On Boolean powers of the group Z and (ω, ω) -weak distributivity

By Katsuya EDA* and Ken-ichi HIBINO

(Received May 23, 1983) (Revised Oct. 17, 1983)

For a homomorphism from the group Z^N to a Boolean power $Z^{(B)}$, the first author introduced a property "Infinite linearity" in Section 2 of $\lceil 2 \rceil$, where \mathbb{Z}^N is the direct product of countable copies of the group Z of integers and B is a complete Boolean algebra. There it was proved that (ω, ω) -weak distributivity of B implied infinite linearity of every homomorphism from Z^N to $Z^{(B)}$. In this paper we show that the same thing holds for a countably complete Boolean algebra (ccBa) B. It is known that any ccBa B is a quotient of a certain countably additive field F of subsets of the Stone space of B by the ideal of subsets of first category. This quotient map induces a homomorphism π from $Z^{(F)}$ to $Z^{(B)}$. where the Boolean power $Z^{(F)}$ is isomorphic to the group consisting of all Fmeasurable functions from the Stone space to Z and π corresponds to the quotient homomorphism modulo first category. We show that infinite linearity of $h: \mathbb{Z}^N \to \mathbb{Z}^{(B)}$ is equivalent to the existence of a lifting homomorphism $\tilde{h}: \mathbf{Z}^N \to \mathbf{Z}^{(F)}$ of h, i. e., $h = \pi \cdot \tilde{h}$. Infinite linearity of h also implies the existence of lifting homomorphisms of other quotient homomorphisms onto $Z^{(B)}$ with a certain property. Finally we show (ω, ω) -weak distributivity of certain quotient Boolean algebras. According to them we get another proof and an improvement of a result of [6] concerning a lifting problem of homomorphisms.

Our notation and terminology are common with those of [2], so see [2] for undefined notations. All groups in this paper are abelian and homomorphisms are group theoretic ones.

1. Infinite linearity and lifting.

Differing from [2], we only concern proper sequences of countable length. First we restate a few definitions for a countable case and prove some properties of proper sequences of countable length of $Z^{(B)}$ for a countably complete Boolean algebra (ccBa) B. B always stands for a ccBa.

^{*)} This author was partially supported by Grant-in-Aid for Scientific Research (No. 58-340010), Ministry of Education.

DEFINITION 1. An element x of a Boolean power $\mathbf{Z}^{(B)}$ is a function from \mathbf{Z} to \mathbf{B} such that $\bigvee_{a \in \mathbf{Z}} x(a) = 1$ and $x(a) \wedge x(b) = 0$ for $a \neq b$. For x, $y \in \mathbf{Z}^{(B)}$, x + y is the element of $\mathbf{Z}^{(B)}$ such that $x + y(a) = \bigvee_{a = b + c} x(b) \wedge y(c)$.

A sequence $(x_n: n \in N)$ is a proper sequence of $\mathbf{Z}^{(B)}$ if there exists a partition P of $\mathbf{1}$ such that $b \leq x_n(0)$ for almost all n for each $b \in P$, i.e., $\forall P = \mathbf{1}$, $b \wedge c = \mathbf{0}$ for distinct b, $c \in P$ and $\forall b \in P(\exists m \forall n \geq m(b \leq x_n(0)))$.

PROPOSITION 1. Let $(x_n : n \in N)$ be a sequence of elements of $\mathbf{Z}^{(B)}$. $(x_n : n \in N)$ is a proper sequence iff $\bigvee_{n \in N} \bigwedge_{n \in N} x_n(0) = \mathbf{1}$.

PROOF. Let $(x_n:n\in N)$ be a proper sequence and P a related partition of 1. Suppose that $\bigvee_{m}\bigwedge_{n\geq m}x_n(0)\neq 1$, then $\mathbf{0}\neq b=-\bigvee_{m}\bigwedge_{n\geq m}x_n(0)$. Since $\bigvee P=\mathbf{1}$, there exists a $c\in P$ such that $b\wedge c\neq \mathbf{0}$. There exists m_0 such that $b\wedge c\leqq_{n\geq m_0} x_n(0)$, because $c\in P$. Now $\mathbf{0}\neq b\wedge c\leqq (-\bigvee_{m}\bigwedge_{n\geq m}x_n(0))\wedge\bigwedge_{n\geq m_0}x_n(0)=\mathbf{0}$ which is a contradiction.

For the other direction of the proof, we only need a pairwise disjoint refinement of $\{\bigwedge_{n \ge m} x_n(0) : m \in N\}$ and it is easy to get it.

Let \bar{B} be the canonical completion of B, i. e., \bar{B} is a complete Boolean algebra which includes B as a subalgebra and for any non-zero element b of \bar{B} there exists a non-zero element of B that is less than or equal to b.

We remark that $Z^{(B)}$ is a subgroup of $Z^{(\overline{B})}$ naturally.

PROPOSITION 2. Let $(x_n : n \in N)$ be a sequence of elements of $\mathbf{Z}^{(\mathbf{B})}$. The sequence $(x_n : n \in N)$ is a proper sequence of $\mathbf{Z}^{(\mathbf{B})}$ iff it is a proper sequence of $\mathbf{Z}^{(\mathbf{B})}$.

PROOF. Since the infinite sums are preserved under the canonical completion, the proposition is clear by Proposition 1.

We use the following notations as in [2]. $[x=\check{a}]=x(a)$ for $x\in Z^{(B)}$ and $a\in Z$, and $[x=y]=\bigvee_{a\in Z}(x(a)\wedge y(a))$ for $x,y\in Z^{(B)}$. This notation is convenient when we use a Boolean extension of the universe.

PROPOSITION 3. Let $(x_n : n \in N)$ be a proper sequence of $\mathbf{Z}^{(B)}$, then there exists a unique $y \in \mathbf{Z}^{(B)}$ such that

$$\bigwedge_{n \ge m} x_n(0) \le \left[\left[\sum_{k=1}^{m-1} x_k = y \right] \right]$$
 for every $m \in \mathbb{N}$.

PROOF. Let $c_1 = \bigwedge_{n \ge 1} x_n(0)$ and $c_{m+1} = \bigwedge_{n \ge m+1} x_n(0) - \bigvee_{k=1}^m c_k$, then $\bigvee_{m \in \mathbb{N}} c_m = 1$ and $c_m \wedge c_n = 0$ for $m \ne n$. By the countably completeness of \mathbf{B} there exists a unique element $y \in \mathbf{Z}^{(\mathbf{B})}$ such that $c_{m+1} \le \left\| \sum_{k=1}^m x_k = y \right\|$ where $\sum_{k=1}^n x_k = 0$.

DEFINITION 2. For a proper sequence $(x_n : n \in N)$ of $\mathbf{Z}^{(B)}$, $\sum_{n \in N} x_n$ is the element of $\mathbf{Z}^{(B)}$ given by Proposition 3.

DEFINITION 3. For a homomorphism $h: \mathbb{Z}^N \to \mathbb{Z}^{(B)}$ h is infinitely linear, if $(h(e_n): n \in N)$ is a proper sequence and $h(\sum_{n \in N} a_n e_n) = \sum_{n \in N} a_n h(e_n)$.

A ccBa \boldsymbol{B} has the slender property, if every homomorphism from \boldsymbol{Z}^N to $\boldsymbol{Z}^{(B)}$ is infinitely linear.

PROPOSITION 4. Let $h: \mathbb{Z}^N \to \mathbb{Z}^{(B)}$ be a homomorphism. Then, the following three propositions are equivalent:

- (1) h is infinitely linear;
- (2) $(h(e_n): n \in N)$ is a proper sequence;
- (3) $\bigvee_{m} \bigwedge_{n \ge m} \llbracket h(\boldsymbol{e}_n) = \check{0} \rrbracket = 1 \text{ holds.}$

This is clear by Proposition 6 of [2], Propositions 2 and 3.

PROPOSITION 5. Let $(x_n : n \in N)$ be a proper sequence of $\mathbf{Z}^{(\mathbf{B})}$. Then, there exists a unique infinitely linear homomorphism $h : \mathbf{Z}^{\mathbf{N}} \to \mathbf{Z}^{(\mathbf{B})}$ such that $h(\mathbf{e}_n) = x_n$ for $n \in \mathbb{N}$.

Let ω be the least infinite ordinal, i.e., the set $N \cup \{0\}$. A ccBa \boldsymbol{B} satisfies the (ω, ω) -weak distributive law (we abbreviate it by (ω, ω) -WDL), if $\bigwedge_{m<\omega}\bigvee_{n<\omega}b_{mn}=\bigvee_{f\in\omega_\omega}\bigwedge_{m<\omega}\bigvee_{n\leq f(m)}b_{mn}$ holds for any $b_{mn}\in\boldsymbol{B}$ $(m, n<\omega)$.

THEOREM 1. If a ccBa \boldsymbol{B} satisfies $(\boldsymbol{\omega}, \boldsymbol{\omega})$ -WDL, then \boldsymbol{B} has the slender property.

PROOF. Let $h: \mathbf{Z}^N \to \mathbf{Z}^{(B)}$ be a homomorphism. Then, there exists an element \bar{h} of the Boolean extension $V^{(\bar{B})}$ such that $[\bar{h}: \mathbf{Z}^N \to \mathbf{Z}]$ is a homomorphism $[\bar{b}]^{(\bar{B})} = 1$ and $[\bar{h}(\check{x}) = h(x)]^{(\bar{B})} = 1$ for each $x \in \mathbf{Z}^N$. Suppose that $\bigvee_{m} \bigwedge_{n \geq m} [h(e_n) = \check{0}]$ $\neq 1$. Since $\bigwedge_{n \in N} \bigvee_{a \in \mathbf{Z}} [h(e_n) = \check{a}] = 1$, there exists a function $f: N \to N$ such that $\mathbf{0} \neq (-\bigvee_{m} \bigwedge_{n \geq m} [h(e_n) = \check{0}]) \land \bigwedge_{n \in N} \bigvee_{|a| \leq f(n)} [h(e_n) = \check{a}]$. This implies that $\mathbf{0} \neq [Vm \exists n \geq m]$ $(h(e_n) \neq 0)$ and $\forall n \in N(|h(e_n)| \leq \check{f}(n))]^{(\bar{B})}$. Apply Lemma 4 of [2] to $\mathbf{Z}^{\check{N}}$ in $V^{(\bar{B})}$, then we get a contradiction.

Next we show that infinite linearity is equivalent to the existence of a lifting homomorphism.

For a quotient of a Boolean algebra by its ideal, we refer the reader to [5]. An ideal I of a ccBa B is countably complete, if $\bigvee X \in I$ for any countable subset X of I. Let B/I be the quotient of a ccBa B by its countably complete ideal I and $[]: B \rightarrow B/I$ the quotient map. Then, B/I is a ccBa and [] preserves countable sums, i. e., for any countable subset X of B $[\bigvee X] = \bigvee_{x \in X} [x]$. Let $(Z^{(B)})_I$ be the subgroup of $Z^{(B)}$ such that $x \in (Z^{(B)})_I$ iff $-x(0) \in I$, and $\pi : Z^{(B)}$

 $\to Z^{(B)}/(Z^{(B)})_I$ be the canonical homomorphism. Then, $Z^{(B)}/(Z^{(B)})_I$ is isomorphic to $Z^{(B/I)}$. Therefore, we identify them.

LEMMA 1. If $(x_n:n\in N)$ is a proper sequence of $\mathbf{Z}^{(\mathbf{B})}$, then $(\pi(x_n):n\in N)$ is a proper sequence of $\mathbf{Z}^{(\mathbf{B}/\mathbf{I})}$ and $\pi(\sum_{n\in N}x_n)=\sum_{n\in N}\pi(x_n)$ holds.

PROOF. Since $\bigvee_{m} \bigwedge_{n \geq m} x_n(0) = 1$ and $[x_n(0)] \leq \pi(x_n)(0)$, $\bigvee_{m} \bigwedge_{n \geq m} \pi(x_n)(0) = 1$ holds. There exists an infinitely linear homomorphism $h : \mathbb{Z}^N \to \mathbb{Z}^{(B)}$ such that $h(e_n) = x_n$ for $n \in \mathbb{N}$ by Proposition 5. Since $(\pi \cdot h(e_n) : n \in \mathbb{N})$ is a proper sequence, $\pi(\sum_{n \in \mathbb{N}} x_n) = \pi \cdot h(\sum_{n \in \mathbb{N}} e_n) = \sum_{n \in \mathbb{N}} \pi \cdot h(e_n) = \sum_{n \in \mathbb{N}} \pi(x_n)$ by Proposition 4.

DEFINITION 4. For a homomorphism $h: \mathbb{Z}^N \to \mathbb{Z}^{(B/I)}$, $\tilde{h}: \mathbb{Z}^N \to \mathbb{Z}^{(B)}$ is a lifting homomorphism of h if $h = \pi \cdot \tilde{h}$.

THEOREM 2. Let B be a ccBa and I a countably complete ideal of B. If a homomorphism $h: Z^N \to Z^{(B/I)}$ is infinitely linear, then there exists a lifting homomorphism $\tilde{h}: Z^N \to Z^{(B)}$ of h. In the case that B has the slender property, a homomorphism $h: Z^N \to Z^{(B/I)}$ is infinitely linear iff there exists a lifting homomorphism $\tilde{h}: Z^N \to Z^{(B)}$ of h.

PROOF. Let $h: \mathbf{Z}^N \to \mathbf{Z}^{(B/I)}$ be an infinitely linear homomorphism and $h(e_n) = \pi(x_n)$ for $n \in \mathbb{N}$. Then, $\bigvee_{m} \bigwedge_{n \geq m} [x_n(0)] = \bigvee_{m} \bigwedge_{n \geq m} \pi(x_n)(0) = 1$. Hence $-\bigvee_{m} \bigwedge_{n \geq m} x_n(0)$ (=b) belongs to I. Let $x'_n(a) = x_n(a) - b$ for $a \neq 0$ and $x'_n(0) = x_n(0) \vee b$. Then, $\bigvee_{m} \bigwedge_{n \geq m} x'_n(0) = 1$, so $(x'_n : n \in \mathbb{N})$ is a proper sequence. Let $\tilde{h}(\sum_{n \in \mathbb{N}} a_n e_n) = \sum_{n \in \mathbb{N}} a_n x'_n$. Then $\pi \cdot \tilde{h} = h$ holds by infinite linearity of h and Lemma 1. The second proposition is clear by the first one and Lemma 1.

DEFINITION 5. For a ccBa B let F be the least countably additive field of subsets of the Stone space of B that contains all clopen subsets and I the ideal of B consisting of all subsets of first category that belong to F.

Then, F is a ccBa and I is countably complete. The group $Z^{(F)}$ is isomorphic to the group consisting of all F-measurable functions f from the Stone space to Z, i. e., $f^{-1}(a) \in F$ for $a \in Z$.

PROPOSITION 6 (Theorem 29.1 of [5]). A ccBa \boldsymbol{B} is isomorphic to the quotient algebra $\boldsymbol{F}/\boldsymbol{I}$.

COROLLARY 1. Let $h: \mathbb{Z}^N \to \mathbb{Z}^{(B)}$ be a homomorphism for a ccBa \mathbb{B} (= \mathbb{F}/I). Then, h is infinitely linear iff there exists a lifting homomorphism $h: \mathbb{Z}^N \to \mathbb{Z}^{(F)}$ of h.

PROOF. Since F is a field of sets, F clearly satisfies (ω, ω) -WDL and hence has the slender property. Now the corollary is clear from Theorem 2.

Next we think of the field F^* of all Borel subsets of the unit interval [0, 1].

There are two typical countably complete ideals of F^* . The one is the ideal I_m consisting of all Borel subsets of Lebesgue measure zero and the other is the ideal I_c consisting of all Borel subsets of first category. Just like a case of the Stone space, $Z^{(F^*)}$ is isomorphic to the group consisting of all Borel functions from [0, 1] to Z. It is well-known that the complete Boolean algebra F^*/I_m satisfies (ω, ω) -WDL [1]. By Theorems 1 and 2 any homomorphism from Z^N to $Z^{(F^*/I_m)}$ has a lifting homomorphism. However, we do not know whether the same holds for the ideal I_c . Equivalently, does the cBa F^*/I_c have the slender property? Equivalently, $[\forall h: \check{Z}^N \to Z(\exists m \forall n \geq m \ h(e_n) = 0)]^{(B)} = 1$ where $B = F^*/I_c$?

2. (ω, ω) -weak distributivity of certain Boolean algebras.

In the following κ is a cardinal of uncountable cofinality and I a set of cardinality greater than or equal to κ , where a cardinal is an initial ordinal and an ordinal is the set of all ordinals less than itself. The cofinality of κ is denoted by $\mathrm{cf}(\kappa)$. A cardinal is regular if its cofinality is equal to itself, and singular otherwise. The ideal consisting of all subsets of I which are of cardinality less than κ is denoted by $P_{\kappa}(I)$. Since $P_{\kappa}(I)$ is closed under countable sums the quotient Boolean algebra $P(I)/P_{\kappa}(I)$ is a ccBa. Distributivity scarcely holds for the canonical completion of $P(I)/P_{\kappa}(I)$ [4]. However, it isn't the case for $P(I)/P_{\kappa}(I)$ itself. We investigate the (ω, ω) -weak distributivity of $P(I)/P_{\kappa}(I)$ in this section.

Let $D(\kappa)$ be the assertion: $P(\kappa)/P_{\kappa}(\kappa)$ satisfies (ω, ω) -WDL. Then, the following two propositions are easily shown.

PROPOSITION 7. The ccBa $P(I)/P_{\kappa}(I)$ satisfies (ω, ω) -WDL for any I, if $D(\kappa)$ holds.

PROPOSITION 8. If $2^{\aleph_0} < cf(\kappa)$, then $D(\kappa)$ holds.

DEFINITION 6. Let ${}^{\omega}\omega$ be the set of all functions from ω to ω . For $f, g \in {}^{\omega}\omega$ $f \leq {}^{*}g$ holds if $f(n) \leq g(n)$ for almost all n, i.e., $\exists m \forall n \geq m (f(n) \leq g(n))$.

LEMMA 2. The assertion $D(\kappa)$ does not hold iff there exist subsets X_{mn} of κ $(m, n < \omega)$ such that $\bigcap_{m} \bigvee_{n} X_{mn} = \kappa$ and $X_{mn} \cap X_{mn'} = \emptyset$ for $n \neq n'$ and the cardinality of $\bigcap_{m} \bigcup_{n \leq g(m)} X_{mn}$ is less than κ for any $g \in {}^{\omega}\omega$.

Since κ is of uncountable cofinality, the proof can be done just as for a homogeneous complete Boolean algebra. Therefore, we omit it.

LEMMA 3. $D(\kappa)$ implies $D(cf(\kappa))$.

PROOF. Use Lemma 2.

LEMMA 4. Let κ be a cardinal satisfying one of the following conditions: (1) κ is regular; (2) κ is singular and $D(\operatorname{cf}(\kappa))$ holds. Then $D(\kappa)$ does not hold iff there exists a subset S of ω of cardinality κ such that the cardinality of $\{f: f \in S \text{ and } f \leq *g\}$ is less than κ for any $g \in \omega$.

PROOF. Suppose that $D(\kappa)$ does not hold. Then, there exist X_{mn} $(m, n < \omega)$ that satisfy the conditions in Lemma 2. Let $S = \{f : \bigcap_m X_{mf(m)} \neq \emptyset\}$. Since the cardinality of $\bigcap_m X_{mf(m)}$ is less than κ for any $f \in {}^\omega \omega$, the cardinality of S must be κ when κ is regular. Now we deal with the case that κ is singular. Suppose that the cardinality of $\bigcap_m X_{mf(m)}$ $(f \in {}^\omega \omega)$ are not bounded below κ . There exists a subset T of S of cardinality $cf(\kappa)$ such that for any subset T' of T of cardinality $cf(\kappa)$ the cardinality of $\bigcup_{f \in T'} \bigcap_m X_{mf(m)}$ is κ . Since $D(cf(\kappa))$ holds, there exists a $g \in {}^\omega \omega$ such that the cardinality of $\{f : f \in T \text{ and } f(n) \leq g(n) \text{ for all } n\}$ is $cf(\kappa)$. Then, the cardinality of $\bigcap_{m \in S(m)} X_{mn}$ is κ , which is a contradiction. Hence, the cardinality of $\bigcap_m X_{mf(m)}$ $(f \in {}^\omega \omega)$ are bounded below κ . Therefore, in any case the cardinality of S is κ . Let $\{g_i : i < \omega\}$ be an enumeration of all functions g' such that g'(n) = g(n) for almost all $n < \omega$. Since $\{f : f \in S \text{ and } f \leq *g\} = \bigcup_{i < \omega} \{f : f \in S \text{ and } f(n) \leq g_i(n) \text{ for all } n\}$ and $cf(\kappa)$ is uncountable, the cardinality of $\{f : f \in S \text{ and } f \leq *g\}$ is less than κ for every $g \in {}^\omega \omega$. The converse is obvious.

COROLLARY 2. If $D(cf(\kappa))$ holds and $2^{\aleph_0} < \kappa$, then $D(\kappa)$ holds.

This is immediate from Lemma 4. By the way, S. Kamo has shown that the condition " $2^{\aleph_0} < \kappa$ " in Corollary 2 cannot be dropped.

LEMMA 5. There exists a sequence $(g_{\alpha}: \alpha < \kappa)$ that satisfies the following:

- (1) κ is regular;
- (2) $g_{\alpha} \in {}^{\omega}\omega$ and $g_{\alpha} \leq {}^{*}g_{\beta}$ and not $g_{\beta} \leq {}^{*}g_{\alpha}$ for $\alpha < \beta$;
- (3) for any $f \in {}^{\omega}\omega$ there exists $\alpha < \kappa$ such that $g_{\alpha} \leq {}^*f$ does not hold. In addition, for such a κ $D(\kappa)$ does not hold.

PROOF. By axiom of choice there exists a sequence $(f_{\alpha}: \alpha < \lambda)$ that satisfies the conditions (2) and (3). Let $\kappa = \operatorname{cf}(\lambda)$ and $(g_{\alpha}: \alpha < \kappa)$ be a cofinal subsequence of $(f_{\alpha}: \alpha < \lambda)$. Next let $S = \{g_{\alpha}: \alpha < \kappa\}$ and $X_{mn} = \{f: f \in S \text{ and } f(m) = n\}$. Then, $\bigcap_{m} \bigcup_{n} X_{mn} = S$ and the cardinality of $\bigcap_{m} \bigcup_{n \leq f(m)} X_{mn}$ is less than κ for any $f \in {}^{\omega}\omega$. Hence, $D(\kappa)$ does not hold.

It is well-known that Martin's axiom implies the following assertion: For any subset $A \subseteq {}^{\omega}\omega$ of cardinality less than 2^{\aleph_0} , there exists an $f \in {}^{\omega}\omega$ such that $g \leq {}^*f$ holds for every $g \in A$ [3].

Lemma 6. (Under Martin's axiom) For any $\kappa < 2^{\aleph_0} D(\kappa)$ holds.

PROOF. Let $\bigcap_{m} \bigcup_{n} X_{mn} = \kappa$ and $X_{mn} \cap X_{mn'} = \emptyset$ for $n \neq n'$. For $\alpha < \kappa$ let $f_{\alpha} \in {}^{\omega}\omega$

be the function such that $f_{\alpha}(m)=n$ iff $\alpha \in X_{mn}$. By Martin's axiom there exists $g^* \in {}^{\omega}\omega$ such that $f \leq {}^*g^*$ for all $\alpha < \kappa$. Since $\mathrm{cf}(\kappa)$ is uncountable and there are only countably many $g \in {}^{\omega}\omega$ such that $g(n)=g^*(n)$ for almost all n, there exists $g \in {}^{\omega}\omega$ such that the cardinality of $\bigcap_{m} \bigcup_{n \leq g(m)} X_{mn}$ is κ . By Lemma 2, $D(\kappa)$ holds.

THEOREM 3. (Under Martin's axiom) For a cardinal κ of uncountable cofinality, $D(\kappa)$ holds iff $cf(\kappa)$ is not equal to 2^{\aleph_0} .

PROOF. Since Martin's axiom implies that 2^{\aleph_0} is regular, there exists a sequence $(g_\alpha: \alpha < 2^{\aleph_0})$ that satisfies the conditions of Lemma 5 by the above consequence of Martin's axiom. Hence, $D(2^{\aleph_0})$ does not hold. Now, the conclusion follows from Lemmas 3, 6 and Corollary 2.

Theorems 2 and 3 imply that $P(I)/P_{\kappa}(I)$ has the slender property for a κ whose cofinality is uncountable but not equal to 2^{\aleph_0} under Martin's axiom. On the other hand, B. Wald [6] showed the existence of a homomorphism $h: \mathbf{Z}^N \to \mathbf{Z}^{(P(I)/P_2\aleph_0(I))}$ whose lift-homomorphism from \mathbf{Z}^N to $\mathbf{Z}^{(P(I))}$ does not exist under Martin's axiom. Therefore,

COROLLARY 3. (Under Martin's axiom) $P(I)/P_{\kappa}(I)$ has the slender property iff the cofinality of κ is not equal to 2^{\aleph_0} for a κ of uncountable cofinality.

Our Corollary 3 improves Theorem (a) of [6]. Since Wald deals with a lifting problem under a little different setting, there is a problem in the case that the cofinality of κ is countable. In appendix we shall show the existence of a homomorphism which has no lifting homomorphism for a κ of countable cofinality.

Next we show that in a certain well-known Boolean extension of the universe $D(2^{\aleph_0})$ holds. Let **B** be the measure algebra over a product space *2 with a product measure, where $\kappa = (2^{\aleph_0})^+$ (p. 250 of [3]).

PROPOSITION 9. The assertion $D(2^{\aleph_0})$ holds in $V^{(B)}$.

PROOF. We work in $V^{(B)}$. It is known that for any $f \in {}^{\omega}\omega$ there exists a $g \in {}^{\omega}\omega$ such that $f(m) \leq g(m)$ for every $m < \omega$ [3]. The cardinality of ${}^{\omega}\omega$ is less than 2^{\aleph_0} ($=\check{\kappa}$) and 2^{\aleph_0} is regular. If $\bigcap_{m} X_{mn} = 2^{\aleph_0}$, then $\bigcup_{g \in {}^{\omega}\omega} \bigcap_{m} \bigcup_{n \leq g(m)} X_{mn} = 2^{\aleph_0}$. Hence, there exists a $g \in {}^{\omega}\omega$ such that the cardinality of $\bigcap_{m} \bigcup_{n \leq g(m)} X_{mn}$ is 2^{\aleph_0} . Therefore, $D(2^{\aleph_0})$ holds in $V^{(B)}$ by Lemma 2.

Proposition 9 and Corollary 3 imply

COROLLARY 4. It is independent of ZFC set theory that $P(I)/P_2 \aleph_0(I)$ has the slender property.

Appendix.

Here we show that there exists a homomorphism from Z^N to $Z^{(B)}/(Z^{(B)})_I$ which has no lifting homomorphism from Z^N to $Z^{(B)}$ for a certain ideal I of a ccBa B with the slender property.

THEOREM 4. Let B be a ccBa with the slender property and an ideal $I = \bigcup_{n \in \mathbb{N}} I_n$, where I_n is a countably complete ideal for each $n \in \mathbb{N}$. If I is not countably complete, then there exists a homomorphism from Z^N to $Z^{(B)}/(Z^{(B)})_I$ which has no lifting homomorphism from Z^N to $Z^{(B)}$.

Without loss of generality we may assume that $I_n \subseteq I_{n+1}$ and $I_n \neq I_{n+1}$ for each $n \in \mathbb{N}$. Then, there exist b_n $(n \in \mathbb{N})$ such that $b_n \notin I_n$ and $b_n \in I_{n+1}$ and $b_m \wedge b_n = 0$ for $m \neq n$. Clearly $\bigvee_{n \in \mathbb{N}} b_n \notin I$. Let C be the subgroup of $Z^{(B)}$ such that $x \in C$ iff $b_n \leq x(a)$ for some $a \in Z$ for each $n \in \mathbb{N}$ and $-\bigvee_{n \in \mathbb{N}} b_n \leq x(0)$. Let $\pi : Z^{(B)} \to Z^{(B)}/(Z^{(B)})_I$ be the canonical homomorphism.

LEMMA 7. If the image of $\pi \cdot h$ is included by the image of the restriction of π to C for a homomorphism $h : \mathbb{Z}^N \to \mathbb{Z}^{(B)}$, then there exists a homomorphism $h^* : \mathbb{Z}^N \to C$ such that $\pi \cdot h^* = \pi \cdot h$.

PROOF. Since **B** has the slender property, there exist c_n $(n \in N)$ with the following properties (consider the set $\{\bigwedge_{k \le m} h(e_k)(a_k) \land \bigwedge_{n > m} h(e_n)(0) : m \in N \text{ and } a_k \in \mathbb{Z} (k \le m)\}$):

- (1) $\bigvee_{n\in\mathbb{N}}c_n=1$, $c_n\neq 0$ and $c_m\wedge c_n=0$ for $m\neq n$;
- (2) For any $m, k \in \mathbb{N}$ there exists an integer a such that $c_m \leq h(e_k)(a)$;
- (3) For distinct m, n there exist k, a and b such that $c_m \le h(e_k)(a)$, $c_n \le h(e_k)(b)$ and $a \ne b$.

Since $b_m \notin I_m$ and $b_m = \bigvee_{n \in N} b_m \wedge c_n$, there exists a d_m such that $d_m \notin I_m$ and $d_m = b_m \wedge c_n$ for some n. If $\bigvee_{m \in N} b_m - \bigvee_{m \in N} d_m \in I$, then let h^* be the homomorphism from \mathbb{Z}^N to C such that $d_m \leq h(e_n)(a)$ implies $b_m \leq h^*(e_n)(a)$ for every m, n and a. Now, we have gotten the desired homomorphism h^* . In the rest we show that $\bigvee_{m \in N} b_m - \bigvee_{m \in N} d_m \in I$. Otherwise, there exists an ascending sequence $(m_k : k \in N)$ of natural numbers and d'_{m_k} such that $d'_{m_k} \wedge \bigvee_{m \in N} d_m = 0$ and $d'_{m_k} \notin I_k$ and $d'_{m_k} = b_{m_k} \wedge c_n$ for some n by countable completeness of I_k $(k \in N)$. We remark the following three facts:

- (1) For any k there exist n, a and b such that $a \neq b$ and $d_{m_k} \leq h(e_n)(a)$ and $d'_{m_k} = h(e_n)(b)$;
- (2) Since $\pi \cdot h(e_n)(a) \in \pi(C)$ for every $n \in N$, $\{k : d_{m_k} \leq h(e_n)(a) \text{ and } d'_{m_k} \leq h(e_n)(b) \}$ for $a \neq b$ is finite for every n;
- (3) For any k, $d_{m_k} \vee d'_{m_k} \leq h(e_n)(0)$ for almost all n.

We define natural numbers n_i , n_i' $(i \in N)$ and a subsequence $(p_i : i \in N)$ of $(m_k : k \in N)$ by induction.

Step 1: Let $p_1=m_1$ and n_1 be a natural number such that $d_{p_1} \leq h(e_{n_1})(a)$ and $d'_{p_1} \leq h(e_{n_1})(b)$ for some distinct a, b. Let $n'_1 \geq n_1$ be a natural number such that $d_{p_1} \vee d'_{p_1} \leq h(e_j)(0)$ for any $j > n'_1$.

We assume that we have defined $p_1 < \cdots < p_k$, $n_1 \le n_1' < n_2 \le \cdots \le n_k'$ in such a way that for any $i \le k$ and $j > n_k'$ $d_{p_i} \lor d'_{p_i} \le h(e_j)(0)$.

Step k+1: Take $p_{k+1} > p_k$ so that for any $j \le n'_k$ and $m_i \ge p_{k+1}$ there exists $u \in \mathbb{Z}$; $d_{m_i} \lor d'_{m_i} \le h(e_j)(u)$. There exists n_{k+1} such that $d_{p_{k+1}} \le h(e_{n_{k+1}})(a)$ and $d'_{p_{k+1}} \le h(e_{n_{k+1}})(b)$ for some distinct a, b. Then $n_{k+1} \ge n'_k$ and

$$d_{p_{k+1}} \leq h \left(\sum_{i=1}^{k+1} e_{n_i} \right) (a), \qquad d'_{p_{k+1}} \leq h \left(\sum_{i=1}^{k+1} e_{n_i} \right) (b)$$

for some distinct a, b. Let $n'_{k+1} \ge n_{k+1}$ such that for any $i \ge n'_{k+1}$ and $j \le k+1$ $d_{p_j} \lor d'_{p_j} \le h(e_i)(0)$. Thus we can continue this construction.

Let $\mathbf{a} = \sum_{i \in N} \mathbf{e}_{n_i}$. By the assumption of the lemma there exists $b \in I$ such that $b_n \wedge -b \leq h(\mathbf{a})(u)$ for some u for any $n \in N$. Let k be a natural number such that $b \in I_k \subseteq I_{p_k}$. Then, $\mathbf{0} \neq d_{p_k} \wedge -b \leq h\Big(\sum_{i=1}^k \mathbf{e}_{n_i}\Big)(u) \leq h(\mathbf{a})(u)$ and $\mathbf{0} \neq d'_{p_k} \wedge -b \leq h\Big(\sum_{i=1}^k \mathbf{e}_{n_i}\Big)(v) \leq h(\mathbf{a})(v)$ for distinct u and v, but this contradicts the fact that $b_{p_k} \wedge -b \leq h(\mathbf{a})(u)$ for some u. Now the proof of Lemma 7 has been completed. PROOF OF THEOREM 4. Let x be an element of C such that $x(n!) = b_n$ and $x(0) = -\bigvee_{n \in N} b_n$. Then $\pi(x) \neq 0$ and it is divisible in $\pi(C)$. Therefore, $\pi(C)$ includes a non-trivial divisible subgroup, so there exist $2^{2^{\aleph_0}}$ -many homomorphisms from \mathbf{Z}^N to $\pi(C)$. On the other hand there exist only 2^{\aleph_0} -many homomorphisms from \mathbf{Z}^N to C, because C is isomorphic to \mathbf{Z}^N . Hence, there exists a homomorphism from \mathbf{Z}^N to $\mathbf{Z}^{(B)}/(\mathbf{Z}^{(B)})_I$ which has no lifting homomorphism by Lemma 7.

COROLLARY 5. Let λ be a cardinal of countable cofinality. Then, there exists a homomorphism from \mathbf{Z}^N to $\mathbf{Z}^{\lambda}/(\mathbf{Z}^{\lambda})_{\mathbf{P}_{\lambda}(\lambda)}$ which has no lifting homomorphism from \mathbf{Z}^N to \mathbf{Z}^{λ} .

PROOF. If λ is the first infinite cardinal ω , the proof is obtained by the same argument as in the proof of Theorem 4. Otherwise, there exist regular infinite cardinals κ_n $(n \in N)$ such that λ is the least upper bound of κ_n $(n \in N)$. Since $P_{\kappa_n}(\lambda)$ is countably complete for each $n \in N$ and $P_{\lambda}(\lambda) = \bigcup_{n \in N} P_{\kappa_n}(\lambda)$, the conclusion follows from Theorem 4.

References

- [1] J. L. Bell, Boolean Valued Models and Independence Proofs in Set Theory, Clarendon Press, Oxford, 1977.
- [2] K. Eda, On a Boolean power of a torsion free abelian group, J. Algebra, 82 (1983), 84-93.
- [3] K. Kunen, Set Theory, North-Holland Publishing Company, Amsterdam-New York, 1980.
- [4] K. Namba, $(\omega_1, 2)$ -distributive law and perfect sets in generalized Baire space, Comment. Math. Univ. St. Pauli, 10 (1971), 107-126.
- [5] R. Sikorski, Boolean Algebras, Springer, Berlin-Heidelberg, 1969.
- [6] B. Wald, Martinaxiom und die Beschreibung gewisser Homomorphismen in der Theorie der \aleph_1 -freien abelschen Gruppen, Manuscr. Math., 42 (1983), 297-309.

Katsuya EDA Institute of Mathematics University of Tsukuba Ibaraki 305, Japan Ken-ichi HIBINO Institute of Mathematics University of Tsukuba Ibaraki 305, Japan