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\S 1. Introduction.

If $\phi:(M, g)arrow(N,\tilde{g})$ is a harmonic immersion $($[4] or Section 3 $)^{r}$ then the
identity map $1_{M}$ : $(M, g)arrow(M, \phi^{*}\tilde{g})$ is harmonic (Proposition 3.1). Thus it would
be natural to study the Riemannian metrics $G$ such that $1_{M}$ : $(M, g)arrow(M, G)$ is
harmonic. We say that $G$ is then a harmonic metric with respect to the given
Riemannian metric $g$ . We will study the space $\mathcal{H}_{g}$ of these $G$ in Section 2.
We will show that $\mathcal{H}_{g}$ is a very large star set in the space, $S$, of the symmetric
covariant tensor fields of degree 2 on M. (Proposition 2.2 and Theorem 2.5). In
Section 2 we will also introduce the concept of (relative) harmonic tensors and
obtain many fundamental results of such tensors. In connection with Berger-Ebin
decomposition of $S$ ([1] or Lemma 2.4), we will show that the space of harmonic
tensors in $S$ is linearly isomorphic with the space, ker $\delta$, of the co-closed tensor
fields in $S$ by the Einstein tensor field in the relativity theory for dim $M\neq 2$

(Theorem 2.5, see Theorem 2.6 for dim $M=2$). Moreover, we will relate harmonic
tensors with holomorphic and geodesic vector fields on $M$ (Theorems 2.11 and
2.12). Also we will obtain a volume-decreasing phenomenon in $T_{g}\mathcal{H}_{g}\cap ker\delta$

(Theorem 2.10) and that $T_{g}\mathcal{H}_{g}\cap(ker\delta)^{\perp}$ is the nullity space for the harmonic
map $1_{M}$ : $(M, g)arrow(M, g)$ (Proposition 2.13).

In Section 3 we will obtain a necessary and sufficient condition for an im-
mersion between two Riemannian manifolds to be harmonic. And we will obtain
some simple applications of this result. Under the assumption that $\phi$ is an im-
mersion into the euclidean space ( $E^{m}$ , go) and the Gauss map $\Gamma:Marrow(Q_{m-2},\tilde{G}_{0})$

is also an immersion we will show that (i) $\phi:(M, \phi^{*}\tilde{g}_{0})arrow$ ( $E^{m}$ , go) is harmonic
if and only if $\phi:(M, \Gamma^{*}\tilde{G}_{0})arrow$ ( $E^{m}$ , go) is harmonic (Theorem 4.1) and (ii) the
Gauss map $\Gamma:(M, \Gamma^{*}\tilde{G}_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic and $1_{M}$ : $(M, \phi^{*}\tilde{g}_{0})arrow(M, \Gamma^{*}\tilde{G}_{0})$

is affine if and only if $(M, \phi^{*}\tilde{g}_{0})$ is of constant curvature and either (a) $(M, \phi^{*}\tilde{g}_{0})$

is immersed in a hypersphere of $E^{m}$ as a minimal surface or (b) $(M, \phi^{*}\tilde{g}_{0})$ is
immersed into an open portion of the product surface of two planar circles
(Theorem 5.8).

$*)$ Partially supported by NSF Grant 80-03573.
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For general results and known results on harmonic maps, please refer to
Eells and Lemaire [4].

\S 2. Geometry of identity maps and harmonic tensors.

We consider an n-dimensional connected manifold $M$ covered by systems of
coordinates $(x^{h})$ and with a Riemannian metric $g=g_{ji}dx^{j}dx^{i}$ , where the indices
$h,$ $i,$ $j,$ $k,$ $\cdots$ run over the range 1, 2, $\cdots$ , $n$ . We denote the Christoffel symbols
with respect to $g$ by

$\Gamma_{ji}^{h}=\frac{g^{ha}}{2}\{\partial_{j}g_{ta}+\partial_{i}g_{ja}-\partial_{a}g_{ji}\}$

and the covariant derivative of a tensor, say $T_{ji}$, by

$\nabla_{k}T_{ji}=\partial_{k}T_{j\ell}-\Gamma_{kj}^{a}T_{ai}-\Gamma_{ki}^{a}T_{ja}$ ,

where $\partial_{k}$ denotes the partial differentiation with respect to $x^{k}$ . We denote by
$K_{kji^{h}}$ and $R_{ji}$ the curvature tensor and the Ricci tensor, respectively.

Let $G$ be another Riemannian metric on $M$. Denote by $\nabla^{G},$ $\cdots$ , etc., the
corresponding quantities on $M$ for $G$ . We say that $G$ is a harmonic metric with
respect to $g$ if the identity map $1_{M}$ : $(M, g)arrow(M, G)$ is harmonic in the sense of
[5]. Thus, the metric $G$ is harmonic with respect to $g$ if and only if $g^{ba}L_{ba}^{h}=0$,
where $L_{ji}^{h}=^{G}\Gamma_{jt}^{h}-\Gamma_{ji}^{h}$ .

The main purpose of this section is to study the geometry of the identity
map $1_{M}$ : $(M, g)arrow(M, G)$ such that $1_{M}$ is harmonic.

First we observe that $L=(L_{ji}^{h})$ is a tensor of type $(1, 2)$ satisfying $L_{ji}^{h}=L_{ij}^{h}$ .
Moreover, from the definition of Christoffel symbols, we also have

\langle 2.1) $\nabla_{k}G_{ji}=G_{ja}L_{ki}^{a}+G_{ia}L_{kj}^{a}$ .
For the metric tensor $G$ , if we put

(2.2) $f=trG=G_{a}^{a}=g^{ab}G_{ba}$ ,

where “tr” denotes the trace operator with respect to $g$ , then we find

(2.3) $\nabla_{f}f=2G_{a}^{b}L_{bj}^{a}$ .

We give the following fundamental lemma which provides an easy way to
verify whether a metric $G$ is harmonic with respect to the given one $g$ .

LEMMA 2.1. Let $g$ and $G$ be two Riemannian metrics on a manifold $M$.
Then $G$ is harmonic with respect to $g$ if and only if
$(*)$ $\nabla_{i}f=2\omega_{i\prime}$
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where $f=trG$ and $\omega_{i}=\nabla^{a}G_{ai}$ .
PROOF. From (2.1) we have

(2.4) $g^{ba}\nabla_{b}G_{ai}=G_{ci}g^{ba}L_{ba}^{c}+G_{b}^{a}L_{ai}^{b}$ .

Combining this with (2.3) we obtain the lemma.
Since $(*)$ is a linear differential equation, Lemma 2.1 implies that if $G$ is a

Riemannian metric which is harmonic $w.r.t$ . $g$ , then so is $tg+(1-t)G$ for $t$ in a
neighborhood (open or not) of $[0,1]$ on which it defines a Riemannian metric on
$M$. If we denote by $\mathcal{M}$ the space of all Riemannian metrics on $M$, by $\mathcal{H}_{g}$ the
subset of $\mathcal{M}$ given by $\mathcal{H}_{g}=$ { $G\in \mathcal{M}|G$ is harmonic $w.r.t$ . $g$ } and by $S$ the space
of all symmetric covariant tensor fields of degree 2, then we have the following.

PROPOSITION 2.2. $\mathcal{H}_{g}$ is a star set centered at $g$ in the vector space $S$ .
Now, we introduce (relative) harmonic tensors as follows: a tensor $G$ in $S$

is called a harmonic tensor with respect to $g$ if it satisfies condition $(*)$ . In this
sense, the vector space of all harmonic tensors with respect to $g$ may be thought
of as “the tangent space” $T_{g}\mathcal{H}_{g}$ , the tangent space to $\mathcal{H}_{g}$ at $g$ . From Lemma
2.1 we also have the following.

LEMMA 2.3. If $G$ is a harmonic tensor with respect to $g$ , then $g+tG$ is a
harmonic Riemannian metric (with respect to g) for $t$ in a neighborhood of $0$

provided that $M$ is compact.
Let $\mathcal{T}_{s}^{r}$ denote the space of all tensors of type $(r, s)$ . We denote by $\delta$ the

codifferential of $\mathcal{T}_{s}^{r}$ defined by $(\delta T)_{i_{1}i_{S}}^{J_{1}\cdot.\cdot.\cdot.J_{r}}=-\nabla^{a}T_{ai_{1\}}^{J_{1}\cdots J_{r_{i}}}..$ . Then $\delta:\mathcal{T}_{s+1}^{r}arrow \mathcal{T}_{s}^{r}$ . We
also denote by $\delta$ the restriction of $\delta$ to $S$ . A tensor $T$ is called co-closed if
$\delta T=0$ . If a tensor $T\in S$ is regarded as an energy-momentum tensor, the equa-
tion $\delta T=0$ is sometimes called the conservative law of energy-momentum (see,

for instance, [8]).

We recall the following decomposition of Berger-Ebin. (Formula (3.1) in [1]).

LEMMA 2.4. Let $(M, g)$ be a comPact Riemannian manifold. Then every
symmetric tensor $S\in S$ is the unique sum $S=T+X_{v}g$ for some symmetric tensor
$T\in S$ and some vector field $v$ such that (1) $\delta T=0$ and (2) $T$ is orthogonal to $\mathcal{L}_{v}g$ ,

that is, $\int_{M}T^{ab}(\nabla_{a}v_{b}+\nabla_{b}v_{a})=0$ , where $\mathcal{L}$ denotes the Lie derivative.

The following two theorems describe the space of harmonic tensors (with

respect to $g$).

THEOREM 2.5. Let $(M, g)$ be a Riemannian manifold of dimension $\neq 2$ . Then
we have the following linear isomorphism of vector spaces;

{ $G\in S|G$ is harmonic $w.r$ . $t$ . $g$} $\cong ker\delta\equiv\{T\in S|\delta T=0\}$ .
The isomorphism is given by the map $\varphi:G-G-(trG/2)g$ .
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PROOF. For any tensor $G$ in $S$ which is harmonic $w.r.t$ . $g$, it is easy to
verify that $\varphi(G)$ lies in ker $\delta$ . Thus $\varphi$ is well-defined. Moreover, for any $T\in$

ker $\delta,$ $\nabla^{a}T_{ai}=0$, let $G=T+(trT/(2-n))g$ , then it is easy to verify that $G$ is
harmonic $w.r.t$ . $g$ and $\varphi(G)=T$ . Thus $\varphi$ is onto.

If $G$ is harmonic $w.r.t$ . $g$ and $\varphi(G)=0$, then we have $G=(f/2)g$ , where $f=$

tr $G$ . From this we may prove that $G=f=0$ . Thus $\varphi$ is also one-to-one.
(Q. E. D.)

If $M$ is 2-dimensional, the linear map $\varphi$ is not injective, but still surjective.
In this case we have the following decomposition of harmonic tensors in $S$ ;

THEOREM 2.6. If dim $M=2$ , then we have

{ $G\in S|G$ is harmonic $w.r.t$ . $g$ } $=\{\lambda g|\lambda\in C^{\infty}(M)\}\oplus\{T\in ker\delta|trT=0\}$ .
PROOF. Since $M$ is 2-dimensional, $\lambda g$ is harmonic $w.r.t$ . $g$ for any function

$\lambda$ on $M$. Moreover, ${\rm Im}\varphi=$ { $T\in ker\delta|$ tr $T=0$}. It is easy to check that ker $\varphi=$

$\{\lambda g|\lambda\in C^{\infty}(M)\}$ , where $\varphi$ is the linear map given as in Theorem 2.5. (Q.E.D.)

REMARK 2.1. Theorems 2.5 and 2.6 say more than that the space of all
harmonic Riemannian metrics (with respect to g) is infinite-dimensional.

Suppose $M$ is 2-dimensional. By passing, if necessary, to the twofold cover-
ing surface, we may assume that $M$ is orientable. It is then possible to choose
a system of isothermal coordinates $\{x^{1}, x^{2}\}$ covering $M$. The metric tensor $g$

on $M$ has the following form;

$g=E\{(dx^{1})^{2}+(dx^{2})^{2}\}$ .

LEMMA 2.7. Let $(M, g)$ be a Riemannian surface. Then a tensor $T$ in $S$ is
a harmonic tensor with respect to $g$ if and only if

(2.5) $f_{T}= \frac{T_{11}-T_{22}}{2}+\sqrt{-1}T_{12}$

is a holomorPhic function in $z=x^{1}+\sqrt{-1}x^{2}$ for any set of isothermal coordinates
$x^{1},$ $x^{2}$ , where $T_{ij}=T(\partial/\partial x^{i}, \partial/\partial x^{j})$ .

PROOF. Let $X_{i}=\partial/\partial x^{i}$ . Then the Christoffel symbols satisfy (see, for in-
stance, p. 102 of [2])

(2.6) $\Gamma_{11}^{1}=\Gamma_{12}^{2}=-\Gamma_{22}^{1}=\frac{X_{1}E}{2E}$ ,

By direct computation we have

$\Gamma_{22}^{2}=\Gamma_{12}^{1}=-\Gamma_{11}^{2}=\frac{X_{2}E}{2E}$ .

(2.7) $\partial_{2}(\frac{T_{11}-T_{22}}{2})-\partial_{1}T_{12}=\frac{1}{2}\partial_{2}(T_{11}+T_{22})-(\partial_{2}T_{22}+\partial_{1}T_{12})$
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$= \frac{1}{2}\partial_{2}$ ( $E$ tr $T$ ) $-E\nabla^{a}T_{a2}-2\Gamma_{22}^{a}T_{a2}-\Gamma_{11}^{a}T_{a2}-\Gamma_{12}^{a}T_{1a}$

$= \frac{1}{2}\partial_{2}$ ( $E$ tr $T$ ) $-E\nabla^{a}T_{a2}-\Gamma_{12}^{1}(T_{11}+T_{22})$

$= \frac{E}{2}(\nabla_{2}(trT)-2\nabla^{a}T_{a2})$ .

Similarly, we also have

(2.8) $\partial_{1}(\frac{T_{11}-T_{22}}{2})+\partial_{2}T_{12}=\frac{E}{2}$ ($\nabla_{1}$ (tr $T)-2\nabla^{a}T_{a1}$).

Hence, by using Lemma 2.1, we see that the function $f_{T}$ is holomorphic in
$z=x^{1}+\sqrt{-}ir_{X^{2}}$ if and only if the symmetric tensor $T$ is harmonic $w.r.t$ . $g$ .

If $T$ in $S$ is a harmonic tensor (with respect to $g$), then $\Phi_{T}=f_{T}dz^{2}$ defines
a holomorphic quadratic differential on $(M, g)$ globally. In particular, we have
the following well-defined linear map

$\Phi:$ { $T\in ker\delta|$ tr $T=0$} $arrow$ {$holomorphic$ quadratic differentials}

defined by $\Phi;\tau_{-\rangle}\Phi_{T}$ . It is easy to verify from Lemmas 2.1 and 2.7 that $\Phi$ is
one-to-one and onto. Consequently we have the following.

THEOREM 2.8. If dim $M=2$ and $M$ is onentable, then the space $\{T\in ker\delta|$

tr $T=0$} is linearly isomorphjc with the space of holomorphjc quadratic differentials
on $M$ with the natural complex stmcture.

By using Theorem 2.8 and Riemann-Roch’s theorem we obtain the following.

COROLLARY 2.9. If $M$ is a 2-dimensional sphere or a real projective plane,
then

{ $G\in S|G$ harmonic tensor $w$ . $r$ . $t$ . $g$ } $=\{\lambda g|\lambda\in C^{\infty}(M)\}$ .
EXAMPLE 2.1. The second Bianchi identity implies that (i) the Ricci tensor

$R_{ij}$ of a Riemannian manifold $(M, g)$ is always a harmonic tensor with respect
to $g$ and (ii) the Ricci tensor $R$ is co-closed if and only if $(M, g)$ has a constant
scalar curvature.

REMARK. (Added on April 20, 1983). Recently, J. DeTurck and R. Hamilton
(to be published) obtained a very good application of our result given in Example
2.1. Their result concerns uniqueness and non-existence of a Riemannian metric
with a given tensor $R$ as its Ricci form. They found that, on the Iuclidean
sphere $S^{n}$ with the metric tensor equal to the Ricci form $R$ , the only Riemann-
ian metric that has $R$ as its Ricci form is a constant scalar multiple of $R$ and
moreover, there is no metric whose Ricci form is $cR$ for any constant $c>1$ .
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For a co-closed harmonic metric, we have the following interesting volume-
decreasing phenomenon.

THEOREM 2.10. Let $G$ be a co-closed harmonic Riemannian metric on $M$ with
respect to $g$ . Then we have

(a) tr $gG$ is constant,
(b) for any $c\in R^{+},$ $cG$ is also a co-closed harmonic Riemannian metric with

respeci to $g$ , and
(c) if tr $gG=tr_{g}g$ , then

(c.1) the volume form $dV_{G}\leqq dV_{g}$ at each pOjnt of $M$ ; hence the map
$1_{M}$ : $(M, g)arrow(M, G)$ is volume-decreasing and

(c.2) $dV_{G}=dV_{g}$ on $M$ if and only if $G=g$ .
PROOF. Since $G$ is harmonic $w.r.t$ . $g$ , Lemma 2.1 gives $\nabla_{i}f=2\omega_{t}$ , where $\omega_{l}=$

$\nabla^{a}G_{ai}$ and $f=trG$ . If $G$ is co-closed, $\omega_{i}=0$ . Thus $f$ is constant on $M$ because
$M$ is assumed to be connected. This proves (a). Statement (b) follows easily
from Theorem 2.5.

For the statement (c), denote by $\lambda_{1},$ $\cdots$ , $\lambda_{n}$ the eigenvalues of $(G_{j}^{i})$ , where
$G_{j}^{i}=g^{ia}G_{aj}$ . We have

$( \prod_{i=1}^{n}\lambda_{i})^{1/n}\leqq\frac{1}{n}\sum_{i=1}^{n}\lambda_{i}=\frac{1}{n}$ tr $G=1$ .

Thus the volume form $dV_{G}$ for $G$ satisPes $dV_{G}\leqq dV_{g}$ . If $dV_{G}=dV_{g}$ on $M$, we
have $\lambda_{1}=\ldots=\lambda_{n}$ . Thus $G=g$ . The converse of this is trivial. (Q. I. D.)

In [14], Yano proved that a vector field $v=(v^{i})$ on a compact Kaehlerian
manifold is holomorphic if and only if $g^{ba}\nabla_{b}\nabla_{a}v^{h}+R_{a^{h}}v^{a}=0$ . In [15], Yano and
Nagano used this equation to introduce the following.

DEFINITION 2.1. A vector field $v=(v^{i})$ on a Riemannian manifold $(M, g)$ is
called a geodesic vector field if $g^{ba}\nabla_{b}\nabla_{a}v^{h}+R_{a^{h}}v^{a}=0$ .

In the following we shall give a geometric characterization for geodesic vector
fields in terms of harmonic tensors. In order to do so we assume that the tensor
$G$ is orthogonal to ker $\delta$ ; that is, $G=X_{v}g$ for some vector Peld $v$ (cf. Lemma
2.4). Thus we have $\nabla_{j}v_{i}+\nabla_{i}v_{j}=G_{ji}$ . Hence we get

(2.9) $\nabla_{k}\nabla_{j}v_{i}+\nabla_{k}\nabla_{i}v_{j}=\nabla_{k}G_{ji}$ .
From this we find

(2.10) $\nabla_{j}\nabla_{k}v_{i}+\nabla_{j}\nabla_{i}v_{k}=\nabla_{j}G_{ki}$ ,

(2.11) $\nabla_{i}\nabla_{f}v_{k}+\nabla_{i}\nabla_{k}v_{j}=\nabla_{i}G_{jk}$ .
From (2.9), (2.10) and (2.11) we obtain

$\nabla_{k}\nabla_{j}v_{i}+\nabla_{j}\nabla_{k}v_{i}-K_{kij^{a}}v_{a}-K_{jik^{a}}v_{a}=\nabla_{k}G_{ji}+\nabla_{j}G_{ki}-\nabla_{i}G_{jk}$ .
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By taking contraction on $k$ and $j$, this gives

(2.12) $2\nabla^{a}\nabla_{a}v_{i}+2R_{i}^{a}v_{a}=2\nabla^{a}G_{ai}-\nabla_{i}f$ ,

where $f=trG$ . Combining this with Lemma 2.1 we obtain the following charac-
terization of geodesic vector fields.

THEOREM 2.11. A vector field $v$ on a Riemannian manifold $(M, g)$ is a geodestc
vector field if and only if $G=\mathcal{L}_{v}g$ is a harmonic tensor (with respect to $g$ ).

From this we obtain immediately the following.

THEOREM 2.12. A vector field $v$ on a compact Kaehlerian manifold $(M, J, g)$

is holomorphic if and only if $G=\mathcal{L}_{v}g$ is a harmonic tensor (with respect to $g$).

We recall that the second variation for the harmonic map $1_{M}$ : $(M, g)arrow(M, g)$

is given by [13]

$\int\langle\nabla v, \nabla v\rangle-R(v, v)$

for vector fields $v$ on $M$. The nullity of the harmonic map $1_{M}$ is defined as the
dimension of the space of the vector fields $v$ such that

$\int\langle\nabla v, \nabla u\rangle-R(v, u)=0$

for any vector field $u$ of compact support. Thus by (2.12) we have the following.

PROPOSITION 2.13. Let $(M, g)$ be a Riemannian manifold. Then the nullity

of the harmonic map $1_{M}$ : $(M, g)arrow(M, g)$ is equal to the dimenston of $(ker\delta)^{\perp}=$

{ $G\in S|G=X_{v}g$ for some geodestc vector field $v$ }.
In particular, this implies the following.

COROLLARY 2.14. Let $(M, g)$ be a compact Riemannian manifold. Then
{ $G\in S|G$ is harmonic $w.r.t$ . $g$ and $G\perp ker\delta$ } is finite-dimensional.

Combining Proposition 2.13 and a result of Yano-Nagano [16] we also have
the following corollary immediately.

COROLLARY 2.15. Let $(M, g)$ be a compact irreducible symmetric space.
Then the nullity of the harmonic map $1_{M}$ : $(M, g)arrow(M, g)$ is greater than the
dimension of the isometry group if and only if $(M, g)$ is either a Hermitian sym-
metric space or the excepti0nal srmple group manifold $G_{2}$ .

REMARK 2.2. Harvey-Lawson [7] discovered that a class of manifolds which
is intimately related to the group $G_{2}$ has a remarkable analog of the Kaehlerian
manifolds in connection with the minimal submanifolds, especially with their
absolute minimum property.

We need the following.
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LEMMA 2.16. Let $g$ and $G$ be two Riemannian metrics on a surface M. Then
$1_{M}$ : $(M, g)arrow(M, G)$ is cmformal if and only if $1_{M}’\cdot 1_{M}$ is bi-harmonic for any
conformal change of metric $1_{M}’$ : $(M, G)arrow(M, e^{2\rho}G)$ , where $1_{M}’$ is also the identity
map. By $1_{M}’\cdot 1_{M}$ becng bi-harmonic, we mean that both $1_{M}’\cdot 1_{M}$ and $(1_{M}’\cdot 1_{M})^{-1}$ are
harmonic.

PROOF. We put $\overline{G}=e^{2\rho}G$ . Assume that

$1_{M}’\cdot 1_{M}$ : $(M, g)arrow(M1_{M}G)arrow(M1_{M}’\overline{G})$

is bi-harmonic for any $\rho\in C^{\infty}(M)$ . Then by taking $\rho=0$, we see that $1_{K}$ is bi-
harmonic. Thus, we have

$0=g^{ba}(\nabla_{X_{b}}^{\overline{G}}X_{a}-\nabla_{X_{b}}X_{a})=g^{ba}(\nabla_{X_{b}}^{\overline{G}}X_{a}-\nabla_{X_{b}}^{G}X_{a})$

$=g^{b}$ “ $(\Phi(X_{b})X_{a}+\Phi(X_{a})X_{b}-G(X_{b}, X_{a})U^{G})$ ,

where $X_{i}=\partial/\partial x^{i},$ $\Phi=d\rho$ , and $U^{G}$ is the vector field associated with the l-form
$\Phi$ for $G$ . From this we find

\langle 2.13) $(trG)U^{G}=2U$ ,

where $U$ is the vector field associated with $\Phi$ for $g$ . Because this is true for
any function $\rho$ on $M,$ $1_{M}$ must be conformal on the whole surface $M$. The con-
verse of this follows from a result of Iells and Sampson [5].

\S 3. Harmonic immersions.

Let $\phi:(M, g)arrow(N,\tilde{g})$ be a map between two Riemannian manifolds. The $\phi$

is harmonic by definition if its tension field $\tau(\phi)=div(\phi_{*})$ vanishes or equivalently
$\phi$ satisfies

\langle 3.1) $g^{ji}(\nabla_{\phi_{s}x_{j}}^{g}\phi_{*}X_{i}-\phi_{*}\nabla_{x_{j}}^{g}X_{i})=0$

where $X_{j}=\partial/\partial x^{j}$ and $\nabla^{\tilde{g}}$ and $\nabla^{g}$ denote the covariant derivatives of $(N,\tilde{g})$ and
$(M, g)$ , respectively. Let $G=\phi^{*}\tilde{g}$ and $\nabla^{G}$ denote the covariant derivative of
$(\Lambda f, G)$ . Then (3.1) is equivalent to

(3.2) $g^{ji}(\nabla_{\phi\cdot x_{j}}^{\tilde{g}}\phi_{*}X_{i}-\phi_{*}\nabla_{x_{j}}^{G}X_{i})=g^{ji}(\nabla_{x_{j}}^{G}X_{i}-\nabla_{x_{j}}^{g}X_{i})=0$ .
Let $h$ denote the second fundamental form of the isometric immersion $\phi:(M, G)$

$arrow(N,\tilde{g})$ . Then $h(X_{j}, X_{i})=\nabla_{\psi_{*}x_{j}}^{\tilde{g}}\phi_{*}X_{i}-\phi_{*}\nabla_{x_{j}}^{G}X_{i}$ . And hence (3.2) gives the fol-
lowing.

PROPOSITION 3.1. Let $\phi:(M, g)arrow(N,\tilde{g})$ be an immersion between two Rie-
mannian manifolds. Then $\phi$ is harmonic if and only if (a) $\phi^{*}\tilde{g}$ is a harmonic
tensor with resPect to $g$ and (b) tr$gh=0$ identically.
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Note chat $(1/n)tr_{g}h$ is not the mean-curvature vector of $\phi:(M, \phi^{*}\tilde{g})arrow(N,\tilde{g})$ .
From Proposition 3.1 we obtain easily the following [6].

COROLLARY 3.2. Let $\phi:(M, g)arrow(N,\tilde{g})$ be a harmomc immerston from $(M, g)$

into a complete, l-connected Riemannian manifold $(N,\tilde{g})$ of $nonpo\alpha tive$ sectional
curvature. Then $M$ is not compact.

PROOF. If $M$ is compact and $\phi$ is an immersion from $M$ into $(N,\tilde{g})$ , then
the second fundamental form $h$ of the isometric immersion $\phi:(M, \phi^{*}\tilde{g})arrow(N,\tilde{g})$

is positive-definite with respect to some normal direction at some point $p\in M$.
Since $g$ is positive-definite, tr $gh\neq 0$ at $p$ . Thus Proposition 3.1 yields a contradic-
tion. (Q. E. D.)

Now assume that $\phi:(M, g)arrow(N,\tilde{g})$ is a harmonic immersion. Denote by $h$

the second fundamental form of $\phi:(M, G)arrow(N,\tilde{g})$ , where $G=\phi^{*}\tilde{g}$ . Let $R^{G}$ and
$R^{\tilde{g}}$ denote the curvature tensors of $(M, G)$ and $(N,\tilde{g})$ , respectively. Then the
Gauss equation gives

(3.3) $R^{G}(X, Y;Z, W)=R^{\tilde{g}}(\phi_{*}X, \phi_{*}Y;\phi_{*}Z, \phi_{*}W)$

$+\tilde{g}(h(X, W),$ $h(Y, Z))-\tilde{g}(h(X, Z),$ $h(Y, W))$ ,

for $X,$ $Y,$ $Z,$ $W$ tangent to $M$. Assume that dimM$=2$ . Let $E_{1},$ $E_{2}$ be an ortho-
normal basis on $M$ with respect to $G=\phi^{*}\tilde{g}$ . Then by putting $X=W=E_{1}$ and
$Y=Z=E_{2}$ , we obtain from (3.3) the following.

(3.4) $2K_{G}(T_{p}M)=2K_{\tilde{g}}(\phi_{*}T_{p}M)+\tilde{g}(tr_{G}h, tr_{G}h)-\Vert h\Vert_{g}^{2}$ ,

where $K_{G}$ and $K_{\tilde{g}}$ denote the sectional curvatures of $(M, G)$ and $(N,\tilde{g})$ , respec-
tively.

If tr$Gh=0$ at a point $p\in M,$ $(3.4)$ gives the well-known inequality $K_{G}\leqq K_{\tilde{9}}$ .
Moreover, $K_{G}=K_{\tilde{g}}$ if and only if $h=0$ .

If $tr_{G}h\neq 0$ at $p$ , we may choose an orthonormal basis $E_{1},$ $E_{2},$ $\xi_{3},$
$\cdots,$

$\xi_{m}$ of
$T_{p}Nw.r.t.\tilde{g}$ such that $E_{1}$ and $E_{2}$ are tangent to $M$ and they diagonalize the
symmetric matrix $(g^{ij})$ . Furthermore, we may assume that $\xi_{3}$ is parallel to
$tr_{G}h$ . Since $\phi:(M, g)arrow(N,\tilde{g})$ is harmonic, Proposition 3.1 then implies

$g^{11}h(E_{1}, E_{1})+g^{22}h(E_{2}, E_{2})=0$ .

In particular, this gives $h_{22}^{3}=-(g^{11}/g^{22})h_{11}^{3}$ , where $h_{ij}^{r}=\tilde{g}(h(E_{i}, E_{j}),$ $\xi_{r}$). Because
$(g^{ij})$ is positive-dePnite, this implies $h_{11}^{3}h_{22}^{3}\leqq 0$ . Moreover, since $\xi_{3}$ is assumed to
be parallel to $tr_{G}h$ , we also have $h_{11}^{r}h_{22}^{r}\leqq 0$ for $r=4,$ $\cdots,$ $m$ . Therefore, by using
equation (3.3) of Gauss we conclude that $K_{G}(T_{p}M)\leqq K_{\tilde{g}}(\phi_{*}T_{p}M)$ and the equality
holds if and only if $h=0$ at $p$ . Consequently, Proposition 3.1 gives us the fol-
lowing decreasing property for harmonic immersions of a surface [12].

COROLLARY 3.3. Let $\phi:(M, g)arrow(N,\tilde{g})$ be a harmonic immersion $between^{-}$two-
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Riemannian manifolds. If dim $M=2$, then $\phi:(M, \phi^{*}\tilde{g})arrow(N,\tilde{g})$ decreases the sec-
tional curvature unless this $\phi$ is totally geodesic. More precisely, the sectional
curvature of $(M, \phi^{*}\tilde{g})$ and $(N,\tilde{g})$ satisfy $K_{\phi\tilde{g}}(T_{p}M)\leqq K_{\tilde{9}}(\phi_{*}T_{p}M)$ , for $p\in M$.
And if $K_{\phi^{*}\tilde{g}}(T_{p}M)\equiv K_{\tilde{g}}(\phi_{*}T_{p}M)$ , then $\phi:(M, \phi^{*}\tilde{g})arrow(N,\tilde{g})$ is totally geodesic.

Proposition 3.1 also implies easily the following.

COROLLARY 3.4. Let $(N,\tilde{g})$ be a Riemannian manifold of $non- po\alpha tive$ sec-
tional $cun$)$ature$ and $(M, g)$ be a compact 2-dimensional Riemannian manifold. If
$(M, g)$ admits a harmonic immerston into $(N,\tilde{g})$ , then the Euler characteristic of
$M$ satisfies $\chi(M)\leqq 0$ . If $\chi(M)=0$, then any harmonic immerston from $(M, g)$ into
$(N,\tilde{g})$ is totally geodesic, $i.e.,$ $h\equiv 0$ .

\S 4. Gauss maps.

Let $\phi:Marrow$ ( $E^{m}$ , go) be an immersion from a surface $M$ into the euclidean
m-space $E^{m}$ , where $\tilde{g}_{0}$ denotes the standard metric on $E^{m}$ . We denote by go the
induced metric on $M$ via $\phi$ . Let $Q_{m-2}$ be the Grassmann manifold consisting of
2-dimensional oriented linear subspaces of $E^{m}$ . It is well-known that $Q_{m-2}$ admits
a standard Riemannian metric $\tilde{G}_{0}$ which makes $Q_{m- 2}$ a symmetric space of rank
two. Moreover, with respect to a natural complex structure, $Q_{m-2}$ is holomor-
phically isometric to the complex $(m-2)$-dimensional complex quadric.

The Gauss map $\Gamma:Marrow(Q_{m-2},\tilde{G}_{0})$ is the map which is obtained by parallel
displacement of the tangent plane $T_{p}M$ (more precisely, $\phi_{*}T_{p}M$ ) of $M$ at $p$ in
$E^{m}$ . For simplicity, we always assume that the Gauss map is regular. So, the
Gauss map induces a metric, denoted by $G_{0}$ , on $M$. In this and the next sections
we will study relatiomhip between these two canonical metrics go and $G_{0}$ on $M$.

Let $H$ and $h$ denote the mean-curvature vector and the second fundamental
form of the isometric immersion $\phi:(M, g_{0})arrow(E^{m},\tilde{g}_{0})$ , respectively. Then a
result of Obata [10] gives

(4.1) $G_{0}(X, Y)=2\tilde{g}_{0}(H, h(X, Y))-Kg_{0}(X, Y)$

where $K$ denotes the Gaussian curvature of ($M$, go).

In Sections 4 and 5 we make the following

ASSUMPTION. $\phi$ : $Marrow(E^{m},\tilde{g}_{0})$ is an immersion from a surface $M$ into $E^{m}$

such that its Gauss map is regular.
In this section, we obtain the following relation between $g_{0}$ and $G_{0}$ .

THEOREM 4.1. $\phi:(M, g_{0})arrow(E^{m},\tilde{g}_{0})$ is harmonic if and only if $\phi:(M, G_{0})arrow$

$(E^{m},\tilde{g}_{0})$ is harmonic.
PROOF. Under the hypothesis, if $\phi:(M, g_{0})arrow$ ( $E^{m}$ , go) is harmonic, $\phi:$ ($M$, go)

$arrow(E^{m},\tilde{g}_{0})$ is minimal. Thus equation (4.1) implies
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(4.2) $G_{0}(X, Y)=-Kg_{0}(X, Y)$ .
Therefore, tr$G_{0}h=-(1/K)tr_{g_{0}}h=0$ . Hence, by Lemma 2.16 and (4.2) we conclude
that $\phi:(M, G_{0})arrow$ ( $E^{m}$ , go) is also harmonic (Proposition 3.1).

Conversely, if $\phi:(M, G_{0})arrow$ ( $E^{m}$ , go) is harmonic, Proposition 3.1 implies

(4.3) $tr_{G_{0}}h=0$ , and

(4.4) $\hat{G}_{0}^{ji}(\hat{\Gamma}_{ji}^{k}-\Gamma_{ji}^{k})=0$ ,

where $(\hat{G}_{0}^{ji})$ is the inverse matrix of $((G_{0})_{ji})$ and $\hat{\Gamma}_{ji}^{k}$ and $\Gamma_{ji}^{k}$ denote the Christoffel
symbols of $G_{0}$ and go’ respectively.

We put $M_{1}=$ {$p\in M|tr_{g_{0}}h\neq 0$ at $p$ }. Then $M_{1}$ is an open subset of $M$. On
$M_{1}$ , there is an orthonormal local frame $E_{1},$ $E_{2},$ $\xi_{3},$ $\cdots$ , $\xi_{m}$ of $E^{m}w.r.t$ . $g_{0}$ such
that, restricted to $M,$ $E_{1}$ and $E_{2}$ are tangent to $M$ and $\xi_{3}$ is parallel to $H=$

$(1/2)tr_{g}h0$ Furthermore, from (4.3) we see that dim $({\rm Im} h)\leqq 2$ at each point of
$M$. Thus we may also assume that the second fundamental tensors $A_{3},$ $\cdots$ $A_{m}$ ,
$w.r$ . t. $E_{1},$ $E_{2},$ $\xi_{3},$ $\xi_{m}$ , take the following forms:

(4.5) $A_{3}=(\begin{array}{ll}\lambda_{1} 00 \lambda_{2}\end{array})$ , $A_{4}=(\begin{array}{ll}\alpha \mu\mu -\alpha\end{array})$, $A_{5}=\ldots=A_{m}=0$ ,

where $g_{0}(A_{r}(X), Y)=\tilde{g}_{0}(h(X, Y),$ $\xi_{r}$). From (4.1) we find

(4.6) $(G_{0})_{11}=\lambda_{1}^{2}+\alpha^{2}+\mu^{2}$ , $(G_{0})_{12}=0$, $(G_{0})_{22}=\lambda_{2}^{2}+\alpha^{2}+\mu^{2}$,

where $(G_{0})_{ij}=G_{0}(E_{i}, E_{j})$ . Using (4.3), (4.5) and (4.6) we get

(4.7) $(\lambda_{1}+\lambda_{2})(\lambda_{1}\lambda_{2}+\alpha^{2}+\mu^{2})=0$ , $\alpha(\lambda_{2}^{2}-\lambda_{1}^{2})=0$ .
On $M_{1},$ $\lambda_{1}+\lambda_{2}\neq 0$ . Thus (4.7) gives $\alpha(\lambda_{1}-\lambda_{2})=\lambda_{1}\lambda_{2}+\alpha^{2}+\mu^{2}=0$ . If $\alpha\neq 0$,

these imply $h=0$ . Because the Gauss map is assumed to be regular, (4.1) yields
a contradiction. Consequently, $\alpha=0$ identically on $M_{1}$ . Hence, (4.6) and (4.7)

reduce to

(4.8) $(G_{0})_{11}=\lambda_{1}^{2}+\mu^{2}$ , $(G_{0})_{12}=0$ , $(G_{0})_{22}=\lambda_{2}^{2}+\mu^{2}$ ,

(4.9) $\lambda_{1}\lambda_{2}+\mu^{2}=0$, $\lambda_{1}\lambda_{2}\neq 0$ , $\mu\neq 0$,

on $M_{1}$ . For convenience we put

(4.10) $\nabla_{E_{j}^{0}}^{G}E_{i}=\{\begin{array}{l}aji\end{array}\}E_{a}$ , $\nabla g_{j^{0}}jE_{t}=\{\begin{array}{l}aji\end{array}\}E_{a}$ .

From (4.8) and (4.10) we have (see, Kobayashi-Nomizu [9], vol. I, p. 160, for
instance)

$\{\begin{array}{l}111\end{array}\}=\frac{1}{\lambda_{1}^{2}+\mu^{2}}\{\lambda_{1}(E_{1}\lambda_{1})+\mu(E_{1}\mu)\}\sim$ ,
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\langle 4.11)
$\{\begin{array}{l}122\end{array}\}=\frac{-1}{\lambda_{1}^{2}+\mu^{2}}\{\lambda_{2}(E_{1}\lambda_{2})+\mu(E_{1}\mu)-G_{0}([E_{1}\sim, E_{2}], E_{2})\}$ ,

$\{\begin{array}{l}211\end{array}\}=\frac{-1}{\lambda_{2}^{2}+\mu^{2}}\sim\{\lambda_{1}(E_{2}\lambda_{1})+\mu(E_{2}\mu)-G_{0}([E_{2}, E_{1}], E_{1})\}$ ,

$\{\begin{array}{l}222\end{array}\}=\frac{1}{\lambda_{2}^{2}+\mu^{2}}\{\lambda_{2}(E_{2}\lambda_{2})+\mu(E_{2}\mu)\}\sim$ .

For simplicity, we locally define l-forms Of by $\omega_{i}^{k}(E_{j})=\{\begin{array}{l}kij\end{array}\}$ . Then we

obtain from (4.4), (4.8) and (4.10) the following

(4.12) $\hat{G}_{0}^{11}(\{\begin{array}{l}k11\end{array}\}-\omega_{1}^{k}(E_{1}))+\hat{G}_{0}^{22}(\{\begin{array}{l}k22\end{array}\}-\omega_{2}^{h}(E_{2}))=0\sim\sim$ .

If $k=1,$ $(4.8),$ $(4.11)$ , and (4.12) give

\langle 4.13) $(\lambda_{2}^{2}+\mu^{2})\lambda_{1}(E_{1}\lambda_{1})-(\lambda_{1}^{2}+\mu^{2})\lambda_{2}(E_{1}\lambda_{2})$

$=\mu(\lambda_{1}^{2}-\lambda_{2}^{2})(E_{1}\mu)+(\lambda_{1}^{2}+\mu^{2})(\lambda_{1}^{2}-\lambda_{2}^{2})\omega_{2}^{1}(E_{2})$ .

On the other hand, (4.9) gives

(4.14) $\lambda_{2}(E_{1}\lambda_{1})=-\lambda_{1}(E_{1}\lambda_{2})-2\mu(E_{1}\mu)$ .

Hence, by (4.9), (4.13) and (4.14) we obtain

\langle 4.15) $\mu(E_{1}\lambda_{2})=\lambda_{2}(E_{1}\mu)-\frac{\lambda_{2}(\lambda_{1}^{2}+\mu^{2})(\lambda_{1}+\lambda_{2})}{\mu(\lambda_{1}-\lambda_{2})}\omega_{2}^{1}(E_{2})$ .

Similarly, we also have

(4.16) $\mu(E_{2}\lambda_{1})=\lambda_{1}(E_{2}\mu)-\frac{\lambda_{1}(\lambda_{2}^{2}+\mu^{2})(\lambda_{1}+\lambda_{2})}{\mu(\lambda_{2}-\lambda_{1})}\omega_{1}^{2}(E_{1})$ .

From the Codazzi equation of $\phi:(M, g_{0})arrow(E^{m},\tilde{g}_{0})$ , we have $(\overline{\nabla}_{E_{2}}h)(E_{1}, E_{1})=$

$(\overline{\nabla}_{E_{1}}h)(E_{2}, E_{1})$ (see [2] for instance). Thus

\langle 4.17) $\lambda_{1}(D_{E_{2}}\xi_{3})+(E_{2}\lambda_{1})\xi_{3}-2\omega_{1}^{2}(E_{2})\mu\xi_{4}$

$=\mu(D_{E_{1}}\xi_{4})+(E_{1}\mu)\xi_{4}-\omega_{2}^{1}(E_{1})\lambda_{1}\xi_{3}-\omega_{1}^{2}(E_{1})\lambda_{2}\xi_{3}$ ,

where $D$ denotes the normal connection of $\phi:(M, g_{0})arrow(E^{m},\tilde{g}_{0})$ . If we put

(4.18) $D\xi_{r}=\omega_{r}^{s}\xi_{s}$ , $r,$ $s=3,4,$ $\cdots$ $m$ ,

then (4.17) gives

\langle 4.19) $E_{2}\lambda_{1}=\mu\omega_{4}^{s}(E_{1})+(\lambda_{1}-\lambda_{2})\omega_{1}^{2}(E_{1})$ ,

\langle 4.20) $E_{1}\mu=\lambda_{1}\omega_{3}^{4}(E_{2})-2\mu\omega_{1}^{2}(E_{2})$ .
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Similarly, we also have

\langle 4.21) $E_{1}\lambda_{2}=\mu\omega_{4}^{3}(E_{2})+(\lambda_{1}-\lambda_{2})\omega_{1}^{2}(E_{2})$ ,

(4.22) $E_{2}\mu=\lambda_{2}\omega_{3}^{4}(E_{1})-2\mu\omega_{2}^{1}(E_{1})$ .

Substituting (4.20) and (4.21) into (4.15) we find

(4.23) $\omega_{1}^{2}(E_{2})=0$ .

Similarly, substituting (4.19) and (4.22) into (4.16), we find

\langle 4.24) $\omega_{1}^{2}(E_{1})=0$ .

From (4.23) and (4.24) we see that $(M_{1}, g_{0})$ is flat. Thus, the Gauss equation
implies $\lambda_{1}\lambda_{2}-\mu^{2}=0$ . Combining this with (4.9) we see that $M_{1}=\emptyset$ . Thus
$\phi:(M, g_{0})arrow(E^{m},\tilde{g}_{0})$ is minimal. Therefore, by Proposition 3.1, $\phi:(M, g_{0})arrow$

( $E^{m}$ , go) is harmonic. (Q. E. D.)

REMARK 4.1. If dim $M\geqq 3$ , Theorem 4.1 is not true. In fact, there exists a
hypersurface $M$ in $E^{n+1},$ $n\geqq 3$, such that $\phi:(M, g_{0})arrow$ ( $E^{n+1}$ , go) is harmonic but
$\phi:(M, G_{0})arrow$ ( $E^{n+1}$ , go) is not.

\S 5. Harmonic Gauss maps.

Let $\phi$ : $Marrow(E^{m},\tilde{g}_{0})$ be an immersion from a surface $M$ into $E^{m}$ such that
its Gauss map is regular. Then, as we mentioned in Section 4, $M$ admits two
canonical metrics $g_{0}$ and $G_{0}$ , one induced from $\phi$ , the other induced from its
Gauss map $\Gamma$ In [11], Ruh and Vilms studied the problem “when is the Gauss
map $\Gamma:(M, g_{0})arrow(Q_{m-2},\tilde{G}_{0})$ harmonic?” And they obtained a beautiful theorem
which says that $\Gamma:(M, g_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic if and only if the mean-
curvature vector of $\phi:(M, g_{0})arrow(E^{m},\tilde{g}_{0})$ is parallel (in the normal bundle). In
this section, we shall study the following

PROBLEM. When is the Gauss map $\Gamma:(M, G_{0})arrow(Q_{m- 2},\tilde{G}_{0})$ harmonic?
Since $G_{0}$ is the induced metric on $M$ via $\Gamma$, this is equivalent to ask when

is the Gauss map $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ minimal? For simplicity we denote by
$\tilde{h}$ the second fundamental form of the isometric immersion $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ .
Let $X_{1},$ $X_{2}$ be the local coordinate vector fields; $X_{i}=\partial/\partial x^{i}$ . Then by a formula
of [3], we know that the Gauss map $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic if and
only if

(5.1) $\hat{G}_{0}^{ji}\{(\overline{\nabla}_{X}h)(X_{j}, X_{i})+h(\nabla_{x_{j}}^{g_{0}}X_{i}-\nabla_{x_{j}^{0}}^{G}X_{i}, X)\}=0$ ,

where $h$ denotes the second fundamental form of $\phi:(M, g_{0})arrow$ ( $E^{m}$, go). It fol-
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lows from definition that $\hat{G}_{0}^{ji}(\nabla_{x_{j}}^{g_{0}}X_{i}-\nabla_{X_{j}^{0}}^{G}X_{i})=-\tau_{0}$ , where $\tau_{0}$ is the tension field of
the identity map $1_{M}$ : $(M, G_{0})arrow(M, g_{0})$ . Thus, (5.1) gives the following.

PROPOSITION 5.1. The Gauss map $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic if and
only if, for any $X\in TM$, we have

(5.2) $h(\tau_{0}, X)=tr_{G_{0}}(\overline{\nabla}_{X}h)$ .
Since it is a very large class of surfaces in $E^{m}$ whose Gauss map $\Gamma:(M, G_{0})$

$arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic (or minimal) (see [3] for surfaces whose Gauss images
are totally geodesic), complete classification of such surfaces seems to be formi-
dable. Thus we should study the problem under some additional assumptions.
First we give the following.

PROPOSITION 5.2. The Gauss map $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic and
$1_{M}$ : $(M, G_{0})arrow(M, g_{0})$ is conformal if and only if erther (a) $\phi:(M, g_{0})arrow(E^{m},\tilde{g}_{0})$

is harmonic or (b) there is a hypersphere $S^{m-1}$ (with the canonical metric) of $E^{m}$

such that $\phi$ : $(M, g_{0})arrow S^{m-1}$ is harmonic.
PROOF. If $1_{M}$ : $(M, G_{0})arrow$ ($M$, go) is conformal, then $1_{M}$ is harmonic. Thus

Proposition 5.1 shows that if the Gauss map $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic, then
$tr_{G_{0}}(\overline{\nabla}_{X}h)=\lambda$ tr $g_{0}(\overline{\nabla}_{x}h)=2D_{x}H=0$ , where $G_{0}=(1/\lambda)g_{0}$ . Thus, the mean-curvature
vector is parallel. Moreover, from (4.1) we also have $\tilde{g}_{0}(H, h(X, Y))=\mu g_{0}(X, Y)$

for $\mu=(1/2)((1/\lambda)+K)$ . This shows that $\phi:(M, g_{0})arrow(E^{m},\tilde{g}_{0})$ is pseudo-umbilical.
Consequently, $(M, g_{0})$ is either minimal in $(E^{m},\tilde{g}_{0})$ or minimal in a hypersphere
$S^{m-1}$ of $E^{m}$ via $\phi$ (see p. 69 of [2]). Since $\phi:(M, g_{0})arrow$ ( $E^{m}$ , go) is isometric,
either $\phi:(M, g_{0})arrow(E^{m},\tilde{g}_{0})$ is harmonic or $\phi:(M, g_{0})arrow S^{m-1}$ is harmonic. The
converse of this is easy to verify. (Q. I. D.)

In particular, if $1_{M}$ : $(M, G_{0})arrow$ ($M$, go) is homothetic, we have the following.

COROLLARY 5.3. The Gauss map $\Gamma:(M, G_{0})-arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic and
$1_{M}$ : $(M, G_{0})arrow(M, g_{0})$ is homothetic if and only if $(M, g_{0})$ is of constant curvature
and there is a hyPersphere $S^{m-1}$ of $E^{m}$ such that $\phi:(M, g_{0})arrow S^{m-1}$ is harmonic.

PROOF. If $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic and $1_{M}$ : $(M, G_{0})arrow$ ($M$, go) is
homothetic, then by (4.1) and Proposition 5.2 we may conclude that ($M$, go) has
constant curvature. If case (a) of Proposition 5.2 occurs, $(M, g_{0})$ is a minimal
surface of $E^{m}$ via $\phi$ . Since $(M, g_{0})$ has constant curvature, this implies that
$\phi:(M, g_{0})arrow$ ( $E^{m}$ , go) is totally geodesic by a result of Chen and Yau. Thus
$\Gamma(M)$ is a point. This contradicts the regularity of $\Gamma$ Thus only case (b) of
Proposition 5.2 may occur. The converse of this follows from (4.1) and Prop-
osition 5.2. (Q. E. D.)

In order to classify surfaces in $E^{m}$ such that $\Gamma;(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is har-
monic and $1_{M}$ : $(M, G_{0})arrow(M, g_{0})$ is affine, we give the following lemmas.

LEMMA 5.4. Let $g$ and $G$ be two Riemannian metrics on a surface M. If
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$1_{M}$ : $(M, G)arrow(M, g)$ is affine, then either (a) $1_{M}$ is homothetic or (b) both $(M, g)$

and $(M, G)$ are flat.
PROOF. Let $H_{0}$ denote the restricted linear holonomy group of $M$ common

to $g$ and $G$ . If $H_{0}$ is not trivial, $H_{0}$ is irreducible. Hence, by Schur’s lemma,
$G$ and $g$ are conformal, $i.e.,$ $G=e^{2\rho}g$ for some function $\rho$ . Since $1_{M}$ is affine,
$\rho$ must be a constant. If $H_{0}$ is trivial, both $(M, g)$ and $(M, G)$ are flat.

Combining Corollary 5.3 and Lemma 5.4 we obtain

LEMMA 5.5. If $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic and $1_{M}$ : $(M, G_{0})arrow(M, g_{0})$

is affine, then either (a) both $(M, g_{0})$ and $(M, G_{0})$ are flat or (b) $(M, g_{0})$ is of
constant cumature and $\phi$ maps $(M, g_{0})$ isometrically into a hypersphere $S^{m-1}$ of
$E^{m}$ as a minimal sur face.

Corollary 5.3 shows that if case (b) of Lemma 5.5 occurs, then $1_{M}$ : $(M, G_{0})$

$arrow(M, g_{0})$ is always affine and $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is always harmonic. There-
fore, we should only consider the case (a) in which both $(M, g_{0})$ and $(M, G_{0})$

are flat.

LEMMA 5.6. If $(M, g_{0})$ is flat and $1_{M}$ : $(M, G_{0})arrow(M, g_{0})$ is affine, then $A_{H}$ is
parallel, where $A_{H}$ is the second fundamental tensor given by $g_{0}(A_{H}X, Y)=$

$\tilde{g}_{0}(h(X, Y),$ $H$).

PROOF. Since $(M, g_{0})$ is flat, equation (4.1) gives $G_{0}(X, Y)=2g_{0}(A_{H}X, Y)$ .
For any fixed point $p\in M$, let $(x^{1}, x^{2})$ be an orthogonal coordinate system such
that $X_{i}=\partial/\partial x^{i},$ $i=1,2$, are parallel and they diagonalize the symmetric matrix
$(G_{ij})$ at $p$ . Then we have $\Gamma_{ji}^{k}\equiv 0$ and $G_{12}(p)=0$ . Because $1_{M}$ : $(M, G_{0})arrow(M, g_{0})$

is affine, we also have $G_{0}\Gamma_{ji}^{k}\equiv 0$ . Hence $G_{ij}$ are constants on the coordinate
neighborhood. Because $X_{i}$ are parallel vector fields, these imply that $A_{H}$ is a
parallel tensor. (Q. E. D.)

We put $M_{1}=$ { $p\in M|G_{0}(p)=\lambda g_{0}(p)$ for some \‘A} and $M_{2}=M-M_{1}$ . Then $M_{2}$

is an open subset of $M$. The following result follows from Corollary 5.3.

LEMMA 5.7. If $1_{M}$ : $(M, G_{0})arrow(M, g_{0})$ is affine, and $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is
harmonic, then each comp0nent of int $(M_{1})$ lies in a hypersphere of $E^{m}$ as a minimal
surface via $\phi$ .

Now, we give the following main result of this section.

THEOREM 5.8. The Gauss map $\Gamma:(M, G_{0})arrow(Q_{m- 2},\tilde{G}_{0})$ is harmonic and
$1_{M}$ : $(M, G_{0})arrow(M, g_{0})$ is affine if and only if $(M, g_{0})$ is of constant curvature and
either

(a) $(M, g_{0})$ is immersed in a hypersphere of $E^{m}$ as a minimal surface via
$\phi$ , or

(b) $(M, g_{0})$ is immersed as an open poriion of the pr0duct surface of two
planar circles via $\phi$ .

PROOF. Under the hypothesis, if $1_{M}$ is affine, then either $1_{M}$ is homothetic
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or both ($M$, go) and $(M, G_{0})$ are flat (Lemma 5.4). If $1_{M}$ is homothetic, ($M$, go)

is of constant curvature and $\phi$ immerses $(M, g_{0})$ into a hypersphere of $E^{m}$ as a
minimal surface (Corollary 5.3) provided that $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic.

If both $(M, g_{0})$ and $(M, G_{0})$ are flat and $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic,
then $A_{H}$ is parallel (Lemma 5.6). In this case, we may choose local coordinates
$(x^{1}, x^{2})$ such that

(5.3) $\nabla X_{i}=0$ , $(G_{0})_{ij}=(\begin{array}{ll}a_{1} 00 a_{2}\end{array})$ ,

where $a_{i}$ are positive constants and $\nabla$ stands for $\nabla^{g_{0}}$ . From (4.1) we have

tr $g_{0}G_{0}=4\tilde{g}_{0}(H, H)=a_{1}+a_{2}$ .

In particular, $\Vert H\Vert_{\tilde{g}_{0}}$ is constant. Since $1_{M}$ is affine, (5.3) gives

$G_{0}\Gamma_{ji}^{k}=^{g_{0}}\Gamma_{ji}^{k}=0$ .

Because $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic, Proposition 5.1 implies

(5.4) $\frac{1}{a_{1}}(\overline{\nabla}_{X}h)(X_{1}, X_{1})+\frac{1}{a_{2}}(\overline{\nabla}_{X}h)(X_{2}, X_{2})=0$ .

Combining this with (5.3) we obtain

(5.5) $D_{X}h(X_{1}, X_{1})= \frac{2a_{1}}{a_{1}-a_{2}}D_{X}H$ ,

(5.6) $D_{X}h(X_{2}, X_{2})= \frac{2a_{2}}{a_{2}-a_{1}}D_{X}H$ ,

on $M_{2}=M-M_{1}$ , where $M_{1}=$ { $p\in M|a_{1}=a_{2}$ at $p$ }. Since $1_{M}$ is affine, $1_{M}$ is homo-
thetic on int $(M_{1})$ .

Let $N$ be a component of $M_{2}$ . Because $\Vert H\Vert_{\tilde{g}_{0}}$ is constant, (5.5) and (5.6)

imply
$\tilde{g}_{0}(D_{X}h(X_{1}, X_{1}),$ $H$ ) $=\tilde{g}_{0}(D_{X}h(X_{2}, X_{2}),$ $H$ ) $=0$ .

Combining this with Lemma 5.6 and the Codazzi equation, we may find

(5.7) $\tilde{g}_{0}((\nabla_{X}h)(Y, Z),$ $H$) $=\tilde{g}_{0}(h(X, Y),$ $D_{Z}H$) $=0$

for any $X,$ $Y,$ $Z$ tangent to $N$. From equations (5.5) and (5.6) we also have

$\tilde{g}_{0}(D_{x_{i}}D_{x_{j}}h(X_{k}, X_{k}),$ $H$) $=-\tilde{g}_{0}(D_{x_{j}}h(X_{k}, X_{k}),$ $D_{X_{i}}H$).

Let $R^{D}$ denote the curvature tensor associated with the normal connection
$D$ of $\phi:(M, g_{0})arrow$ ( $E^{m}$, go). Then we have

$2\tilde{g}_{0}(R^{D}(X_{1}, X_{2})h(X_{1}, X_{1}),$ $H$ ) $=\tilde{g}_{0}(D_{X_{2}}h(X_{2}, X_{2}),$ $D_{X_{1}}h(X_{1}, X_{1}))$

$-\tilde{g}_{0}(D_{X_{1}}h(X_{2}, X_{2}),$ $D_{X_{2}}h(X_{1}, X_{1}))$ .
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Combining this with (5.5), (5.6) and the Ricci equation, we may find

(5.8) $[A_{H}, A_{h(X_{1}.X_{1})}]=[A_{H}, A_{h(X_{2}.X_{2})}]=0$ , on $N$ .

Since $G_{0}(X, Y)=2\tilde{g}_{0}(H, h(X, Y))=2g_{0}(A_{H}X, Y),$ $(5.3)$ gives

(5.9) $A_{H}=(\begin{array}{ll}a_{1}/2 00 a_{2}/2\end{array})$ .

Because $a_{1}\neq a_{2}$ on $N,$ $(5.8)$ and (5.9) show that $A_{h(X_{1},X_{1})}$ takes the following
form;

(5.10) $A_{h(X_{1},X_{1})}=(\begin{array}{ll}b_{1} 00 b_{2}\end{array})$ .

Hence, $g_{0}(A_{h(X_{1}.X_{2})}X_{1}, X_{1})=g_{0}(A_{h(X_{1}.X_{1})}X_{1}, X_{2})=0$ . Similar argument yields
$g_{0}(A_{h(X_{1}.X_{2})}X_{2}, X_{2})=0$ . Therefore,

(5.11) $A_{h(X_{1},X_{2})}=(\begin{array}{ll}0 \mu\mu 0\end{array})$

for some $\mu$ on $N$. Now, we shall claim that the first normal space Imh is of
dimension $\leqq 2$ on $N$. If it is not, then $H,$ $h(X_{1}, X_{1})$ and $h(X_{1}, X_{2})$ are linearly
independent. Because $a_{i}$ are constants, (5.5) and (5.6) give

$R^{D}(X_{1}, X_{2})h(X_{1}, X_{1})= \frac{2a_{1}}{a_{1}-a_{2}}R^{D}(X_{1}, X_{2})H$ .

Therefore, the Ricci equation implies

(5.12) $[A_{h(X_{1}.X_{1})}, A_{h(X_{1},X_{2})}]= \frac{2a_{1}}{a_{1}-a_{2}}[A_{H}, A_{h(X_{1}.X_{2})}]$ .

From (5.9), (5.10), (5.11) and (5.12) we get $a_{1}=b_{1}-b_{2}$ . Similarly, we may
also get $a_{2}=b_{2}-b_{1}$ . Therefore, we have $a_{1}+a_{2}=0$ . Thus, $N$ is minimal in $E^{m}$

via $\phi$ . In particular, we have dim ${\rm Im} h\leqq 2$ on $N$. This yields a contradiction.
Consequently, we always have dim $({\rm Im} h)\leqq 2$ on $M_{2}$ .

Now, if $H\Lambda h(X_{1}, X_{1})\neq 0$ almost everywhere, then ${\rm Im} h=Span\{H, h(X_{1}, X_{1})\}$ .
By (5.9) and (5.10) we may assume that $A_{r}$ take the following forms;

(5.13) $A_{3}=(\begin{array}{ll}c_{1} 00 c_{2}\end{array})$ , $A_{4}=(\begin{array}{ll}e 00 -e\end{array})$ , $A_{5}=\ldots=A_{m}=0$ ,

with respect to a suitable basis. Since $\Vert H\Vert_{\tilde{g}_{0}}$ and $a_{i}$ are constant, $c_{1},$ $c_{2}$ and $e$

are constant by virtue of (4.1). From (5.13) we have

(5.14) $h(X_{1}, X_{1})=c_{1}\xi_{3}+e\xi_{4}$ , $h(X_{1}, X_{2})=0$ , $h(X_{i1}, X_{2})=c_{2}\xi_{3}-e\xi_{4}$ .
Combining (5.3) and (5.14) we may find

$D_{X_{1}}h(X_{1}, X_{2})=D_{X_{2}}h(X_{1}, X_{1})=0$ .
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Thus we have

\langle 5.15) $c_{1}D_{X_{2}}\xi_{3}+eD_{X_{2}}\xi_{4}=0$ .

On the other hand, (5.3), (5.4), and (5.14) also give

$0= \frac{1}{a_{1}}\{c_{1}D_{X}\xi_{3}+eD_{X}\xi_{4}\}+\frac{1}{a_{2}}\{c_{2}D_{X}\xi_{3}-eD_{X}\xi_{4}\}$ .

Combining this with (5.15) we obtain $D_{X_{2}}\xi_{3}=D_{X_{2}}\xi_{4}=0$ . Similarly, we may also
obtain $D_{X_{1}}\xi_{3}=D_{X_{1}}\xi_{4}=0$ . Thus $\xi_{3}$ and $\xi_{4}$ are parallel in the normal bundle. Since
dim $({\rm Im} h)=2$ and ${\rm Im} h=Span\{\xi_{3}, \xi_{4}\}$ , a reduction theorem of Irbacher shows that
each component $N$ of int $(M_{2})$ lies in a linear 4-space of $E^{m}$ . Because $\xi_{4}$ is a
parallel nondegenerate minimal section (p. 124 of [2]), $N$ is an open portion of
the product surface of two planar circles (Proposition 5.4 of [2, p. 128]). By
continuity we may prove that $N$ is the whole surface $M$.

If $h(X_{1}, X_{1})\wedge H=0$ on some connected open subset $U$ of $M_{2}$ , then $h(X_{2}, X_{2})\wedge H$

$=0$ on $U$ . In this case, we may choose an orthonormal normal frame $\xi_{3},$
$\cdots,$

$\xi_{m}$

such that

$A_{3}=(\begin{array}{ll}c_{1} 00 c_{2}\end{array})$ , $A_{4}=(\begin{array}{ll}0 ee 0\end{array})$ , $A_{5}=\ldots=A_{m}=0$ .

Since ($M$, go) is flat, $c_{1}c_{2}=e^{2}$ . Thus dim $({\rm Im} h)\equiv 2$ on $U$ . Moreover, we have

(5.16) $h(X_{1}, X_{1})=c_{1}\xi_{3}$ , $h(X_{1}, X_{2})=e\xi_{4}$ , $h(X_{2}, X_{2})=c_{2}\xi_{3}$ ,

(5.17) $(G_{0})_{11}=(c_{1}+c_{2})c_{1}$ , $(G_{0})_{12}=0$, $(G_{0})_{22}=(c_{1}+c_{2})c_{2}$ .
By using these and a similar argument as we have given in the previous case,
we may also conclude that $\xi_{3}$ and $\xi_{4}$ are parallel in the normal bundle. Thus
by continuity and similar argument as before, we may also conclude that $M=U$

and $M$ is immersed as an open portion of the product surface of two planar
circles via $\phi$ .

Conversely, if $\phi$ is an immersion of case (a), then Corollary 5.3 shows that
$1_{M}$ is affine and $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$ is harmonic.

If $\phi$ is an immersion of case (b), then the Gauss map $\Gamma:(M, G_{0})arrow(Q_{m-2},\tilde{G}_{0})$

is totally geodesic (see Main Theorem of [3]) and by direct computation we may
easily prove that $1_{M}$ is affine. (Q. E. D.)

References

[1] M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on
a Riemannian manifold, J. Differential Geometry, 3 (1969), 379-392.

[2] B. Y. Chen, Geometry of Submanifolds, Dekker, New York, 1973.
[3] B. Y. Chen and S. Yamaguchi, Classification of surfaces with totally geodesic Gauss

image, Indiana Univ. Math. J., 32 (1983), 143-154.



Harmonic metrics 313

[4] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., 10
(1978), 1-68.

[5] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer, J.
Math., 86 (1964), 109-160.

[6] W. B. Gordon, Convex functions and harmonic maps, Proc. Amer. Math. Soc., 33
(1972), 433-437.

[7] R. Harvey and H. B. Lawson, A constellation of minimal varieties $de\hat{n}ned$ over the
group $G_{2}$ , Partial Differential Equations and Geometry (C. I. Byrnes, ed.), Dekker,
New York, 1979.

[8] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge
Univ. Press, 1973.

[9] S. Kobayashi and K. Nomizu, Foundation of Differential Geometry, I, II, Interscience,
New York, 1963, 1969.

[10] M. Obata, The Gauss map of immersions of Riemannian manifolds in spaces of
constant curvature, J. Differential Geometry, 2 (1968), 217-223.

[11] E. A. Ruh and J. Vilms, The tensor field of the Gauss map, Trans. Amer. Math.
Soc., 149 (1970), 569-573.

[12] J..H. Sampson, Some properties and applications of harmonic mappings, Ann. Sci.
Ecole Norm. Sup., 11 (1978), 211-228.

[13] R. T. Smith, The second variation formula for harmonic mappings, Proc. Amer.
Math. Soc., 47 (1975), 229-236.

[14] K. Yano, The Theory of Lie Derivatives and its Applications, North Holland,
Amsterdam, 1957.

[15] K. Yano and T. Nagano, On geodesic vector fields in a compact orientable Riemann-
ian space, Comm. Math. Helv., 35 (1961), 55-64.

[16] K. Yano and T. Nagano, Les champs des vecteurs g\’eodesiques sur les espaces
sym\’etriques, C. R. Acad. Sci. Paris, 252 (1961), 504-505.

Bang-yen CHEN TadaShi NAGANO
Department of Mathematics
Michigan State University
East Lansing, MI 48824
U. S. A.

Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556
U. S. A.


	\S 1. Introduction.
	\S 2. Geometry of identity ...
	THEOREM 2.5. ...
	THEOREM 2.6. ...
	THEOREM 2.8. ...
	THEOREM 2.10. ...
	THEOREM 2.11. ...
	THEOREM 2.12. ...

	\S 3. Harmonic immersions.
	\S 4. Gauss maps.
	THEOREM 4.1. ...

	\S 5. Harmonic Gauss maps.
	THEOREM 5.8. ...

	References

