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\S 1. Introduction.

D. Sullivan [10] associated a differential graded algebra (DGA, for brevity)
$M_{X}$ over the rationals $Q$ to a topological space $X$, while D. Quillen [6] asso-
ciated to $X$ a differential graded Lie algebra (DGL, for brevity) $L_{X}$ over $Q$ .
These algebraic objects contain all the informations about the rational homotopy
type of $X$ at least when $X$ has the homotopy type of a simply connected CW
complex of finite homology type. The DGA $M_{X}$ (and respectively, DGL $L_{X}$ ) is
called a Sullivan (and respectively, Quillen) type (algebraic) model for the space $X$.

These assignments are generalized to the case of a fibration $Farrow Earrow B$ , where
we can associate a sequence of homomorphisms $M_{B} arrow M_{B}\bigotimes_{\tau}M_{F}arrow M_{F}$ of DGA’s, or

$L_{F} arrow L_{F}\bigoplus_{\phi}L_{B}arrow L_{B}$ of DGL’s [11] with $M_{B} \bigotimes_{\tau}M_{F}$ (and respectively, $L_{F} \bigoplus_{\phi}L_{B}$
) a

Sullivan (and respectively, Quillen) type model for the total space $E$ of the
fibration.

Mixing these two types, A. Haefliger [3] constructed a DGL $M_{B} \bigotimes_{\tau}L_{F}$ over
$M_{B}$ which is free as an $M_{B}$-module and whose quotient by the ideal $(M_{B}^{+})$ is $L_{F}$,
in order to prove the Bott conjecture concerning the Gelfand-Fuks cohomology.
An advantage of his mixed type model lies in the following facts; the Koszul
cochain complex construction over $M_{B}$ of $M_{B} \bigotimes_{\tau}L_{F}$ gives rise to a Sullivan type

model for the total space $E$ while the same construction over the ground field
$R$ gives a Sullivan type model for the space of cross-sections of the fibration.
A technical disadvantage of the mixed type model is that the base is negatively
graded while the fiber is positively graded and that we have to consider a pro-
jective system when both of the base and fiber contain nontrivial elements of
arbitrary high (low) degrees.

In this note we present basic definitions concerning the Sullivan-Quillen mixed
type and the Sullivan type algebraic fibrations in section 2, and prove the equiv-
alence of the homotopy categories of mixed type and Sullivan type fibrations
in section 5, using the generalized Koszul complex functor $C_{A}^{*}$ defined in section
3 and the generalized Quillen $L$ functor $L_{*}^{A}$ defined in section 4. This generalizes
Silveira’s result [9] on the mixed type model for fibrations with a given cross-
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section. As a corollary, we see that the minimal model ( $=the$ Postnikov decom-
position) of a Sullivan type fibration with its fiber having the rational homotopy
type of a bouquet of spheres belongs to the image of the composite $C_{A}^{*}\circ L_{*}^{A}$ of
the two functors above. Applying this result, we give in section 6, the explicit
description of the minimal models for the DGA’s $I_{(n)}=R[c_{1}, \cdots , c_{n}]/(\deg>2n)$

and $\hat{W}O_{n}=I_{(n)}\bigotimes_{\tau}E(h_{2i-1} ; 2i-1\leqq n)$ considered by Hurder and Kamber [4], [5].

The latter one gives at the same time the complete solution to a computational
problem of the Postnikov decomposition of the algebraic fibration $P_{n} arrow P_{n}\bigotimes_{\tau}\hat{W}_{n}$

posed by Haefliger [2] in connection with the calculation of his model for the
Gelfand-Fuks cohomology.

The main results of this note were announced in [8].

I would like to thank A. Haefliger for suggesting me to generalize the mixed
type model theory for fibrations to the case of those without cross-sections. I
owe a great deal to S. Hurder for his helpful suggestions on the computations
of the minimal models for truncated Weil algebras. I also enjoyed valuable dis-
cussions with H. Shiga.

\S 2. Mixed type fibrations.

Throughout sections 2 to 5, $A^{*}$ is a non-negatively graded, augmented DGA
($i.e$ . $A^{i}=0$ for $i<0$, and $A^{*}\Leftrightarrow R$ ) over a ground field $R$ of characteristic zero
with the differential $d_{A}$ . A graded Lie algebra $L_{*}$ over $A^{*}$ is a graded $A^{*}-$

module which is a graded Lie algebra with an $A^{*}$-bilinear Lie bracket. The
grading in $L_{*}$ is lowerly indexed and we have deg $(a\cdot y)=\deg(y)-\deg(a)$ for
every $a\in A^{*}$ and $y\in L_{*}$ . So we may equivalently put $A_{-i}=A^{i}$ to have deg $(\overline{a}\cdot y)$

$=\deg(y)+\deg(\overline{a})$ for every $\overline{a}\in A_{*}$ and $y\in L_{*}$ .
DEFINITION 2.1. A graded Lie algebra $L_{*}$ over $A_{*}$ is an algebraic fibration

of mixed type (or simply, a mixed tyPe fibration) over $A_{*}$ if the following condi-
tions hold.

(i) $L_{*}$ is a free $A_{*}$-module.
(ii) $(R \bigotimes_{A_{2}}L_{*})_{i}=0$ for every $i<0$ , and $\dim_{R}(R\bigotimes_{A*}L_{*})_{i}<\infty$ for every $i\geqq 0$ .
(iii) $L_{*}$ is equipped with a pair $(\chi D)$ where $\chi$ is an element of $L_{-2}$ called

the Euler element and $D:L_{*}arrow L_{*-1}$ is an $A_{*}$-Lie derivation of degree $-1,$ $i$ . $e$.
\langle 2.2) $D(a\cdot[y_{1}, y_{2}])=d_{A}(a)\cdot[y_{1}, y_{2}]+(-1)^{\deg(a)}a$

. $\{[D(y_{1}), y_{2}]+(-1)^{\deg(y_{1})}[y_{1}, D(y_{2})]\}$ ,

called the exterior covariant differentiafion, satisfying the following two formulas;

(2.3) (the Bianchi identity”) $D(\chi)=0$, and
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\langle 2.4) (the curvature formula”) $(D)^{2}(y)+[\chi y]=0$ for every $y\in L_{*}$ .
By condition (ii), the Euler element $\chi$ belongs to $A_{-}\cdot L_{*}(=A^{+}\cdot L_{*})$ . So on

the quotient Lie algebra $\overline{L}_{*}=R\bigotimes_{A}L_{*}$ , the induced derivation $1 \bigotimes_{A}D$ is a differential,

$i.e$ . $(1 \bigotimes_{A}D)^{2}=0$ by virtue of (2.4). This quotient DGL

(2.5) $( \overline{L}_{*}=R\bigotimes_{A*}L_{*}, 1\bigotimes_{A}D)$

is called the fiber of the mixed type fibration $(L_{*}, \chi D)$ . By condition (i), it
holds that $L_{*}\cong A_{*}\otimes\overline{L}_{*}$ as $A_{*}$-modules.

EXAMPLE 2.6. A mixed type model for the Hopf fibration

(2.7) $S^{1}arrow S^{3}arrow S^{2}$

is given by

\langle 2.8) $R[u]/(u^{2})arrow R[u]/(u^{2})\otimes L(\sigma^{-1}v)arrow L(\sigma^{-1}v)$ ,

where $u$ and $v$ are respectively of degree 2 and 1, $\sigma^{-1}v$ is the desuspension (the

shift of degree by $-1$ ) of $v$ , and $L(\sigma^{-1}v)$ is the free graded Lie algebra with
one basis element $\sigma^{-1}v$ . On the graded Lie algebra $R[u]/(u^{2})\otimes L(\sigma^{-1}v)$ over
$R[u]/(u^{2})$ , we have the exterior covariant differentiation $D\equiv 0$ and the Euler
element $x=u\otimes\sigma^{-1}v$ .

Now let $(\tilde{L}_{*},\tilde{\chi}D)$ and $(L_{*}, \chi D)$ be two mixed type fibrations over the
same DGA $A^{*}$ . And let $\psi:\tilde{L}_{*}arrow L_{*}$ be a homomorphism of graded Lie algebras
over $A_{*}$ , $i.e.$ , a degree preserving $A_{*}$ -module homomorphism commuting with
the Lie brackets.

DEFINITION 2.9. Let $(\tilde{L}_{*},\tilde{\chi}D),$ $(L_{*}, \chi D)$ and $\psi$ be as above. We define
$7he$ curvature $\Omega=\Omega(\psi)$ of the graded Lie algebra homomorphism $\psi$ as the differ-
ence of the Euler elements;

(2.10) $\Omega(\psi)=x-\psi(\tilde{\chi})\in L_{-2}$ .

Then the graded Lie algebra homomorphism $\psi$ is called a $homo\dagger 7\iota orphism$ of
mixed type fibrations if there is an element $\theta=\theta(\psi)$ of $L_{-1}$ , called the connection
of the homomorphism $\psi$ , which satisfies the following two formulas;

(2.11) (lhe structure equation”) $D( \theta)+\frac{1}{2}[\theta, \theta]=\Omega(\psi)$ , and

(2.12) (the connection formula”)

$\psi^{\circ}\tilde{D}(\tilde{y})-D\circ\psi(\tilde{y})=[\theta, \psi(\tilde{y})]$ for every $\tilde{y}\in\tilde{L}_{*}$ .

Compared with the mixed type fibrations, the Sullivan type fibrations are
defined as follows.
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DEFINITION 2.13. A DGA $(E^{*}, d)$ over $A^{*}$ is an algebraic fibration of the
Sullivan type (or simply, a Sullivan type fibration) over $A^{*}$ if the following con-
ditions hold.

(i) $E^{*}$ is a free $A^{*}$ -module.
(ii) $(R \bigotimes_{A^{s}}E^{*})^{i}=0$ for every $i<0$ , $(R \bigotimes_{A^{*}}E^{*})^{0}\cong R$ , and dim $R(R \bigotimes_{A^{*}}E^{*})^{i}<\infty$ for

every $i>0$ .
$(A^{*}, d_{A})$ is called the base and the quotient DGA $(R\ovalbox{\tt\small REJECT}_{*}^{E^{*}}, 1\ovalbox{\tt\small REJECT}_{*}^{d})$ is called the

fiber of the Sullivan type fibration $(E^{*}, d)$ .
Suppose we are given an $A^{*}$-algebra homomorphism

(2.14) $e:E^{*}arrow A^{*}$

such that

(2.15) $e\circ u=id:A^{*}arrow A^{*}$

where $u:A^{*}arrow E^{*}$ is the unit map. Such a homomorphism will be called a local
section to the Sullivan type fibration $(E^{*}, d)$ . If the local section $e$ commutes
with the differentials, $i.e$ .

(2.16) $e\circ d=d_{A}\circ e$ ,

then $e$ is called a cross-section (or a global section).

\S 3. Generalized Koszul complex functor.

In this section we generalize the notion of the Koszul chain and cochain
complex constructions for Lie algebras to those for mixed type fibrations.

DEFINITION 3.1. Let $(L_{*}, \chi D)$ be an algebraic fibration of the mixed type
over $A_{*}$ . The Koszul chain complex $C_{*}^{A}(L_{*}, \chi D)$ over $A_{*}$ of $(L_{*}, \chi D)$ is the
DG coalgebra

(3.2) $(S_{*}^{A}(\sigma L_{*}), d=d_{L}+D+d_{\chi})$ .

Here $\sigma L_{*}$ denotes the suspension of $L_{*}(i.e. (\sigma L)_{i}=L_{i- 1})$ and $S_{*}^{A}(\sigma L_{*})$ is the
graded symmetric coalgebra of $\sigma L_{*}$ taken over $A_{*}$ with the $A_{*}$ -action on $\sigma L_{*}$

defined by

(3.3) $\overline{a}\cdot\sigma(y)=(-1)^{\deg(a}$ ‘ $\sigma(\overline{a}\cdot y)$ for $a\in A_{*}$ and $y\in L_{*}$ .
The differential $d_{L}$ is the usual one arising from the Lie bracket of $L_{*},$ $i.e$ .

(3.4) $d_{L}( \sigma y_{1}\cdots\sigma y_{k})=\sum_{1\leqq i\triangleleft\leqq k}(-1)^{\eta(ij)-1}\sigma[y_{i}, y_{f}]\sigma y_{1}\cdots\vee t$
$\vee j\ldots\sigma y_{k}$ ,

and the coderivation $D$ is the one induced by the exterior covariant differentia-
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tion of $L_{*}$ denoted by the same symbol, $i.e$ .

(3.5) $D( \sigma y_{1}\cdots\sigma y_{k})=\sum_{1Si\leqq k}(-1)^{\zeta(i)}\sigma y_{1}\cdots\sigma(Dy_{i})\cdots\sigma y_{k}$ .

The sign conventions $\eta(i, j)$ in (3.4) and $\zeta(i)$ in (3.5) are as in [3], p. 506. So
we put on $d_{L}$ the opposite sign to that of [3].

Finally the differential $d_{\chi}$ , called the Euler differential, is nothing but the
multiplication by the suspension $\sigma\chi$ of the Euler element $\chi$ of $L_{-2},$ $i.e$ .
(3.6) $d_{\chi}(\sigma y_{1}\cdots\sigma y_{k})=\sigma x\cdot\sigma y_{1}\cdots\sigma y_{k}$ .

LEMMA 3.7. In $C_{*}^{A}(L_{*}, \chi D)$ the following formulas hold.

(3.8) $(d_{L})^{2}=0$ .
(3.9) $D\circ d_{L}+d_{L}\circ D=0$ .
(3.10) $D^{2}+d_{\chi}\circ d_{L}+d_{L^{o}}d_{\chi}=0$ .
(3.11) $D\circ d_{\chi}+d_{\chi}\circ D=0$ .
(3.12) $(d_{\chi})^{2}=0$ .

And consequently, we have

(3.13) $d^{2}=(d_{L}+D+d_{\chi})^{2}=0$ .

PROOF. The formula (3.8) is a direct consequence of the Jacobi identity in
$L_{*}$ . And the sign conventions in (3.4) and (3.5) imply (3.9). The formula (3.10)

is obtained from the curvature formula (2.4). The Bianchi identity (2.3) implies
(3.11). The formula (3.12) is obvious from dimensional reasons. Q. E. D.

DEFINITION 3.14. The Koszul cochain complex $C_{A}^{*}(L_{*}, \chi D)$ over $A^{*}$ of a
mixed type fibration $(L_{*}, \chi D)$ is the $A_{*}$-dual of its Koszul chain complex
$C_{*}^{A}(L_{*}, \chi D)$ over $A_{*};$

(3.15) $C_{A}^{*}(L_{*}, \chi D)=\{Hom_{A}^{*}.(S_{*}^{A}(\sigma L_{*}), A_{*}), Hom_{A}.(d, 1)\}$ .
This is a DGA over $A^{*}$ . Since $L_{*}$ is assumed to be a free $A_{*}$-module of

finite type and since the fiber $\overline{L}_{*}$ is non-negatively graded by 2.1 (ii) while the
base $A_{*}$ is non-positively graded, we have

(3.16) $Hom_{A*}^{*}(S_{*}^{A}(\sigma L_{*}), A_{*})\cong A^{*}\otimes Hom_{R}^{*}(S_{*}^{R}(\sigma\overline{L}_{*}), R)$ .
Therefore $C_{A}^{*}(L_{*}, \chi D)$ is a Sullivan type fibration over $A^{*}$ .

Notice that $C_{A}^{*}(L_{*}, \chi D)$ has the natural local section

(3.17) $e=Hom_{A}.(\iota_{(0)}, 1)$ : $Hom_{A}^{*}.(S_{*}^{A}(\sigma L_{*}), A_{*})arrow Hom_{A}^{*}.(A_{*}, A_{*})\cong A_{*}=A^{-*}$ ,

where
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(3.18) $\iota_{(0)}$ : $A_{*}=S_{(0)}^{A}$ (a $L_{*}$ ) $arrow S_{*}^{A}(\sigma L_{*})=\sum_{i\geqq 0}S_{(i)}^{A}(\sigma L_{*})$

is the canonical inclusion. We remark that $\iota_{(0)}$ commutes with the differentials
if and only if $x=0$ . Therefore the local section (3.7) is a “global” section if and
only if $x=0$ .

EXAMPLE 3.19. Let $(R[u]/(u^{2})\otimes L(\sigma^{-1}v), u\otimes\sigma^{-1}\iota)D\equiv 0)$ be the mixed type
model for the Hopf fibration given in 2.6. Then its Koszul cochain complex
over $R[u]/(u^{2})$ is given by

(3.20) $R[u]/(u^{2})\otimes E(v’)$ ; $d’(v’)(=d_{\acute{\chi}}(v’))=u$ .

Now let us suppose, for the moment, that $A^{*}$ satisfies the following con-
dition;

(3.21) (finite degree condition) $A^{i}=0$ for every $i>N$ with respect to a certain
sufficiently large $N$.

And let $\psi:(\tilde{L}_{*},\tilde{\chi}\tilde{D})arrow(L_{*}, \chi D)$ be a homomorphism of mixed type fibra-
tions over $A_{*}$ with connection $\theta=\theta(\psi)\in L_{-1}$ .

DEFINITION 3.22. Under the condition (3.21) on $A^{*}$ , let $(\tilde{L}_{*},\tilde{\chi}D),$ $(L_{*}, \chi D)$ ,
$\psi$ and $\theta$ be as above. We define an $A_{*}$-linear map

\langle 3.23) $\psi_{\theta}$ : $C_{*}^{A}(\tilde{L}_{*},\tilde{\chi}D)arrow C_{*}^{A}(L_{*}, \chi D)$

by

(3.24) $\psi_{\theta}(\sigma y_{1}\cdots\sigma y_{k})=\sigma(\psi(y_{1}))\cdots\sigma(\psi(y_{k}))$ Exp $(\sigma\theta)$ ,

where Exp $(x)$ denotes the formal power series $\sum_{h=0}^{\infty}(1/h!)x^{h}$ . Notice that the

connection $\theta$ belongs to $A_{-}\cdot L_{*}(=A^{+}\cdot L_{*})$ by 2.1 (ii). So $(\sigma\theta)^{h}=0$ for sufficiently
large $h$ by hypothesis (3.21).

LEMMA 3.25. The map $\psi_{\theta}$ is a homomorphism of $DG$ coalgebras over $A_{*}$ .
Namely, denoting the comultipljcatjOn by $\mu*$ , we have

\langle 3.26) $\mu_{*}\circ\psi_{\theta}=(\psi_{\theta}\otimes\psi_{\theta})\circ\mu*$ and

\langle 3.27) $(d_{L}+D+d_{\chi})\circ\psi_{\theta}=\psi_{\theta^{\circ}}(d_{L}+\tilde{D}+d_{\tilde{\chi}})$ .
PROOF. The formula (3.26) is easy to check by definition. The formula

(3.27) is also easy to verify by direct calculations using the structure equation
(2.11) and the connection formula (2.12). Q. E. D.

Therefore a homomorphism $\psi:(\tilde{L}_{*},\tilde{\chi}\tilde{D})arrow(L_{*}, \chi D)$ of mixed type fibrations
with connection $\theta$ induces a homomorphism of DGA’s

\langle 3.28) Hom $A.(\psi_{\theta}, 1)$ : $C_{A}^{*}(L_{*}, \chi D)arrow C_{A}^{*}(\tilde{L}_{*},\tilde{\chi}D)$
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under the finite degree condition (3.21) on $A^{*}$ .
When $A^{*}$ does not necessarily satisfy the finite degree condition (3.21), let

$A^{[q]}(q\geqq 0)$ be the quotient of $A^{*}$ truncated by the ideal of the elements of degree
$>q$ . And let

(3.29) $\pi_{q}$
; $A^{*}arrow A^{[q]}=A^{*}/(\deg>q)$ , and

$(3.29)^{*}$
$\pi_{q,p}$ ; $A^{[q]}arrow A^{[p]}$ $(q>p\geqq 0)$

be the natural projections. By the change of base, a mixed type fibration
$(L_{*}, \chi D)$ over $A_{*}$ gives rise to the ones $(A^{[q]} \bigotimes_{A^{l}}L_{*}, 1\bigotimes_{A^{*}}\chi 1\bigotimes_{A*}D)$ over $A^{[q]}$ for all

$q\geqq 0$, which constitute a projective system of mixed type fibrations

(3.30) { $\pi_{q,p}$ ;
$(A^{[q]} \bigotimes_{A}L_{*}, 1\bigotimes_{A}\chi 1\bigotimes_{A}D)$

$arrow(A^{[p]}\bigotimes_{A^{*}}L_{*}, 1\bigotimes_{A^{*}}\chi 1\bigotimes_{A}D)$ ; $q>p\geqq 0$}.

More generally, we define an admissible system of mixed type fibrations over
$A_{*}$ as follows.

DEFINITION 3.31. A set $\{(L_{*}^{[q]}, x^{[q]}, D^{[q]}), q\geqq 0;\Phi_{q,p}, q>p\geqq 0\}$ of mixed type
fibrations over $A^{[q]}$ and of isomorphisms

(3.32) $\Phi_{q,p}$ : $(A^{[p]} \bigotimes_{A^{[q]}}L_{*}^{[q]}, 1\otimes x^{[q]}, 1\otimes D^{[q]})arrow(L_{*}^{\underline{r}_{Pj}}, x^{[p]}, D^{[p]})$

is said to be an admissible system of mixed type fibrations over $A_{*}$ if

(3.33)
$\Phi_{qp^{\circ}}(1\bigotimes_{A^{[q]}}\Phi_{r,q})=\Phi_{r,p}$

$(r>q>p\geqq 0)$ , and

(3.34) $\theta(\Phi_{q,p})=0$ $(q>p\geqq 0)$ .

For example, every mixed type fibration $(L_{*}, \chi D)$ naturally gives rise to
an admissible system of mixed type fibrations $\{(L_{*}^{[Q]}=A^{[q]}\bigotimes_{A^{*}}L_{*},\chi[q]=1\otimes\chi D^{[q]}=$

$1\otimes D);\Phi_{q,p}=id;q>P\geqq 0\}$ .
DEFINITION 3.35. We define the Koszul cochain complex $C_{A}^{*}(\{(L_{*}^{[q]},x^{[q]},D^{[q]}), \Phi_{q,p}\})$

over $A^{*}$ of an admisstble system of mixed tyPe fibrations $\{(L_{*}^{[q]}, x^{[q]}, D^{[q]}), \Phi_{q,p}\}$

over $A_{*}$ as the projective limit of the $pro\acute{]}ective$ system

$\{C_{A^{[q]}}^{*}(L_{*}^{[q]}, x^{[q]}, D^{[Q]}), \pi_{\acute{q},p} ; q>p\geqq 0\}$ ,

where $\pi_{q,p}’$ is the natural projection induced by that of the coefficients stated in
$(3.29)^{*}$ and by $\Phi_{q,p}$ .

Neglecting the differentials, we have the isomorphism

(3.36) $C_{A}^{*}(\{(L\xi^{qj}, x^{[q]}, D^{[q]}), \Phi_{q.p}\})\cong A^{*}\otimes(S_{*}^{R}(\sigma\overline{L}_{*}^{I0}\lrcorner))’$
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For an admissible system of mixed type fibration $\{(A^{[q]}\bigotimes_{A}L_{*}, 1\otimes\chi 1\otimes D),$
$\Phi_{q.p}$

$=id\}$ induced by a mixed type fibration $(L_{*}, \chi D)$ , the Koszul cochain complex
$C_{A}^{*}( \{(A^{[q]}\bigotimes_{A^{l}}L_{*}, 1\otimes\chi 1\otimes D), \Phi_{q,p}=id\})$ of 3.35 agrees with $C_{A}^{*}(L_{*}, \chi D)$ defined
in 3.14.

DEFINITION 3.37. Let $\{(\tilde{L}_{*}^{[q]},\tilde{x}^{\ddagger q\rfloor}, D[q]),\tilde{\Phi}_{q,p}\}$ and $\{(L_{*}^{[q]}, x^{[q]}, D^{[q]}), \Phi_{q,p}\}$ be
admissible systems of mixed type fibrations over $A_{*}$ . A set of homomorphisms
of mixed type fibrations $\{\psi^{[q]} : (\tilde{L}_{*}^{[q]},\tilde{x}^{[q]},\tilde{D}^{[q]})arrow(L^{[q]}, x^{[q]}, D^{[q]})\}$ with connections
$\theta(\psi^{[q]})\in L_{-1}^{[q]}(q\geqq 0)$ is a homomorphjsm of admissible systems of mixed type fibra-
tions over $A_{*}$ if $\psi^{[p]}\circ\tilde{\Phi}_{q,p}=\Phi_{q,p^{\circ}}(1\bigotimes_{A^{[q]}}\psi^{[q]})$ and $\Phi_{q.p}(1\bigotimes_{A^{[q]}}\theta(\psi^{[q]}))=\theta(\psi^{[p]})$ .

A homomorphism of admissible systems of mixed type fibrations over
$A_{*}\{\psi^{[q]} : (\tilde{L}_{*}^{[q]},\tilde{\chi}^{[q]}\tilde{D}^{[q]})arrow(L_{*}^{[q]}, x^{[q]}, D^{[q]});q\geqq 0\}$ with connections $\theta(q)=\theta(\psi^{[q]})$ in-
duces a projective system of DGA homomorphisms

(3.38) $Hom_{A^{[q]}}(\psi_{\theta(q)}^{[q]}, 1)$ : $Hom_{A^{[q]}}^{*}(C_{*}^{A^{[q]}}(L_{*}^{[q]}, x^{[q]}, D^{[q]}), A^{[q]})$

$arrow Hom_{A^{[q]}}^{*}(C_{*}^{A^{[q]}}(\tilde{L}\xi^{\Phi},\tilde{\chi}^{[q]}D[q]), A^{[q]})$

such that

(3.39) $\tilde{\pi}_{q.p}’\circ Hom_{A^{[q]}}(\psi_{\theta(q)}^{[q]}, 1)=Hom_{A^{[p]}}(\psi_{\theta(p)}^{[p]}, 1)\circ\pi_{q,p}’$ .

Thus, taking the projective limit of (3.38), we obtain a DGA homomorphism
over $A^{*};$

(3.40) $\psi_{t\theta(q)\}}^{*}$ : $C_{A}^{*}(\{(L\xi^{qJ}, x^{[q]}, D^{[q]}), \Phi_{q,p}\})arrow C_{A}^{*}(\{(\tilde{L}\xi^{qI},\tilde{\chi}^{[q]}D[q]),\hat{\Phi}_{q,p}\})$ .
In particular, a homomorphism $\psi:(\tilde{L}_{*},\tilde{\chi}\tilde{D})arrow(L_{*}, \chi D)$ of mixed type fibra-

tions over $A_{*}$ with connection $\theta$ gives rise to that of admissible systems of
mixed type fibrations $\{\psi^{[q]} : (A^{[q]}\bigotimes_{A}\tilde{L}_{*}, 1\bigotimes_{A^{*}}\tilde{\chi}1\bigotimes_{A}\tilde{D})arrow(A^{[q]}\bigotimes_{A*}L_{*}, 1\bigotimes_{A}\chi 1\bigotimes_{A^{s}}D)\}$

with connections $\{\theta(q)=1\otimes\theta\in A^{[q]}\bigotimes_{A^{*}}L_{*}\}$ , which induces a DGA homomorphism
over $A^{*}$

$(3.40)^{*}$ $\psi_{\theta}^{*}:$ $C_{A}^{*}(L_{*}, \chi D)arrow C_{A}^{*}(\tilde{L}_{*},\tilde{\chi}\tilde{D})$ .
Let us denote respectively by $(DGL/A_{*})_{mix}$ and $(DGL/A_{*})_{mix}^{\wedge}$ the category of

the mixed type fibrations over $A_{*}$ and that of the admissible systems of mixed
type fibrations over $A_{*}$ . And denote also by $(DGA/A^{*})_{1oc}$ the category of Sul-
livan type fibrations over $A^{*}$ with a given local section. The morphisms in
$(DGA/A^{*})_{1oc}$ are simply the degree preserving $A^{*}$-algebra homomorphisms com-
muting with the differentials which are not required any compatibility with the
given local sections.

With these notations, we can summarize our results above as saying that
we have constructed the following diagram of functors
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(3.41)

We call $C_{A}^{*}(-)$ the generalized Koszul (cochain) complex functor.
Now we explain about the relation between the Iuler element $\chi$ and the

existence of a cross-section.

PROPOSITION 3.42. Supp0se the finite degree con&tion (3.21) holds for $A^{*}$ .
The Koszul cochain complex $C_{A}^{*}(L_{*}, \chi D)$ over $A^{*}$ of a mixed type fibration
$(L_{*}, \chi D)$ over $A_{*}$ admits a cross-section if and only if
(3.43) (the structure equation”)

$D( \theta)+\frac{1}{2}[\theta, \theta]=\chi$

for the Euler element $\chi$ holds for some element $\theta\in L_{-1}$ . When $A^{*}does$ not satisfy
(3.21), the same result as above holds if we replace a mixed type fibration by an
admissible system of mixed type fibrations.

PROOF. We only give the proof for the case where $A^{*}$ satisPes the condi-
tion (3.21), from which the proof for the other case is easy to deduce.

Suppose the structure equation (3.43) holds for some element $\theta\in L_{-1}$ . Then
it is easy to see that the triple $(L_{*},\tilde{\chi}=0,\tilde{D}=D+[\theta,-])$ is a mixed type fibra-
tion, and that there is the natural isomorphism

(3.44) “id” : $(L_{*},\tilde{\chi}=0, D=D+[\theta, -])arrow(L_{*}, \chi D)$

with connection $\theta(id’)=\theta$ . So by $(3.40)^{*}$ , we have the isomorphism

$(id_{\theta})^{*}:$ $C_{A}^{*}(L_{*}, \chi D)arrow C_{A}^{*}(L_{*},\tilde{\chi}=0, D)$

over $A^{*}$ . The Sullivan type fibration $C_{A}^{*}(L_{*},\tilde{\chi}=0,\tilde{D})$ has the cross-section $\tilde{e}$

stated in (3.17) and (3.18). Therefore $C_{A}^{*}(L_{*}, \chi D)$ has the cross-section;

(3.45) $\tilde{e}\circ(id_{\theta})^{*}:$ $C_{A}^{*}(L_{*}, \chi D)arrow C_{A}^{*}(L_{*},\tilde{\chi}=0, D)arrow A^{*}$ .
Conversely, suppose $C_{A}^{*}(L_{*}, \chi D)$ admits a cross-section

(3.46) $\epsilon:C_{A}^{*}(L_{*}, \chi D)arrow A^{*}$

commuting with the differentials. Remark that

$\epsilon\in Hom_{A^{*}}(C_{A}^{*}(L_{*}, \chi D),$ $A^{*}$ ) $=Hom_{A}(Hom_{A*}(S_{*}^{A}(\sigma L_{*}), A_{*}),$ $A^{*}$ )

$\cong S_{*}^{A}(\sigma L_{*})$ .
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So $\epsilon$ can be considered as an element of $S_{*}^{A}(\sigma L_{*})$ by identifying the biduals via
the canonical isomorphism.

Let $p_{1}$ : $S_{*}^{A}(\sigma L_{*})arrow S_{(1)}^{A}(\sigma L_{*})=\sigma L_{*}$ be the canonical projection. Then it can
be shown that

(3.47) $- \frac{1}{2}[\sigma^{-1}p_{1}\epsilon, \sigma^{-1}p_{1}\epsilon]-D(\sigma^{-1}p_{1}\epsilon)+x=0$

in $L_{*}$ . Therefore, putting $\theta=\sigma^{-1}p_{1}\epsilon$ , we obtain the structure equation (3.43).

This completes the proof of Proposition.

\S 4. Generalized Quillen $L$ functor.

Let $(E^{*}, d)$ be a Sullivan type algebraic fibration over $A^{*}$ with a given locai
section $e:E^{*}arrow A^{*}$ . The obstruction for $e$ to be a global section will be denoted
by

(4.1) $\sigma x=d_{A}\circ e-e\circ d\in Hom_{A}^{+}1(E^{*}, A^{*})$ .

And we use the usual notation;

(4.2) $\overline{E}^{*}=Kere$ , $i.e$ . $E^{*}=A^{*}\oplus\overline{E}^{*}$ .

Now we again suppose, for the moment, the finite degree condition (3.21)

on $A^{*}$ .
Consider the $A^{*}$-dual $\{Hom_{A}^{*}.(E^{*}, A^{*}), d’=Hom_{A^{s}}(d, 1)\}$ of $(E^{*}, d)$ . And con-

sider the free graded Lie algebra over $A_{*}$

(4.3) $L_{*}^{A}(\sigma^{-1}Hom_{A^{*}}^{*}(\overline{E}^{*}, A^{*}))$

generated by the desuspension of $Hom_{A}^{*}.(\overline{E}^{*}, A^{*})$ .
The homomorphism $\sigma\chi$ of (4.1) restricts to $\overline{E}^{*}$ , and we define the Euler ele-

ment $x\in L_{-2}^{A}(\sigma^{-1}Hom_{A^{s}}(\overline{E}^{*}, A^{*}))$ by

(4.4) $x=\sigma^{-1}(d_{A}\circ e-e\circ d)=-\sigma^{-1}(e\circ d)\in\sigma^{-1}Hom_{A^{t}}^{+1}(\overline{E}^{*}, A^{*})$

$\subset L_{-2}^{A}(\sigma^{-1}Hom_{A}^{*}.(\overline{E}^{*}, A^{*}))$ .
The dual differential $d’=Hom_{A^{*}}(d, 1)$ and the comultiplication $\mu’=Hcm_{A^{c}}(\mu, 1)$

restrict to $Hom_{A}^{*}.(\overline{E}^{*}, A^{*})$ , and we define the exterior covariant differentiation $D$

in $L_{*}^{A}(\sigma^{-1}Hom_{A^{*}}^{*}(\overline{E}^{*}, A^{*}))$ as an $A_{*}$-Lie derivation defined by

(4.5) $D(\sigma^{-1}f)=D_{1}(\sigma^{-1}f)+D_{2}(\sigma^{-1}f)$

where

(4.6) $D_{1}(\sigma^{-1}f)=-\sigma^{-1}(d-e\circ d)’(f)$ , and
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(4.7) $D_{2}( \sigma^{-1}f)=-\frac{1}{2}\sum_{i}(-1)^{\deg h_{i}}[\sigma^{-1}h_{i}, \sigma^{-1}g_{i}]$

if
(4.8) $\mu’(f)=f\otimes 1+1\otimes f+\sum_{i}h_{i}\bigotimes_{A*}g_{i}$ .

LEMMA 4.9. The triple $(L_{*}^{A}(\sigma^{-1}Hom_{A}^{*}.(\overline{E}^{*}, A^{*})),$ $\chi D$ ) as defined above is an
algebraic fibration of the mixed type as defined in Definition 2.1, and will be de-
noted by $L_{*}^{A}(E^{*}, e)$ .

PROOF. The conditions (i) and (ii) of 2.1 are obviously satisfied by virtue
of Definition 2.13. By the definitions of the Euler element $\chi$ and the exterior
covariant differentiation $D$ , the Bianchi identity (2.3) and the curvature formula
(2.4) are easily verified by direct calculations. Q. E. D.

Next consider the homomorphism of Sullivan type fibrations over $A^{*}$

(4.10) $\phi:(E^{*}, d)arrow(\tilde{E}^{*},\tilde{d})$ .
Let $e$ and $e\sim$ be the respective local sections of $E^{*}$ and $\tilde{E}^{*}$ .

Taking $A^{*}$-duals, the homomorphism $\phi$ induces a homomorphism of reduced
coalgebras over $A_{*}$

(4.11) $\phi’$ : Hom*.(Ker $\tilde{e},$ $A^{*}$ ) $arrow Hom_{A}^{*}.(Kere, A^{*})$

dePned by

(4.12) $\langle\phi’(f), x\rangle_{A}=\langle f, (\phi-\tilde{e}\circ\phi)(x)\rangle_{A}$

for every $f\in Hom_{A}^{*}.(Ker\tilde{e}, A^{*})$ and $x\in Kere$ .
The homomorphism $\sigma^{-1}\phi’$ naturally extends to a free graded Lie algebra

homomorphism

(4.13) $L(\phi’)$ : $L_{*}^{A}(\sigma^{-1}Hom_{A^{*}}^{*}(Ker\tilde{e}, A^{*}))arrow L_{*}^{A}(\sigma^{-1}Hom_{A}^{*}.(Kere, A^{*}))$ .

DEFINITION 4.14. Let $e,\tilde{e},$ $\phi$ and $L(\phi’)$ be as stated above. We first define
an $A^{*}$-algebra homomorphism $\sigma\theta$ of degree zero by

$\sigma\theta=e\sim\circ$ ( $\phi|$ Ker $e$ ) $\in Hom_{A}^{0}.(Kere, A^{*})$ .
And then we define the connection $\theta=\theta(L(\phi’))$ of the homomorphism $L(\phi’)$ as
the canonical image in $L_{*}^{A}(\sigma^{-1}Hom_{A}^{*}.(Kere, A^{*}))$ of the desuspension of $\sigma\theta$ ;

(4.15) $\theta=\sigma^{-1}$ ( $e\sim\circ\phi|$ Ker $e$ ) $\in\sigma^{-1}Hom_{A}^{0}.(Kere, A^{*})$

$\subset L_{-1}^{A}(\sigma^{-1}Hom_{A}^{*}.(Kere, A^{*}))$ .

LEMMA 4.16. The connection $\theta=\theta(L(\phi’))$ defined above satisfies the structure
equation (2.11) and the connection formula (2.12) with respect to the graded Lie
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algebra homomorphism $L(\phi’)$ .
PROOF. The lemma follows easily by direct calculations using the definitions

of $\chi$ and $D$ .
By Lemmas 4.9 and 4.16, $L_{*}^{A}(-)$ is a functor from $(DGA/A^{*})_{1oc}$ to $(DGL/A_{*})_{mix}$

under the finite degree condition (3.21) on $A^{*}$ . We call it the generalized Quillen
$L$ functor.

Let us consider the case when $(E^{*}, d)$ is the Koszul cochain complex
$C_{A}^{*}(L_{*}, \chi D)$ over $A^{*}$ of a mixed type fibration $(L_{*}, \chi D)$ over $A_{*}$ .

Identifying the $A^{*}$-biduals by the canonical isomorphisms, we have, by
definition,

(4.17) $L_{*}^{A}(C_{A}^{*}(L_{*}, \chi D),$ $e$ ) $=(L_{*}^{A}(\sigma^{-1}S_{(+)}^{A}(\sigma L_{*})), \chi D_{1}+D_{2})$ ,

where $\chi$ is the canonical image of the Euler element of $L_{*}$ denoted by the same
symbol by the natural inclusion

(4.18) $L_{*}=\sigma^{-1}(\sigma L_{*})=a^{-1}S_{(1)}^{A}(\sigma L_{*})arrow a^{-1}S_{(+)}^{A}$ (a $L_{*}$ )

$arrow L_{*}^{A}(a^{-1}S_{(+)}^{A}(aL_{*}))$ ,

and the $A_{*}$-Lie derivation $D_{1}$ is characterized by

(4.19) $D_{1}(\sigma^{-1}x)=-\sigma^{-1}(d_{L}+D+d_{\chi})(x)$

for every $x\in S_{(+)}^{A}(\sigma L_{*})$ , and the second $A_{*}$-Lie derivation $D_{2}$ is determined by
the graded symmetric coalgebra structure of $S_{(+)}^{A}(\sigma L_{*})$ .

Let

(4.20) $\sigma^{-1}(p_{1})$ : $\sigma^{-1}S_{(+)}^{A}(\sigma L_{*})arrow\sigma^{-1}S_{(1)}^{A}(\sigma L_{*})=\sigma^{-1}(\sigma L_{*})=L_{*}$

be the natural projection. We define a graded Lie algebra homomorphism over $A_{*}$

(4.21) $\alpha$ : $L_{*}^{A}(\sigma^{-1}S_{(+)}^{A}(\sigma L_{*}))arrow L_{*}$

as the $A_{*}$-Lie algebra extension of the map $\sigma^{-1}(p_{1})$ . Then it can be veriPed
that $\alpha$ is a homomorphism of mixed type fibrations over $A_{*}$ with connection
$\theta(\alpha)=0$ .

If we start from a Sullivan type fibration $(E^{*}, d)$ over $A^{*}$ with a given local
section $e$ , we obtain the other adjunction map

(4.22) $\beta$ : $C_{A}^{*}(L_{*}^{A}(E^{*}, e))arrow E^{*}$ ,

which is the $A^{*}$-algebra extension of the natural projection

(4.23) $Hom_{A}.(\sigma\iota_{1},1)$ : $Hom_{A}^{*}.(\sigma L_{*}^{A}(\sigma^{-1}Hom_{A}^{*}.(\overline{E}^{*}, A^{*})),$ $A_{*}$ )

$arrow Hom_{A}^{*}.(\sigma(\sigma^{-1}Hom_{A^{*}}^{*}(\overline{E}^{*}, A^{*})),$ $A_{*}$) $\cong\overline{E}^{*}$ .
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Again it can be verified that the homomorphism $\beta$ is compatible with the
differentials in view of the sign conventions in (3.4) and (3.5).

In case $A^{*}$ does not satisfy the finite degree condition (3.21), we obtain an
admissible system of mixed type fibrations over $A_{*}$

(4.24) $\{L_{*}^{A^{[q]}}(A^{[q]}\bigotimes_{A}E^{*}, 1\bigotimes_{A^{*}}e), q\geqq 0;\Phi_{q,p}=id, q>p\geqq 0\}$

as the image of the functor $L_{*}^{A}(-):(DGA/A^{*})_{1oc}arrow(DGL/A_{*})_{mix}^{\wedge}$ . And the same
tyPe of results as above are easily extended to the admissible system of mixed
type fibrations. We omit the details.

\S 5. Weak equivalences.

A homomorphism of Sullivan type fibrations over $A^{*}$ is called a weak equiv-
alence (or a quasi-isomorphism) if it induces an isomorphism in cohomology.

Let $\psi:(\tilde{L}_{*},\tilde{\chi}D)arrow(L_{*}, \chi D)$ be a homomorphism of mixed type fibrations
over $A_{*}$ with connection $\theta$ . Then $\psi$ induces a homomorphism of DGL’s over $R$

on the fiber;

(5.1) di : $( \tilde{L}_{*}=R\bigotimes_{A}\tilde{L}_{*}, 1\bigotimes_{A_{l}}D)arrow(\overline{L}_{*}=R\bigotimes_{A}L_{*}, 1\bigotimes_{A_{*}}D)$ .

DEFINITION 5.2. A homomorphism $\psi$ of mixed type fibrations over $A_{*}$ is $a$

weak equivalence (or a quasi-isomorphism) if the quotient homomorphism $\overline{\psi}$ on the
fiber induces an isomorphism in homology. And a homomorphism of admissible
systems of mixed type fibrations over $A_{*}$

(5.3) $\{\psi^{[q]} : (\sum\xi^{q\ddagger},\tilde{\chi}^{[q]}D^{[q]})arrow(L\xi^{qJ}, x^{[q]}, D^{[q]});q\geqq 0\}$

is a weak equivalence (or a quasi-isomorphism) if $\overline{\psi}^{[0]}$ induces an isomorphism in
homology on the fiber.

Let us denote by $(DGA/A^{*}),$ $(DGA_{1}/A^{*})$ and $(DGA_{1}/A^{*})_{1oc}$ the respective
categories of Sullivan type fibrations over $A^{*}$ , of those with a l-connected fiber,
and of those with a l-connected fiber and a local section. And let us denote
respectively by $(DGL_{0}/A_{*})_{mix}$ and $(DGL_{0}/A_{*})_{mix}^{\wedge}$ the category of mixed type fibra-
tions over $A_{*}$ with a connected fiber ( $i.e.\overline{L}_{i}=0$ if $i\leqq 0$ ) and that of admissible
systems of mixed type fibrations over $A_{*}$ with a connected fiber.

For simplicity’s sake, we will assume till the end of this section that $A^{*}$

is l-connected, $i.e$ .
(5.4) $A^{i}=0$ ($i<0$ or $i=1$ ) and $A^{0}\cong R$ .

In fact this assumption can be weakened (cf. [9]).

THEOREM 5.5. (i) If $\psi:(\tilde{L}_{*},\tilde{\chi}D)arrow(L_{*}, \chi D)$ is a weak equivalence in
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$(DGL_{0}/A_{*})_{mix}$ with connection $\theta$ , then

$\psi_{\theta}^{*}$ : $C_{A}^{*}(L_{*}, \chi D)arrow C_{A}^{*}(\tilde{L}_{*},\tilde{\chi}\tilde{D})$

is a weak equivalence in $(DGA_{1}/A^{*})_{1oc}$ . Slightly generally, if
$\{\psi^{[q]} : \{(Z\xi^{q1},\tilde{\chi}^{[q]}, D^{[q]}),\tilde{\Phi}_{q,p}\}arrow\{(L\xi^{qI}, \chi[q]D^{[q]}), \Phi_{q,p}\} ; q\geqq 0\}$

is a weak equivalence in $(DGL_{0}/A_{*})_{mix}^{\wedge}$ with connection $\theta=\{\theta(q);q\geqq 0\}$ , then

$\psi\beta$ ( $=proj$ lim $(\psi\Re_{q)})^{*}$ ) : $C_{A}^{*}(\{(L\xi^{qI}, x^{[q]}, D^{[q]}), \Phi_{q,p}\})$

$arrow C_{A}^{*}(\{(Z_{*}^{[q]},\tilde{\chi}^{[q]}, D^{[q]}),\hat{\Phi}_{q,p}\})$

is a weak equivalence in $(DGA_{1}/A^{*})_{1oc}$ .
(ii) If $\phi:(E^{*}, d)arrow(E*, d)$ is a weak equivalence in $(DGA_{1}/A^{*})_{1oc’ l}^{ff}then$

{ $L\xi^{qj}(\phi’):L_{*}^{A^{[q]}}$( $a^{-1}Hom_{A^{[q]}}^{*}$ (
$A^{[q]} \bigotimes_{A}$ Ker \^e, $A^{[q]}$))

$arrow L_{*}^{A^{[q]}}(\sigma^{-1}Hom_{A^{[q]}}^{*}(A^{[q]}\bigotimes_{A^{*}}Kere, A^{[q]}));q\geqq 0\}$

is a weak equivalence in $(DGL_{0}/A_{*})_{mix}^{\wedge}$ .
When $A^{*}$ satisfies the finite degree condition (3.21),

$L(\phi’):L_{*}^{A}(\sigma^{-1}Hom_{A^{*}}^{*}(Ker\tilde{e}, A^{*}))arrow L_{*}^{A}(\sigma^{-1}Hom_{A}^{*}.(Kere, A^{*}))$

is a weak equivalence in $(DGL_{0}/A_{*})_{mix}$ .
(iii) The adjunction map

$\{\alpha^{[q]}\}$ : $L_{*}^{A_{o}}C_{A}^{*}(\{(L\xi^{qI}, x^{(qI}, D^{[q]}), \Phi_{q,p}\})arrow\{(L_{*}^{[q]}, x^{[q]}, D^{[q]}), \Phi_{q,p}\}$

is a weak equivalence in $(DGL_{0}/A_{*})_{mix}^{\wedge}$ .
When $A^{*}$ satisfies (3.21), the adjunction map

$\alpha$ : $L_{*}^{A_{o}}C_{A}^{*}(L_{*}, \chi D)arrow(L_{*}, \chi D)$

is a weak equivalence in $(DGL_{0}/A_{*})_{mix}$ .
(iv) The adjunction map

$\beta$ : $C_{A}^{*}\circ L_{*}^{A}(E^{*}, e)arrow(E^{*}, d)$

is a weak equivalence in $(DGA_{1}/A^{*})_{1oc}$ .
PROOF. The theorem being true for $A^{*}=R$ ([6], Appendix B), the general

case follows from Moore’s comparison theorem for spectral sequences (cf. [3],

p. 509 and [9], 5.1). Q. E. D.
Let $ho(DGA_{1}/A^{*})$ be the category obtained from $(DGA_{1}/A^{*})$ by the localiza-

tion with respect to the weak equivalences [6], $i.e$ . by adding formally an inverse
to each weak equivalence. And let $ho(DGL_{0}/A_{*})_{mix}^{\wedge}$ and $ho(DGL_{0}/A_{*})_{mix}$ be
the categories obtained respectively from $(DGL_{0}/A_{*})_{mix}^{\wedge}$ and $(DGL_{0}/A_{*})_{mix}$ by the
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localization with respect to the weak equivalences.

COROLLARY 5.6. We keep the assumpti0n (5.4) on the l-connectedness of $A^{*}$ .
The $ad_{J}oint$ functors

$L_{*}^{A}$

$(DGA/A^{*})_{oc}\wedge$
$\frac{arrow}{C_{A}^{*}}$

$(DGL/A_{*})_{mix}^{\wedge}$

induce equivalence of categories

(5.7) $ho(DGA_{1}/A^{*})\cong ho(DGL_{0}/A_{*})_{mix}^{\wedge}$ .

When the finite degree condition (3.21) for $A^{*}$ holds, the right hand side above
is reduced to $ho(DGL_{0}/A_{*})_{mix}$ .

PROOF. Iach quivalence class in $ho(DGA_{1}/A^{*})$ has a representative belong-
ing to $(DGA_{1}/A^{*})_{1oc}$ by virtue of the existence of a minimal model ( $=a$ Postnikov
decomposition) ([3], p. 508). This fact, together with (ii) of the preceding theo-
rem, implies that the functor $L_{*}^{A}$ : $ho(DGA_{1}/A^{*})arrow ho(DGL_{0}/A_{*})_{mix}^{\wedge}$ is well-dePned.
The rest of the assertions follow immediately from the preceding theorem. Q.E.D.

COROLLARY 5.8 (Generalization of Hilton’s theorem, cf. [3], p. 507). Let
$(E^{*}, d)$ belong to $(DGA_{1}/A^{*})_{1oc}$ . SuPpose the fiber $(\overline{F},\overline{d})=(R_{\otimes_{s}^{E^{*}}},$ $1_{\otimes^{d)}}$ satisfies
the following two trivialities.

(i) The multiplicafion in $\overline{F}$ is trivial, $i.e.\overline{F}^{+}\cdot\overline{F}^{+}=0$ .
(ii) The differential in $\overline{F}$ is trivial, $i.e.\overline{d}\equiv 0$ .

Then the adjunction map
$\beta$ : $C_{A}^{*}\circ L_{*}^{A}(E^{*}, e)arrow(E^{*}, d)$

is the minimal model ( $=the$ Postnikov decomposition) of the unit map $u:A^{*}arrow E^{*}$ .
PROOF. By dePnition, $C_{A}^{*}\circ L_{*}^{A}(E^{*}, e)$ is a free graded $A^{*}$-algebra, and the

adjunction map $\beta$ is a weak equivalence over $A^{*}$ by Theorem 5.5 (iv). The
triviality assumptions (i) and (ii) of the corollary imply the triviality of $D=$

$D_{1}+D_{2}$ modulo $(A^{+})$ in $L_{*}^{A}(E^{*}, e)$ . This, in turn, implies the decomposability of
the differential $d’=(d_{L}+D+d_{\chi})’$ in $C_{A}^{*}(L_{*}^{A}(E^{*}, e))$ , for $d_{L}’$ and $d_{\chi}’$ are evidently
decomposable by definition. Therefore the homomorphism $\beta$ is the minimal
model. Q. I. D.

The corollary above gives a more conceptual proof of Lemma 2.1 of [7]

although under the restriction (5.4) on the l-connectedness of $A^{*}$ .
COROLLARY 5.9 (Lemma 2.1 of [7]). Let $(E^{*}, d)$ belong to $(DGA_{1}/A^{*})_{1oc}$,

and suPpose the fiber $(\overline{F},\overline{d})$ of $(E^{*}, d)$ is isomorphic as $a$ DGA to the Koszul
cochain complex $C\not\in(L(V_{*}))$ over $R$ of a free graded Lie algebra $L(V_{*})$ over a
$po\alpha tively$ graded vector space $V_{*}$ ( $i.e$ . $V_{i}=0$ for $i\leqq 0$). Then $(E^{*}, d)$ is isomor-
Phic over $A^{*}$ to $C_{A}^{*} \circ L_{*}^{A}(A^{*}\bigotimes_{\tau}i\rangle_{*}e)$ , where $i\rangle_{*}=R\oplus(\sigma V_{*})’$ , the differential and the
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multipljcatjOn in $A^{*} \bigotimes_{\tau}\hat{V}^{*}$ are induced from those of $(E^{*}, d)$ and the local section

$e$ is the one naturally induced from the prOjectjOn $\hat{V}^{*}arrow R$ .
PROOF. By hypothesis, there is an isomorphism of free graded $A^{*}$-modules

(5.10) $\Phi$ : $E^{*}\cong A^{*}\otimes Hom_{R}^{*}(S_{*}^{R}(\sigma L(V_{*})), R)$ .
The $A^{*}$-algebra structure and the differential in $E^{*}$ induce the quotient

ones in its retract $A^{*}\otimes\hat{V}^{*}$ via the projection and inclusion

(5.11) $E^{*}arrow A^{*}\otimes Hom_{R}^{*}(S_{*}^{R}(\sigma L(V_{*}))\Phi\cong R)$

$=A^{*}\otimes Hom\not\in(R\oplus\sigma(V_{*}), R)=A^{*}\otimes\hat{V}^{*}$ .
Since the projection $Hom_{R}^{*}(S_{*}^{R}(\sigma L(V_{*})), R)arrow\hat{V}^{*}$ is a weak equivalence ([3],

p. 507), the Moore comparison theorem of spectral sequences asserts that the
projection in (5.11) is also a weak equivalence. So the projection in (5.11)

is a minimal model for the fibration $A^{*} arrow A^{*}\bigotimes_{\tau}\hat{V}^{*}$ . On the other hand,

$\beta$ : $C_{A^{\circ}}^{*}L_{*}^{A}(A^{*} \bigotimes_{\tau}\hat{V}^{*}, e)arrow A^{*}\bigotimes_{\tau}\hat{V}^{*}$ is also a minimal model for the same fibration

by the preceding corollary. Therefore the uniqueness property of the minimal
model insists that there is an isomorphism over $A^{*}$ between $E^{*}$ and
$C_{A}^{*} \circ L_{*}^{A}(A^{*}\bigotimes_{\tau}V^{*}, e)$ . This completes the proof of Corollary.

\S 6. Applications.

Let $EU_{n}^{(2n)}arrow BU_{n}^{(2n)}$ be the universal $U_{n}$-bundle restricted over the (homo-

topical) $2n$ -skeleton of the base space and

(6.1) $\gamma_{n}$ : $EU_{n}^{(2n)}arrow EU_{n_{U}}^{(2n)}\cross_{n}EU_{n}arrow BU_{n}$

be the associated fiber bundle over $BU_{n}$ with fiber $EU_{n}^{(2n)}$ . The minimal model
(in the sense of Sullivan) for the base space $BU_{n}$ is given by

(6.2) $I^{n}=R[\overline{c}_{1},\overline{c}_{2}, \cdots , \overline{c}_{n}]$ ; deg $\overline{c}_{i}=2i,$ $d(\overline{c}_{i})=0$ .
A Sullivan type algebraic model for the fiber $EU_{n}^{(2n)}$ is given by

(6.3) $\hat{W}_{n}=(R[c_{1}, c_{2}, \cdots , c_{n}]/(\deg>2n))\bigotimes_{\tau}E(h_{1}, h_{2}, \cdots , h_{n})$

with $\deg h_{i}=2i-1,$ $\deg c_{i}=2i,$ $d(h_{i})=c_{i},$ $d(c_{i})=0$ .
A model for the total space of (6.1) is given by

(6.4) $I^{n} \bigotimes_{\tau}W_{n}$ ; $d(h_{i})=c_{i}-\overline{c}_{i},$ $d(c_{t})=d(\overline{c}_{i})=0$ .



Sullivan-Quillen mixed type model 237

If we take the projection onto the left factor of $EU_{n}^{(2n)}\cross EU_{n}U_{n}$ we obtain

(6.5)
$EU_{n}arrow EU_{n_{U_{n}^{\cross}}}^{(2n)}EU_{n}arrow BU_{n}^{(2n)}$

with contractible fiber $EU_{n}$ . So the total space of (6.1) is homotopy equivalent
to $BU_{n}^{(2n)}$ . A model for $BU_{n}^{(2n)}$ is given by

(6.6) $I_{(n)}=R[c_{1}, c_{2}, \cdots c_{n}]/(\deg>2n)$ ; deg $c_{i}=2i,$ $d(c_{i})=0$ .
Therefore the minimal model for the Sullivan type fibration $I^{n} arrow I^{n}\bigotimes_{\tau}\Psi_{n}$ is

isomorphic to that for the DGA $I_{(n)}$ of (6.6). This observation was communicated
to me by S. Hurder. In fact, $I_{(n)}$ can be regarded as the $Ad_{GL(n.R)}$ -invariant
polynomial algebra on $gl(n, R)$ truncated by the relation given by the Bott
vanishing theorem. Hurder and Kamber [4], [5] studied the minimal model for
$I_{(n)}$ in order to compute the dual homotopy invariants of codimension $n$ foliations.

We are going to give an explicit description of this minimal model using
Corollary 5.8 of the last section. In order to do this, we should first know the
explicit structure of $H^{*}(\hat{W}_{n})$ .

We denote the monomial $h_{i_{1}}h_{i_{2}}\cdots h_{i_{m}}\otimes c_{j_{1}}c_{j_{2}}\cdots c_{J_{q}}$ in $W_{n}$ by $v(I;J)$ or
$h(I)c(J)$ , where $I=(i_{1}, i_{2}, \cdots , i_{m})$ and $J=(]_{1}, j_{2}, \cdots , j_{q})$ are partitions by positive
integers $1\leqq i_{1}<i_{2}<\ldots<i_{m}\leqq n$ and $1\leqq j_{1}\leqq j_{2}\leqq\ldots\leqq]_{q}\leqq n$ .

THEOREM 6.7 (Vey [1]). An additive basis for the reduced cohomology $H*(W_{n})$

is given by the classes of cocycles $v(I;J)$ satisfying the following conditions
(1) $\Vert J\Vert=j_{1}+j_{2}+\cdots+j_{q}\leqq n$ .
(2) $i_{1}+\Vert J\Vert>n$ .
(3) $i_{1}\leqq j_{1}$ .

COROLLARY 6.8. (i) $\tilde{H}^{q}(ffi_{n})=0$ for $q\leqq 2n$ .
(ii) The multiPlicative structure of $H*(W_{n})$ is trivial, $i.e$ . $[v(I;J)]\cdot[v(I’ ; J’)]$

$=0$ .
(iii) The homomorphism $V:H^{*}(\Phi_{n})arrow\pi_{n}$ defined by $V([v(I;J)])=v(I;J)$ is

a weak equivalence of DGA’s, where $H^{*}(\hat{W}_{n})$ is considered as $a$ DGA with the
trivial differential.

Using these results of Vey, we define an $I^{n}$ -algebra structure in $I^{n}\otimes H^{*}(W_{n})$

by

(6.9) $[v(I;J)]\cdot[v(I’ ; J’)]$

$=\Sigma$ sign [
$\{\prod_{2\leqq\mu.v}(i_{v}’-i_{\mu})\}\{\prod_{2\leqq\mu}(j_{1}^{\prime(2)}-i_{\mu})\}$ {II $(i_{\nu}’-j_{1}^{(2)})\}(j_{1}’(2)-J_{1}^{(2)})$]

. $\overline{c}(J(1))\overline{c}(J’(1))\otimes[v(I-i_{1}+]_{1}^{(2)}+I’-i_{1}’+j_{1}^{\prime(2)}$ ; $J(2)-j_{1}^{(2)}+J’(2)-j_{1}^{;(2)})$]

where the summation runs over all the subdivisions $i_{1}+J=J(1)+J(2)$ and $i_{1}’+J’$
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$=J’(1)+J’(2)$ such that $\max J(1)\leqq j_{1}^{(2)}(=\min J(2))<i_{2}$ and $\max J’(1)\leqq j_{1}^{\prime(2)}$

$(= \min J’(2))<i_{2}’$ and that $[v(I-i_{1}+]_{1}^{(2)}+I’-i_{1}’+]_{1}^{\prime(2)}$ ; ](2) $-j_{1}^{(2)}+J’(2)-]_{1}^{\prime(2)}$ )] is a
Vey basis element given in Theorem 6.7. (In fact the subdivision $J’(1)+J’(2)$

satisfying these conditions is uniquely determined by the subdivision $J(1)+J(2).)$

Here $I-i_{1}+j_{1}^{(2)}+I’-i_{1}’+j_{1}^{\prime(2)}$ means the disjoint union $(I-\{i_{1}\})\cup\{J_{1}^{(2)}\}\cup(I’-\{i_{1}’\})$

$\cup\{]_{1}^{\prime(2)\}}$ as a set, and so on. In the above, we allow the case $J(1)=\emptyset$ (and re-
spectively, $J’(1)=\emptyset)$ , in which case we put $j_{1}^{(2)}=i_{1}$ (and respectively, $j_{1}^{\prime(2)}=i_{1}’$ ).

LEMMA 6.10. The pr0duct in $I^{n}\otimes H^{*}(\hat{W}_{n})$ defined above is graded commuta-
tive and associative.

PROOF. Easy to check by definition.
Next we define an $I^{n}$ -linear map of degree +1

(6.11) $d$ : $I^{n}\otimes H^{*}(ff_{n})arrow I^{n}\otimes H^{*}(W_{n})$

by

\langle 6.12) $d([v(I;J)])= \sum_{2\leqq\mu\leqq m}(-1)^{\mu}\overline{c}_{i}\otimes[v(I-i_{\mu} ; J)]\mu$

$-\delta(i_{2}\leqq j_{r(2)+1})\overline{c}(i_{1}, j_{1}, \cdots j_{r(2)})\otimes[v(I-i_{1} ; J-\{]_{1},$ $\cdots$ $j_{r(2)}$ })]

$- \sum_{2\leqq\mu\leqq m}(-1)^{\mu}\delta(i_{2}>]_{r}(\mu)+1)\overline{c}(i_{1}, j_{1}, \cdots j_{r(\mu)})$

$\otimes[v(I-\{i_{1}, i_{\mu}\}+Jr(\mu)+1;J-\{]_{1},$ $\cdots$ $j_{r(\mu)+1}$ } $+i_{\mu}$)]

for every (I; $]$ ) $=(i_{1}, j_{2}\ldots , i_{m} ; j_{1}, j_{2}, \cdots , j_{q})$ with $m\geqq 2$ satisfying the conditions
(1), (2) and (3) of Theorem 6.7. Here the symbol $\delta(i_{2}\leqq]_{r(\mu)+1})$ implies either 1
(if $j_{2}\leqq j_{r(\mu)+1}$ ) or $0$ (otherwise), and so on. And $\overline{c}(i_{1}, j_{1}, \cdots , j_{r(\mu)})$ means $\overline{c}_{i_{1}}\overline{c}_{j_{1}}\cdots$

$\overline{c}_{J_{r^{(}\mu})}$ , and $r(\mu)$ is the integer $(0\leqq r(\mu)\leqq q-1)$ defined by

\langle 6.13) $i_{\mu}+\Vert J||-]_{1^{-}}\ldots-j_{r(\mu)}>n$ , and

$\langle 6.13)^{*}$ $i_{\mu}+\Vert J\Vert-]_{1^{-}}\ldots-]_{r(\mu)}-j_{r(\mu)+1}\leqq n$ .

For $m=1$ , we put

$(6.12)^{*}$ $d([v(i_{1} ; J)])=-\overline{c}(i_{1}, j_{1}, \cdots, j_{q})$ .

LEMMA 6.14. Let $d$ be as above. Then $(t^{n}\otimes H^{*}(\hat{W}_{n}), d)$ is a Sullivan type

fibration over $I^{n}$ . Namely,
(i) $d$ is a derivation, $i$ . $e$.

(6.15) $d([v(I^{(1)} ; J^{(1)})]\cdot[v(I^{(2)} ; J^{(2)})]\cdot\cdots\cdot[v(I^{(k)} ; J^{(k)})])$

$= \sum_{1\leqq h\leqq k}(-1)^{|I|+|I|+\cdots+|I}(1)(2)$

(h-1)
$[v(I^{(1)} ; J^{(1)})]$

.. . $d([v(I^{(h)} ; J^{(h)})])\cdots[v(I^{(k)} ; J^{(k)})]$ ,
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where $|I^{(h)}|$ denotes the number of elements in the partition $I^{(h)}$ , which agrees
modulo 2 with the degree of $[v(I^{(h)} ; J^{(h)})]$ .

(ii) $d$ is a differential, $i.e$ . $d^{2}\equiv 0$ .
PROOF. Part (i) can first be proved for the case $k=2$ by explicitly comput-

ing right and left hand sides using definitions (6.9) and (6.12). Then the general
case is proved by induction on $k$ by virtue of the associativity of the multiplica-
tion in $I^{n}\otimes H^{*}(W_{n})$ . Part (ii) is easily checked by direct calculations. Q.I.D.

Now we define an $I^{n}$ -module homomorphism

(6.16) $\psi_{V}$ : $I^{n}\otimes H^{*}(W_{n})arrow I^{n}\otimes W_{n}$

by

(6.17) $\psi_{V}([v(I;J)])=$
$\sum_{0\leq\lambda\leqq\xi(2)}$

$\overline{c}(i_{1}, j_{1}, \cdots j_{\lambda-1})$

$\otimes h_{J_{\lambda}}h_{I-i_{1}}c(J-\{j_{1}, \cdots j_{\lambda}\})$ ,

where $\xi(2)$ is the integer defined by

(6.18) $j_{\xi(2)}<i_{2}\leqq j_{\xi(2)+1}$ if $|I|\geqq 2$ , or

$(6.18)^{*}$ $j_{\xi(2)}= \max J$ if $I=\{i_{1}\}$ .

In the definition above, we used the convention that $j_{0}=i_{1}$ .

LEMMA 6.19. The homomorphism $\psi_{V}$ defined above is a weak equivalence in
{$DGA/I^{n})_{1oc}$ . Namely,

(i) $\psi_{V}$ is multiplicative,
(ii) $\psi_{V}$ commutes with the differentials, and
(iii) $\psi_{V}$ induces an isomorphism in cohomology.
PROOF. As in the proof of Lemma 6.14, part (i) can first be proved in the

case for products of two basis elements $[v(I;J)]\cdot[v(I’ ; J’)]$ by explicit calcula-
tions. The general case is proved by induction using the associativity of the
multiplication. Part (ii) is easy to verify by explicit calculations.

For part (iii), remark that the quotient map

(6.20) $\overline{\psi}_{V}$ : $H^{*}(\hat{W}_{n})arrow\hat{W}_{n}$

is nothing but the Vey map $V$ stated in Corollary 6.8 (iii). So $\overline{\psi}_{V}$ induces an
isomorphism in cohomology, and the Moore comparison theorem of spectral
sequences asserts that $\psi_{V}$ also induces an isomorphism in cohomology. This
completes the proof of Lemma.

Combining Corollary 5.8 and Lemma 6.19, we obtain the following result.

THEOREM 6.21. The composite homomorphism
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(6.22) $\psi_{V^{\circ}}\beta$ : $C_{I^{n^{\circ}}}^{*}L_{*}^{I^{n}}(I^{n} \bigotimes_{\tau}H^{*}(W_{n}), e)arrow I^{n}\bigotimes_{\tau}H^{*}(W_{n})$

$arrow I^{n}\bigotimes_{\tau}W_{n}$

is the minimal model for the homomorphism $I^{n} arrow I^{n}\bigotimes_{\tau}W_{n}$ in the sense of Sullivan,

where $\beta$ is the adjunction map of the functors given in (4.22), $\psi_{V}$ is the extended
Vey homomorphism defined in (6.17), and $e$ is the natural augmentation induced
from that of $H^{*}(W_{n})$ .

The explicit description of $L_{*}^{I^{n}}(I^{n} \bigotimes_{\tau}H^{*}(W_{n}), e)$ was given in [8].

Now that the minimal model construction is preserved by a change of base
(again by the Moore comparison theorem of spectral sequences, cf. [3], p. 509),

we obtain the minimal model of the algebraic fibration $P_{n} arrow P_{n}\bigotimes_{\tau}W_{n}(P_{n}$ denotes

the universal Pontrjagin algebra $\cong I^{n}/(\overline{c}_{odd}))$ by applying the tensor product functor
$I^{n}/( \overline{c}_{odd})\bigotimes_{I^{n}}(-)$ to each term of (6.22) and identifying $P_{n}$ with $I^{n}/(\overline{c}_{odd})$ . So we

have the following result.

COROLLARY 6.23. The minimal model for the Sullivan type algebraic fibra-
tion $P_{n} \bigotimes_{\tau}W_{n}$ over $P_{n}$ is given by the $compo\alpha te$ homomorPhism

(6.24) $\phi_{V^{o}}\beta$ : $C_{P_{n}}^{*} \circ L_{*}^{P_{n}}(P_{n}\bigotimes_{\tau}H^{*}(W_{n}), e)arrow P_{n}\bigotimes_{\tau}H^{*}(W_{n})$

$arrow P_{n}\bigotimes_{\tau}W_{n}$

where $P_{n}$ is identified with $I^{n}/(\overline{c}_{odd})$ and $\phi_{V}$ is the image of the extended Vey map
$\psi_{V}$ by the tensor product functor $I^{n}/( \overline{c}_{odd})\bigotimes_{I^{n}}$

(–), and $\beta$ is the adjunction map of
the functors.

This is a reasonable answer to the problem of explicit description of the
minimal model for the algebraic fibration $P_{n} arrow P_{n}\bigotimes_{\tau}W_{n}$ posed by Haefliger in [2].

Now that

(6.25) $P_{n} \bigotimes_{\tau}\hat{W}_{n}=(I_{(n)}\bigotimes_{\tau}E(h_{2i-1} ; 2i-1\leqq n))\bigotimes_{\tau}(P_{n}\bigotimes_{\tau}E(h_{2i} ; 2i\leqq n))$ ,

and that the fiber $P_{n} \bigotimes_{\tau}E(h_{2i} ; 2i\leqq n)$ is contractible, it holds that the natural in-

clusion $\hat{W}O_{n}=I_{(n)}\bigotimes_{\tau}E(h_{2i-1} ; 2i-1\leqq n)arrow P_{n}\bigotimes_{\tau}\hat{W}_{n}$ is a weak equivalence. Therefore

the minimal model of $P_{n} arrow P_{n}\bigotimes_{\tau}\hat{W}_{n}$ given in (6.24) also serves as the minimal

model for the DGA $\hat{W}O_{n}$ , which has the same rational homotopy type as the
truncated Weil algebra $W(gl(n, R),$ $O(n))_{n}$ .

Let $M$ be a paracompact Hausdorff smooth manifold of dimension $n\geqq 1$ and
$\tau_{C}$ be the complexification of the tangent bundle $\tau$ of $M$ classified by a map
$f_{M}^{c}$ : $Marrow BU_{n}$ . Then $f_{M}^{c}$ induces a bundle $(f_{M}^{c})^{*}7_{n}$ over $M$ with fiber $EU_{n}^{(2n)}$ ,
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where $\hat{\gamma}_{n}$ is defined in (6.1).

An algebraic model for an induced bundle is obtained by the base change.
Namely, let $\Omega^{*}(M)$ be the de Rham algebra of $M$ and $p_{i}$ be a differential form
representing the i-th Pontrjagin class of $M$. The homomorphism $I^{n}arrow\Omega^{*}(M)$

defined by $\overline{c}_{2i}arrow p_{i}$ and $\overline{c}_{2i-1}arrow 0$ makes $\Omega^{*}(M)$ an $I^{n}$-algebra. A model for $(f_{M}^{c})^{*}\hat{\gamma}_{n}$

is obtained from that of $\hat{\gamma}_{n}$ given in (6.4) by the base change;

(6.26) $\Omega^{*}(M)\bigotimes_{I^{n}}(I^{n}\bigotimes_{l}\hat{W}_{n})\cong\Omega^{*}(M)\bigotimes_{f}W_{n}$ .

Its mixed type model is also obtained by the base change;

(6.27) $L_{*}^{\Omega^{s}(M)}( \Omega^{*}(M)\bigotimes_{\tau}H^{*}(W_{n}), e)$ .

Notice that the fiber bundle $(f_{M}^{c})^{*}\hat{\gamma}_{n}$ has a unique homotopy class of cross-
sections since its fiber $EU_{n}^{(2n)}$ is $2n$ -connected. The Koszul cochain complex over
the ground field $R$

(6.28) $C_{R}^{*}(L_{*}^{\Omega\cdot(M)}( \Omega^{*}(M)\bigotimes_{\tau}H^{*}(W_{n}), e))$

is a Sullivan type model for the space of cross-sections $\Gamma((f_{M}^{c})^{*}\hat{\gamma}_{n})$ (Haefliger,

cf. Silveira [9]), and this is the Haefliger model for the Gelfand-Fuks cohomology.

REMARK 6.29. If the stable tangent bundle $\tau_{M}\oplus R^{n}$ admits a complex vector
bundle structure classified by a map $f_{M}^{s}$ : $Marrow BU_{n}$ , we may consider the induced
bundle $(f_{M}^{s})^{*}\hat{\gamma}_{n}$ , whose mixed type model is obtained from that of $\hat{\gamma}_{n}$ by the
change of base via the homomorphism $I^{n}arrow\Omega^{*}(M)$ defined by $\overline{c}_{i}arrow c_{i}\sim$ , where $c_{i}\in\sim$

$\Omega^{2i}(M)$ is a representing form of the i-th Chern class of $\tau_{M}\oplus R^{n}$ . The cochain
complex

(6.30) $C_{R}^{*}(L_{*}^{\Omega\cdot(M)}( \Omega^{*}(M)\bigotimes_{\tau}H^{*}(W_{n})\sim’ e))$

is a Sullivan type model for the cross-section space $\Gamma((f_{M}^{s})^{*}\hat{\gamma}_{n})$ , and we call it $a$

complex analogue of the Haefliger model for the weakly almost complex manifold
$M$. For example, the complex analogue of the Haefliger model for $CP(1)$ is
evidently different from the original Haefliger model since $c_{1}\neq 0$ while $p_{1}=0$ .

Does the complex analogue of the Haefliger model have any vector field
interpretation ?
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