi(x_{n})$ holds.

PROOF. Since $\bigwedge_{mn\geqq m}x_{n}(0)=1$ and $[x_{n}(0)]\leqq\pi(x_{n})(0),$
$\bigwedge_{mn\geqq m}\pi(x_{n})(0)=1$ holds.

There exists an infinitely linear homomorphism $h$ : $Z^{N}arrow Z^{(B)}$ such that $h(e_{n})=x_{n}$

for $n\in N$ by Proposition 5. Since $(\pi\cdot h(e_{n}) : n\in N)$ is a proper sequence,
$\pi(\sum_{n\in N}x_{n})=\pi\cdot h(\sum_{n\in N}e_{n})=\sum_{n\in N}\pi\cdot h(e_{n})=\sum_{n\in N}\pi(x_{n})$ by Proposition 4.

DEFINITION 4. For a homomorphism $h$ : $Z^{N}arrow Z^{(BfI)}$ , $\tilde{h}$ : $Z^{N}arrow Z^{(B)}$ is a
lifting homomorphism of $h$ if $h=\pi\cdot\tilde{h}$ .

THEOREM 2. Let $B$ be a ccBa and I a countably complete ideal of B. If a
homomorphism $h$ : $Z^{N}arrow Z^{(B/I)}$ is infinitely linear, then there exis $ts$ a lifting
homomorphism $\tilde{h}$ : $Z^{N}arrow Z^{(B)}$ of $h$ . In the case that $B$ has the slender property,
a homomorphism $h$ : $Z^{N}arrow Z^{(B/I)}$ is infinitely linear iff there exists a lifting homo-
morphism $\tilde{h}$ : $Z^{N}arrow Z^{(B)}$ of $h$ .

PROOF. Let $h$ : $Z^{N}arrow Z^{(B/I)}$ be an infinitely linear homomorphism and
$h(e_{n})=\pi(x_{n})$ for $n\in N$. Then, $\vee mn\geqq m\wedge[x_{n}(0)]=\vee m\bigwedge_{n\geqq m}\pi(x_{n})(0)=1$ . Hence

$- \vee m\bigwedge_{n\geqq m}x_{n}(0)(=b)$ belongs to $I$. Let $x_{n}’(a)=x_{n}(a)-b$ for $a\neq 0$ and $x_{n}’(0)=$

$x_{n}(0)\vee b$ . Then, $\vee m\bigwedge_{n\geqq m}x_{n}’(0)=1$ , so $(x_{n}’ : n\in N)$ is a proper sequence. Let

$\tilde{h}(\sum_{n\in N}a_{n}e_{n})=\sum_{n\in N}a_{n}x_{n}’$ . Then $\pi\cdot\tilde{h}=h$ holds by infinite linearity of $h$ and Lemma 1.

The second proposition is clear by the first one and Lemma 1.

DEFINITION 5. For a ccBa $B$ let $F$ be the least countably additive field of
subsets of the Stone space of $B$ that contains all clopen subsets and $I$ the ideal
of $B$ consisting of all subsets of first category that belong to $F$.

Then, $F$ is a ccBa and $I$ is countably complete. The group $Z^{(F)}$ is iso-
morphic to the group consisting of all F-measurable functions $f$ from the Stone
space to $Z,$ $i$ . $e.,$ $f^{-1}(a)\in F$ for $a\in Z$ .

PROPOSITION 6 (Theorem 29.1 of [5]). A ccBa $B$ is isomorphic to the quotient
algebra $F/I$.

COROLLARY 1. Let $h$ : $Z^{N}arrow Z^{(B)}$ be a homomorphism for a ccBa $B(=F/D$ .
Then, $h$ is infinitely linear iff there exists a lifting homomorphism $h$ : $Z^{N}arrow Z^{(F)}$

of $h$ .
PROOF. Since $F$ is a field of sets, $F$ clearly satisfies $(\omega, \omega)$-WDL and hence

has the slender property. Now the corollary is clear from Theorem 2.
Next we think of the field $F^{*}$ of all Borel subsets of the unit interval $[0,1]$ .
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There are two typical countably complete ideals of $F^{*}$ . The one is the ideal
$I_{m}$ consisting of all Borel subsets of Lebesgue measure zero and the other is
the ideal $I_{c}$ consisting of all Borel subsets of first category. Just like a case
of the Stone space, $Z^{(F^{*})}$ is isomorphic to the group consisting of all Borel
functions from $[0,1]$ to $Z$ . It is well-known that the complete Boolean algebra
$F^{*}/I_{m}$ satisfies $(\omega, \omega)$-WDL [1]. By Theorems 1 and 2 any homomorphism from
$Z^{N}$ to $Z^{(F\cdot/t_{m})}$ has a lifting homomorphism. However, we do not know whether
the same holds for the ideal $I_{c}$ . Equivalently, does the cBa $F^{*}/I_{c}$ have the
slender property? Equivalently, $\ovalbox{\tt\small REJECT}\forall h:\check{Z}^{N}arrow Z(\exists m\forall n\geqq mh(e_{n})=0)\ovalbox{\tt\small REJECT}^{(B)}=1$ where
$B=F^{*}/I_{c}$ ?

2. $(\omega, \omega)$-weak distributivity of certain Boolean algebras.

In the following $\kappa$ is a cardinal of uncountable cofinality and $I$ a set of cardi-
nality greater than or equal to $\kappa$, where a cardinal is an initial ordinal and an
ordinal is the set of all ordinals less than itself. The cofinality of $\kappa$ is denoted
by $cf(\kappa)$ . A cardinal is regular if its cofinality is equal to itself, and singular
otherwise. The ideal consisting of all subsets of $I$ which are of cardinality less
than $\kappa$ is denoted by $P.(I)$ . Since $P.(I)$ is closed under countable sums the
quotient Boolean algebra $P(I)/P.(I)$ is a $ccBa$ . Distributivity scarcely holds for
the canonical completion of $P(I)/P.(I)$ [4]. However, it isn’t the case for
$P(I)/P_{\iota}(I)$ itself. We investigate the $(\omega, \omega)$-weak distributivity of $P(I)/P_{\kappa}(I)$ in
this section.

Let $D(\kappa)$ be the assertion: $P(\kappa)/P_{\iota}(\kappa)$ satisfies $(\omega, \omega)$-WDL. Then, the follow-
ing two propositions are easily shown.

PROPOSITION 7. The ccBa $P(I)/P_{\kappa}(I)$ satisfies $(\omega, \omega)$-WDL for any $I$, if $D(\kappa)$

holds.

PROPOSITION 8. If $2^{\aleph_{0}}<cf(\kappa)$ , then $D(\kappa)$ holds.

DEFINITION 6. Let $\omega\omega$ be the set of all functions from $\omega$ to $\omega$ . For
$f,$ $g\in^{\omega}\omega f\leqq*g$ holds if $f(n)\leqq g(n)$ for almost all $n,$ $i.e.,$ $\exists m\forall n\geqq m(f(n)\leqq g(n))$ .

LEMMA 2. The assertion $D(\kappa)$ does not hold iff there exist subsets $X_{mn}$ of
rc $(m, n<\omega)$ such that $\bigcap_{m}\bigcup_{n}X_{mn}=\kappa$ and $X_{mn}\cap X_{mn’}=\emptyset$ for $n\neq n’$ and the cardi-

nality of $\bigcap_{m}\bigcup_{n\leqq g(m)}X_{mn}$ is less than $\kappa$ for any $g\in^{\omega}\omega$ .
Since $\kappa$ is of uncountable cofinality, the proof can be done just as for a

homogeneous complete Boolean algebra. Therefore, we omit it.

LEMMA 3. $D(\kappa)$ implies $D(cf(\kappa))$ .
PROOF. Use Lemma 2.
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LEMMA 4. Let $\kappa$ be a cardinal satisfying one of the following conditions: (1)

rc is regular; (2) $\kappa$ is singular and $D(cf(\kappa))$ holds. Then $D(\kappa)$ does not hold iff
there exists a subset $S$ of $\omega\omega$ of cardinality $\kappa$ such that the cardinality of {$f$ : $f\in S$

and $f\leqq*g$} is less than $\kappa$ for any $g\in^{\omega}\omega$ .
PROOF. Suppose that $D(\kappa)$ does not hold. Then, there exist $X_{mn}(m, n<\omega)$

that satisfy the conditions in Lemma 2. Let $S= \{f : \bigcap_{m}X_{mf(m)}\neq\emptyset\}$ . Since the

cardinality of $\bigcap_{m}X_{mf(m)}$ is less than $\kappa$ for any $f\in\omega\omega$, the cardinality of $S$ must

be $\kappa$ when $\kappa$ is regular. Now we deal with the case that $\kappa$ is singular. Suppose
that the cardinality of $\bigcap_{m}X_{mf(m)}(f\in\omega\omega)$ are not bounded below $\kappa$ . There exists

a subset $T$ of $S$ of cardinality $cf(\kappa)$ such that for any subset $T’$ of $T$ of cardi-
nality $cf(\kappa)$ the cardinality of $\bigcup_{f\in T},$ $\bigcap_{m}X_{mf(m)}$ is $\kappa$ . Since $D(cf(\kappa))$ holds, there exists

a $g\in^{\omega}\omega$ such that the cardinality of {$f$ : $f\in T$ and $f(n)\leqq g(n)$ for all $n$ } is
$cf(\kappa)$ . Then, the cardinality of $\bigcap_{m}\bigcup_{n\leq g(m)}X_{mn}$ is $\kappa$, which is a contradiction.

Hence, the cardinality of $\bigcap_{m}X_{mf(m)}(f\in\omega\omega)$ are bounded below $\kappa$ . Therefore, in

any case the cardinality of $S$ is $\kappa$ . Let $\{g_{i} : i<\omega\}$ be an enumeration of all
functions $g’$ such that $g’(n)=g(n)$ for almost all $n<\omega$ . Since {$f$ : $f\in S$ and
$f \leqq*g\}=\bigcup_{i<\omega}$ {$f$ : $f\in S$ and $f(n)\leqq g_{i}(n)$ for all $n$ } and $cf(\kappa)$ is uncountable, the

cardinality of {$f$ : $f\in S$ and $f\leqq*g$} is less than $\kappa$ for every $g\in^{\omega}\omega$ . The
converse is obvious.

COROLLARY 2. If $D(cf(\kappa))$ holds and $2^{\aleph_{0}}<\kappa$, then $D(\kappa)$ holds.
This is immediate from Lemma 4. By the way, S. Kamo has shown that

the condition $2^{\aleph_{0}}<\kappa$
’ in Corollary 2 cannot be dropped.

LEMMA 5. There exists a sequence $(g_{\alpha} : \alpha<\kappa)$ that satisfies the following:
(1) $\kappa$ is regular;
\langle 2) $g_{a}\in^{\omega}\omega$ and $g_{\alpha}\leqq^{*}g_{\beta}$ and not $g_{\beta}\leqq^{*}g_{\alpha}$ for $\alpha<\beta$ ;
\langle 3) for any $f\in\omega\omega$ there exists $\alpha<\kappa$ such that $g_{\alpha}\leqq*f$ does not hold.

In addition, for such a $\kappa D(\kappa)$ does not hold.
PROOF. By axiom of choice there exists a sequence $(f_{a} : \alpha<\lambda)$ that satisPes

the conditions (2) and (3). Let $\kappa=cf(\lambda)$ and $(g_{a} : \alpha<\kappa)$ be a coPnal subsequence
of $(f_{\alpha} : \alpha<\lambda)$ . Next let $S=\{g_{a} : \alpha<\kappa\}$ and $X_{mn}=$ { $f$ : $f\in S$ and $f(m)=n$}.
Then, $\bigcap_{m}\bigcup_{n}X_{mn}=S$ and the cardinality of $\bigcap_{m}\bigcup_{n\leqq f(m)}X_{mn}$ is less than $\kappa$ for any

$f\in\omega\omega$ . Hence, $D(\kappa)$ does not hold.
It is well-known that Martin’s axiom implies the following assertion: For

any subset $A\subseteqq\omega\omega$ of cardinality less than $2^{\aleph_{0}}$ , there exists an $f\in\omega\omega$ such that
$g\leqq^{*}f$ holds for every $g\in A[3]$ .

LEMMA 6. (Under Martin’s axiom) For any $\kappa<2^{\aleph_{0}}D(\kappa)$ holds.
PROOF. Let $\bigcap_{m}\bigcup_{n}X_{mn}=\kappa$ and $X_{mn}\cap X_{mn},=\emptyset$ for $n\neq n’$ . For $\alpha<\kappa$ let $f_{\alpha}\in\omega\omega$
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be the function such that $f_{a}(m)=n$ iff $\alpha\in X_{mn}$ . By Martin’s axiom there exists
$g^{*\omega}\in\omega$ such that $f\leqq*g^{*}$ for all $\alpha<\kappa$ . Since $cf(\kappa)$ is uncountable and there are
only countably many $g\in^{\omega}\omega$ such that $g(n)=g^{*}(n)$ for almost all $n$ , there exists
$g\in^{\omega}\omega$ such that the cardinality of $\bigcap_{m}\bigcup_{n\leq g(m)}X_{mn}$ is $\kappa$ . By Lemma 2, $D(\kappa)$ holds.

THEOREM 3. (Under Martin’s axiom) For a cardinal $\kappa$ of uncountable cofinality,
$D(\kappa)$ holds iff $cf(\kappa)$ is not equal to $2^{\aleph_{0}}$ .

PROOF. Since Martin’s axiom implies that $2^{\aleph_{0}}$ is regular, there exists a
sequence $(g_{\alpha} : \alpha<2^{\aleph_{0}})$ that satisPes the conditions of Lemma 5 by the above
consequence of Martin’s axiom. Hence, $D(2^{\aleph_{0}})$ does not hold. Now, the con-
clusion follows from Lemmas 3, 6 and Corollary 2.

Theorems 2 and 3 imply that $P(I)/P_{\kappa}(I)$ has the slender property for a $\kappa$

whose cofinality is uncountable but not equal to $2^{\aleph_{0}}$ under Martin’s axiom. On
the other hand, B. Wald [6] showed the existence of a homomorphism $h$ :
$Z^{N}arrow Z^{(P(I)\prime P_{2}\aleph_{0}(I))}$ whose lift-homomorphism from $Z^{N}$ to $Z^{(P(I))}$ does not exist
under Martin’s axiom. Therefore,

COROLLARY 3. (Under Martin’s axiom) $P(I)/P.(I)$ has the slender pr0perty

iff the cofinality of $\kappa$ is not equal to $2^{\aleph_{0}}$ for a $\kappa$ of uncountable cofinality.
Our Corollary 3 improves Theorem (a) of [6]. Since Wald deals with a

lifting problem under a little different setting, there is a problem in the case
that the coPnality of $\kappa$ is countabIe. In appendix we shall show the existence
of a homomorphism which has no lifting homomorphism for a $\kappa$ of countable
cofinality.

Next we show that in a certain well-known Boolean extension of the universe
$D(2^{\aleph_{0}})$ holds. Let $B$ be the measure algebra over a product space $\kappa 2$ with a
product measure, where $\kappa=(2^{\aleph_{0}})^{+}$ ( $p$ . 250 of [3]).

PROPOSITION 9. The assertion $D(2^{\aleph_{0}})$ holds in $V^{(B)}$ .
PROOF. We work in $V^{(B)}$ . It is known that for any $f\in\omega\omega$ there exists a

$g\in^{\omega}\check{\omega}$ such that $f(m)\leqq g(m)$ for every $m<\omega[3]$ . The cardinality of $\omega^{\vee}\omega$ is less
than $2^{\aleph_{0}}(=\check{\kappa})$ and $2^{\aleph_{0}}$ is regular. If $\bigcap_{m}\bigcup_{n}X_{mn}=2^{\aleph_{0}}$, then $\bigcup_{g\in\omega_{\check{\omega}}}\bigcap_{mn\leqq}\bigcup_{g(m)}X_{mn}=$

$\bigcup_{g\in\omega_{\omega}}\bigcap_{mn\not\leqq}\bigcup_{g(m)}X_{mn}=2^{\aleph_{0}}$ . Hence, there exists a $g\in^{\omega}\omega$ such that the cardinality of

$\bigcap_{m}\bigcup_{n\leqq g(m)}X_{mn}$ is $2^{\aleph_{0}}$ . Therefore, $D(2^{\aleph_{0}})$ holds in $V^{(B)}$ by Lemma 2.

Proposition 9 and Corollary 3 imply

COROLLARY 4. It is independent of ZFC set tkeory that $P(I)fP_{2}\aleph_{0(I)}$ has the
slender property.
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Appendix.

Here we show that there exists a homomorphism from $Z^{N}$ to $Z^{(B)}/(Z^{(B)})_{I}$

which has no lifting homomorphism from $Z^{N}$ to $Z^{(B)}$ for a certain ideal $I$ of a
ccBa $B$ with the slender property.

THEOREM 4. Let $B$ be a ccBa with the slender pr0perty and an ideal $I=$

$\bigcup_{n\in N}I_{n}$ , where $I_{n}$ is a countably complete ideal for each $n\in N$. If I is not

countably complete, then there exists a homomorphism from $Z^{N}$ to $Z^{(B)}/(Z^{(B)})_{I}$

which has no lifting homomorphisyn from $Z^{N}$ to $Z^{(B)}$ .
Without loss of generality we may assume that $I_{n}\subseteqq I_{n+1}$ and $I_{n}\neq I_{n+1}$ for

each $n\in N$. Then, there exist $b_{n}(n\in N)$ such that $b_{n}\not\in I_{n}$ and $b_{n}\in I_{n+1}$ and
$b_{m}\wedge b_{n}=0$ for $m\pm n$ . Clearly $n\in Nb_{n}\not\in I$. Let $C$ be the subgroup of $Z^{(B)}$ such

that $x\in C$ iff $b_{n}\leqq x(a)$ for some $a\in Z$ for each $n\in N$ and $-b_{n}\leqq x(0)n\in N$ Let
$\pi$ : $Z^{(B)}arrow Z^{(B)}/(Z^{(B)})_{I}$ be the canonical homomorphism.

LEMMA 7. If the image of $\pi\cdot h$ is included by the image of the restriction
of $\pi$ to $C$ for a homomorphism $h$ : $Z^{N}arrow Z^{(B)}$ , then there exists a hoynomorphisnl
$h^{*}$ : $Z^{N}arrow C$ such that $\tau_{\vee}\cdot h^{*}=\pi\cdot h$ .

PROOF. Since $B$ has the slender property, there exist $c_{n}(n\in N)$ with the
following properties (consider the set { $\bigwedge_{k\leqq m}h(e_{k})(a_{k})\wedge\bigwedge_{n>m}h(e_{n})(0)$ : $m\in N$ and
$a_{k}\in Z(k\leqq m)\})$ :
(1) $n\in Nc_{n}=1,$ $c_{n}\neq 0$ and $c_{m}\Lambda c_{n}=0$ for $m\neq n$ ;

(2) For any $m,$ $k\in_{-}V$ there exists an integer $a$ such that $c_{m}\leqq h(e_{k})(a)$ ;
(3) For distinct $7?l_{f}n$ there exist $k,$ $a$ and $b$ such that $c_{m}\leqq h(e_{k})(a),$ $c_{n}\leqq h(e_{k})(b)$

and $a\neq b$ .
Since $b_{m}\not\in I_{m}$ and $b_{m}=b_{m}\Lambda c_{n}n\in N$ there exists a $d_{m}$ such that $d_{m}\not\in I_{m}$ and

$d_{m}=b_{m}\Lambda c_{n}$ for some $n$ . If $m\in Nm\in Nb_{m}-d_{m}\in I$, then let $h^{*}$ be the homomorphism

from $Z^{N}$ to $C$ such that $d_{m}\leqq h(e_{n})(a)$ implies $b_{m}\leqq h^{*}(e_{n})(a)$ for every $m,$ $n$ and
$a$ . Now, we have gotten the desired homomorphism $h^{*}$ . In the rest we show
that $m\in Nm\in Nb_{m}-d_{m}\in I$. Otherwise, there exists an ascending sequence ($m_{k}$ :
$k\in N)$ of natural numbers and $d_{m_{k}}’$ such that $d_{m_{k}}’ \bigwedge_{m\in N}d_{m}=0$ and $d_{m_{k}}’\not\in I_{k}$ and

$d_{m_{k}}’=b_{m_{k}}\wedge c_{n}$ for some $n$ by countable completeness of $I_{k}(k\in A^{\tau})$ . We remark
the following three facts:
(1) For any $k$ there exist $n,$ $a$ and $b$ such that $a\neq b$ and $d_{m_{k}}\leqq h(e_{n})(a)$ and
$d_{m_{k}}’=h(e_{n})(b)j$

(2) Since $\pi\cdot h(e_{n})(a)\in\pi(C)$ for every $n\in N,$ { $k$ : $d_{m_{k}}\leqq h(e_{n})(a)$ and $d_{m}’,$ $\leqq h(e_{n})(b)$

for $a\neq b$} is finite for every $n$ ;
(3) For any $k,$ $d_{m_{k}}\vee d_{m_{k}}’\leqq h(e_{n})(0)$ for almost all $n$ .
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We dePne natural numbers $n_{i}$ , n\’i $(i\in N)$ and a subsequence $(p_{i} : i\in N)$ of
$(7\uparrow k : k\in N)$ by induction.

Step 1: Let $p_{1}=m_{1}$ and $n_{1}$ be a natural number such that $d_{p_{1}}\leqq h(e_{n_{1}})(a)$

and $d_{p_{1}}’\leqq h(e_{n_{1}})(b)$ for some distinct $a,$
$b$ . Let $n_{1}’\geqq n_{1}$ be a natural number such

that $d_{p_{1}}\vee d_{p_{1}}’\leqq h(e_{j})(0)$ for any $j>n_{1}’$ .
We assume that we have defined $p_{1}<\ldots<p_{k},$ $n_{1}\leqq n_{1}’<n_{2}\leqq\cdots\leqq n_{k}’$ in such

a way that for any $i\leqq k$ and $j>n_{k}’d_{p_{i}}\vee d_{p_{i}}’\leqq h(e_{j})(0)$ .
Step $k+1$ : Take $p_{k+1}>p_{k}$ so that for any $j\leqq n_{k}’$ and $77l_{i}\geqq p_{k+1}$ there

exists $u\in Z;d_{m_{i}}\vee d_{m_{i}}’\leqq h(e_{j})(u)$ . There exists $n_{k+1}$ such that $d_{p_{k+1}}\leqq h(e_{n_{k+1}})(a)$

and $d_{p_{k+1}}’\leqq h(e_{n_{k+1}})(b)$ for some distinct $a,$
$b$ . Then $n_{k+1}\geqq n_{k}’$ and

$d_{p_{k+1}} \leqq h(\sum_{i=1}^{k+1}e_{n_{i}})(a)$ , $d_{p_{k+1}}’ \leqq h(\sum_{i=1}^{k+1}e_{n_{i}})(b)$

for some distinct $a,$
$b$ . Let $n_{k+1}’\geqq n_{k+1}$ such that for any $i\geqq n$ A $-1$ and $j\leqq k+1$

$d_{p_{j}}\vee d_{p_{j}}’\leqq h(e_{i})(0)$ . Thus we can continue this construction.
Let $a= \sum_{i\in N}e_{n_{i}}$ . By the assumption of the lemma there exists $b\in I$ such that

$b_{n}\Lambda-b\leqq h(a)(u)$ for some $u$ for any $n\in N$. Let $k$ be a natural number such

that $b\in I_{k}\subseteqq I_{p_{k}}$ . Then, $0 \neq d_{p_{k}}\wedge-b\leqq h(\sum_{i=1}^{k}e_{n_{i}})(u)\leqq h(a)(u)$ and $0\neq d_{p_{k}}’\wedge-b$

$\leqq h(\sum_{i=1}^{k}e_{n_{i}})(v)\leqq h(a)(v)$ for distinct $u$ and $v$, but this contradicts the fact that

$b_{p_{k}}\wedge-b\leqq h(a)(u)$ for some $u$ . Now the proof of Lemma 7 has been completed.
PROOF OF THEOREM 4. Let $x$ be an element of $C$ such that $x(n])=b_{n}$ and

$x(O)=-b_{n}n\in N$ Then $\pi(x)\neq 0$ and it is divisible in $\pi(C)$ . Therefore, $\pi(C)$

includes a non-trivial divisible subgroup, so there exist $2^{2}\aleph_{0}$-many homomorphisms
from $Z^{N}$ to $\pi(C)$ . On the other hand there exist only $2^{\aleph_{0}}$-many homomorphisms
from $Z^{N}$ to $C$, because $C$ is isomorphic to $Z^{N}$ . Hence, there exists a homo-
morphism from $Z^{N}$ to $Z^{(B)}/(Z^{(B)})_{I}$ which has no lifting homomorphism by
Lemma 7.

COROLLARY 5. Let $\lambda$ be a cardinal of countable cofinality. Then, there exists
a homomorphism from $Z^{N}$ to $Z^{\lambda}/(Z^{\lambda})_{P_{\lambda}(\lambda)}$ which has no lifting homomorphism
from $Z^{N}$ to $Z^{\lambda}$ .

PROOF. If $\lambda$ is the first infinite cardinal $\omega$, the proof is obtained by the
same argument as in the proof of Theorem 4. Otherwise, there exist regular
infinite cardinals $\kappa_{n}(n\in N)$ such that $\lambda$ is the least upper bound of $\kappa_{n}(n\in N)$ .
Since $P_{\kappa_{n}}(\lambda)$ is countably complete for each $n\in N$ and $P_{2}( \lambda)=\bigcup_{n\subseteq N}P_{\kappa_{n}}(\lambda)$ , the
conclusion follows from Theorem 4.
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