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1. Introduction.

In [7], we defined the fiber shape category $FR_{B}$ which is shape theoretic
category analogous to the fiber homotopy category and studied the category
$FR_{B}$ . $\ln$ this paper, we study some properties of strongly regular mappings
with ANR fibers in $FR_{B}$ . We first prove the following.

(i) Let $E,$ $B$ be compacta and dim $B<\infty$ . If $p:Earrow B$ is a strongly regular
mapping with ANR fibers, then for any map $q:Yarrow B$ of compacta there is a
natural bijection $\Phi:[Y, E]_{q.p}arrow\langle Y, E\rangle_{q,p}$ , where $[Y, E]_{q.p}$ denotes the set of
fiber homotopy classes of fiber maps from $q$ to $p$ and $\langle Y, E\rangle_{q.p}$ the set of mor-
phisms from $q$ to $p$ in $FR_{B}$ .

In [5], S. Ferry proved that if $f:Earrow B$ is a strongly regular mapping onto
a complete finite dimensional space $B$ and $f^{-1}(b)$ is an ANR for each $b\in B$ , then
$f$ is a Hurewicz fibration. If $f:Earrow B$ is a Hurewicz fibration between com-
pact ANR, then $f$ is a shape fibration. Note that there are Hurewicz fibrations
between compacta which are not shape fibrations ( $e$ . $g$ . $[11$ , p. 641]). Next, we
prove the following.

(ii) Let $E,$ $B$ be compacta and dim $B<\infty$ . If $p:Earrow B$ is a strongly regular
mapping with ANR fibers, then $p$ is a shape fibration.

As an application of (i) and (ii), we show the following.
(iii) Let $E,$ $E’$ and $B$ be compacta and dim $B<\infty$ . Suppose that $p:Earrow B$

and $P’$ : $E’arrow B$ are strongly regular mappings with ANR fibers. If a fiber map
$f:Earrow E’$ from $P$ to $P’$ induces a strong shape equivalence, then $f$ is a fiber
homotopy equivalence.

2. Definitions.

Throughout this paper, all spaces are metric spaces and maps are continuous
functions. We mean by $I$ the unit interval $[0,1]$ and by $Q$ the Hilbert cube

$\prod_{i=1}^{\infty}[-1,1]$ . A map $p:Earrow B$ is a strongly regular maPping ([1], [5]) if it is a
proper map and for each $b_{0}\in B$ and $\epsilon>0$ there is a neighborhood $U$ of $b_{0}$ in $B$

such that if $b\in U$, then there exist maps $g:p^{-1}(b)arrow p^{-1}(b_{0})$ and $h:p^{-1}(b_{0})arrow p^{-1}(b)$
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such that $g$ and $h$ move points no more than $\epsilon$ and $gh,$ $hg$ are homotopic to
the identity maps on $p^{-1}(b_{0}),$ $p^{-1}(b)$ via homotopies which move points no more
than $\epsilon$ , respectively.

For a subset $A$ of a space $X,$ $A$ is unstable in $X$ if there is a homotopy
$H:X\cross Iarrow X$ such that $H(x, O)=x,$ $H(x, t)\in X-A$ , for $x\in X,$ $0<t\leqq 1$ . Let $p:E$

$arrow B,$ $P’$ : $E’arrow B$ be maps between compacta and let $E$ and $E’$ be subsets of
compacta $X$ and $X’$ , respectively. A map $f:X-Earrow X’-E’$ is an $F(P, p’)$-map
[7] if for each $b\in B$ and each neighborhood $W’$ of $p^{\prime- 1}(b)$ in $X’$ there is a
neighborhood $W$ of $p^{-1}(b)$ in $X$ such that $f(W-E)\subset W’-E’$ . $F(p, p’)$-maps
$f,$ $g:X-Earrow X’-E’$ are $F(PP’)- homotopic(f_{\overline{\overline{F(p.p^{l})}}}g)$ if’there is a homotopy
$H:(X-E)\cross Iarrow X’-E’$ such that $H(x, O)=f(x),$ $H(x, 1)=g(x)$ for $x\in X-E$ and
each $b\in B$ and each neighborhood $W’$ of $p^{\prime- 1}(b)$ in $X’$ there is a neighborhood
$W$ of $p^{-1}(b)$ in $X$ such that $H((W-E)\cross I)\subset W’-E’$ . Such a homotopy $H$ is called
an $F(P, P’)- homotopy$ . An $F(P, P’)arrow$map $f:X-Earrow X’-E’$ is an $F(p, P’)$-homotopy
equivalence if there is an $F(P’p)$ -map $g:X’-E’arrow X-E$ such that $gf_{\overline{F(p.p)}}-1_{X-E}$

and $fg_{\overline{\overline{F(p’.p^{l})}}}1_{X’-E’}$ , where $1_{X-E}$ and $1_{X’-E’}$ denote the identity maps of $X-E$

and $X’-E’$ , respectively.
LEMMA ([7, Lemma 2.1]). Let $X$ and $X’$ be compact ARs containing $E$ as

an unstable closed subset. Then there is a map $\varphi(X, X’):Xarrow X’$ such that

$(*)$ $\varphi(X, X’)|E=1_{E}$ and $\varphi(X, X’)(X-E)\subset X’-E$ .

If $\varphi_{1},$ $\varphi_{2}$ : $Xarrow X’$ are maps satisfying condition $(*)$ , then there is a homotoPy
$H:X\cross Iarrow X’$ such that $H(x, 0)=\varphi_{1}(x),$ $H(x, 1)=\varphi_{2}(x)$ for $x\in X$ and $H(x, t)=x$

for $\chi\in E,$ $t\in I$ and $H((X-E)\cross I)\subset X’$–E. In particular, for any map $p:Earrow B$

$\varphi(X, X’)|X-E:X-Earrow X’-E$ is an $F(P, p)$ -maP and $H|(X-E)\cross I:(X-E)\cross I$

$arrow X’-E$ is an $F(p, p)$-homotopy.
For any compactum $B$ , we shall define the category $FR_{B}$ as follows. By

$m(E)$ , we mean the set of compact ARs containing $E$ as an unstable subset.
Let $X_{1},$ $X_{2}\in m(E)$ and $X_{1}’,$ $X_{2}’\in m(E’)$ . An $F(P, P’)$ -map $f:X_{1}-Earrow X_{1}’-E’$ is
$F(P, P’)$-equivalent to an $F(P, P’)$-map $g:X_{2}-Earrow X_{2}’-E’$ if the following dia-
gram is commutative up to $F(p, p’)$ -homotopy,

$X_{1}-Earrow^{f}X_{1}’-E’$

$\gamma X_{1}$
$\gamma X_{1}’$

$\varphi(X_{1}, X_{2})\{$ $\iota\varphi(X_{1}’, X_{2}’)$

$Jx_{\underline{\circ}}$

$X_{2}’$

$X_{2}-EX_{2}’-E’\overline{g}J$
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where $\varphi(X_{1}, X_{2}),$ $\varphi(X_{1}’, X_{2}’)$ are maps satisfying condition $(*)$ of the lemma.
Objects of $FR_{B}$ are all maps of compacta to $B$ , and for maps $p:Earrow B$ and
$p’$ : $E’arrow B$ , morphisms from $p$ to $p’$ in $FR_{B}$ are $F(Pp’)$-equivalence classes of
collectio]ns of $F(p, p’)$-maps $f:X-Earrow X’-E’,$ $X\in m(E),$ $X’\in m(E’)$ . Clearly
$FR_{B}$ forms a category (see [7]).

3. Strongly regular mappings with ANR fibers in $FR_{B}$ .
Let $X_{1},$ $X_{2}$ be disjoint subsets of a space and $f_{1}$ : $X_{1}arrow X_{3},$ $f_{2}$ : $X_{2}arrow X_{3}$ be

functions. We define a function $f_{1}\cup f_{2}$ : $X_{1}\cup X_{2}arrow X_{3}$ by

$f_{1}\cup f_{2}(x)=\{\begin{array}{ll}f_{1}(x), x\in X_{1},f_{2}(x), x\in X_{2}.\end{array}$

Let $p;Earrow B$ and $q:Yarrow B$ be maps between compacta. By $[Y, E]_{q,p}$ we
mean the set of fiber homotopy classes of fiber maps from $q$ to $p$ , and $\langle Y, E\rangle_{q,p}$

the set of morphisms from $q$ to $P$ in $FR_{B}$ . We shall define a natural transfor-
mation $\Phi:[Y, E]_{q.p}arrow\langle Y, E\rangle_{q,p}$ as follows. Let $f:Yarrow E$ be a fiber map from
$q$ to $P$ and let $M\in m(Y),$ $N\in m(E)$ . Since $N\in m(E)$ , there is a homotopy
$H:N\cross Iarrow N$ such that $H(x, O)=x,$ $H(x, t)\in N-E$ for $x\in N,$ $0<t\leqq 1$ . Choose an
extension $\tilde{f}’$ : $Marrow N$ of $f$ and a map $\alpha;Marrow I$ such that $\alpha^{-1}(0)=Y$ . Define a
map $P:Marrow N$ by $\tilde{f}(z)=H(\tilde{f}’(z), \alpha(z))$ for $z\in M$. Then $\tilde{f}$ is an extension of $f$

and $f(M-Y)\subset N-E$ . Note that $\tilde{f}|M-Y:M-Yarrow N-E$ is an $F(q, p)$-map.
Similarly we see that if $f,$ $g:Yarrow E$ are fiber maps from $q$ to $P$ and $f$ and $g$

are fiber homotopic, then $f|M-Y_{\overline{F(q.p)}}-\tilde{g}|M-Y$ , where $f,\tilde{g}:iMarrow N$ are extensions
of $f,$ $g$ respectively such that $\tilde{f}(M-Y)\subset N-E,\tilde{g}(M-Y)\subset N-E$ . Hence we
obtain the natural transformation $\Phi:[Y, E]_{q.p}arrow\langle Y, E\rangle_{q,p}$ such that for a fiber
homotopy class $[f]$ of a fiber map $f:Yarrow E$ from $q$ to $p,$ $\Phi([f])$ is the morphism
from $q$ to $P$ induced by an $F(q, p)$-map $f|M-Y:M-Yarrow N-E$ , where $M\in m(Y)$ ,
$N\in m(E)$ and $f;Marrow N$ is an extension of $f$ such that $\tilde{f}(M-Y)\subset N-E$ .

Suppose that $p:Earrow B$ is a strongly regular mapping with ANR fibers and
dim $B<\infty$ . Embed $Y$ into the Hilbert cube $Q$ and consider $Y$ as the closed
subset $Y\cross\{1\}$ of $Q\cross I$ . Then $Q\cross I\in m(Y)$ . Also, embed $E$ into $Q$ as a Z-set
$(Q\in m(E))$ . Then we have the following lemma.

LEMMA 3.1. Let $f:Q\cross I-Yarrow Q-E$ be an $F(q, p)$-map and $f_{A}$ : $Aarrow E$ be a
map, where $A$ is a closed subset of Y. If $f\cup f_{A}$ : $(Q\cross I-Y)\cup Aarrow Q$ is continuous,
then there is a fiber map $f_{Y}$ : $Yarrow E$ from $q$ to $P$ such that $f_{Y}|A=f_{A}$ and
$f|Q\cross I-Y_{\overline{F(q.p)}}-f$ , where $P:Q\cross Iarrow Q$ is an extension of $f_{Y}$ such that $f(Q\cross 1-Y)$

$\subset Q-E$ .
PROOF. First, note that if $f,$ $g:Q\cross I-Yarrow Q-E$ are $F(q, p)$ -maps such that

$f|Y\cross[0,1)_{\overline{F(q.p)}}-g|Y\cross[0,1)$ then $f_{\overline{F(q,p)}}-g$ .
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Since the fiber $p^{-1}(b_{0}),$ $b_{0}\in B$ is an ANR and $Q$ is a convenient AR, there
is a compact ANR neighborhood $M_{b_{0}}$ of $p^{-1}(b_{0})$ in $Q$ which retracts to $p^{-1}(b_{0})$ .
Choose a neighborhood $W_{b_{0}}$ of $b_{0}$ in $B$ such that $p^{-1}(W_{b_{0}})\subset M_{b_{0}}$ . Let
$R(M_{b_{0}}, p^{-1}(W_{b_{0}}))$ be the space of retractions from $M_{b_{0}}$ onto some $p^{-1}(b),$ $b\in W_{b_{0}}$ ,

which has the metric

$d(r_{1}, r_{2})= \sup\{d(r_{1}(x), r_{2}(x))|x\in M_{b_{0}}\},$ $r_{1},$ $r_{2}\in R(M_{b_{0}}, p^{-1}(W_{b_{0}}))$ .
By the proof of Ferry [5, Proposition 3.1], there is a closed neighborhood $U_{b_{0}}$

of $b_{0}$ in $W_{b_{0}}$ and a map $\varphi_{b_{0}}$ : $U_{b_{0}}arrow R(M_{b_{0}}, p^{-1}(W_{b_{0}}))$ such that $h\circ\varphi_{b_{0}}=1$ , where
$h:R(M_{b_{0}}, p^{-1}(W_{b_{0}}))arrow W_{b_{0}}$ is the map such that $h(r)=b$ , where $r$ retracts $M_{b_{0}}$

onto $p^{-1}(b),$ $b\in W_{b_{0}}$ . Since $B$ is compact, there is a finite closed cover $\{U_{b_{1}},$ $U_{b_{2}}$ ,
... , $U_{b_{m}}$ } of $B$ satisfying the conditions as before. Set $Y_{i}=q^{-1}(U_{b_{i}})$ for each
$i=1,2,$ $\cdots$ , $m$ . Since $f$ is an $F(q, p)$-map, there is a positive number $\epsilon_{1}<1$ such
that $f(Y_{1}\cross[\epsilon_{1},1))\subset M_{b_{1}}-E$ . Choose a map $\alpha_{1}$ ; $Yarrow[\epsilon_{1},1]$ such that $\alpha^{-1}(1)=A$ .
Define a map $f_{A\cup Y_{1}}$ : $A\cup Y_{1}arrow E$ by

(1) $f_{A\cup Y_{1}}(y)=\{\begin{array}{ll}f_{A}(y), y\in A,\varphi_{b_{1}}(q(y))(f\cup f_{A}(y, \alpha(y))), y\in Y_{1}.\end{array}$

Then $f_{A\cup Y_{1}}$ is well-defined, because for $y\in A\cap Y_{1},$ $\varphi_{b_{1}}(q(y))(f\cup f_{A}(y, \alpha(y)))=$

$\varphi_{b_{1}}(q(y))(f\cup f_{A}(y, 1))=\varphi_{b_{1}}(q(y))(f_{A}(y))=f_{A}(y)$ . Also, $p\circ f_{A\cup Y_{1}}=q|A\cup Y_{1}$ . Choose
a map $\beta:Y\cross I\cross Iarrow I$ such that $\beta^{-1}(0)=Y\cross\{1\}\cross I$ . Since $E$ is a Z-set in $Q$ ,
there is a homotopy $K:Q\cross Iarrow Q$ such that $K(x, O)=x,$ $K(x, t)\in Q-E$ for $x\in Q$ ,
$0<t\leqq 1$ . DePne a homotopy $H_{1}$ : $(Y_{1}\cross[0,1)\cup(A\cap Y_{1}))\cross Iarrow Q$ by

(2) $H_{1}(y, t, s)=K(\varphi_{b_{1}}(q(y))(f\cup f_{A}(y, (1-s)\cdot\alpha(y)+s\cdot t)),$ $\beta(y, t, s))$ ,

for $(y, t, s)\in(Y_{1}\cross[0,1)\cup(A\cap Y_{1}))\cross I$ .
Then

$H_{1}(y, t, 0)=K(\varphi_{b_{1}}(q(y))(f\cup f_{A}(y, \alpha(y))),$ $\beta(y, t, 0))$ ,

$H_{1}(y, t, 1)=K(\varphi_{b_{1}}(q(y))(f\cup f_{A}(y, t)),$ $\beta(y, t, 1))$ ,

for $(y, t)\in Y_{1}\cross[0,1)\cup(A\cap Y_{1})$ and $H_{1}(y, 1, s)=f_{A}(y)$ , for $(y, 1)\in A\cap Y_{1},$ $s\in I$ .
Note that $H_{1}|Y_{1}\cross[0,1$ ) $\cross\{0\}\cup(f_{A\cup Y_{1}}|Y_{1})$ is continuous. Choose a map $\eta$ :
$Y\cross I\cross Iarrow I$ such that $\eta^{-1}(0)=Y\cross I\cross(\{0\}\cup\{1\})\cup Y\cross\{1\}\cross I$ . Define a homotopy
$G_{1}$ : $(Y_{1}\cross[0,1)\cup(A\cap Y_{1}))\cross Iarrow Q$ by

(3) $G_{1}(y, t, s)=K((1-s)\cdot(K(\varphi_{b_{1}}(q(y))(f\cup f_{A}(y, t)),$ $\beta(y, t, 1))$

$+s(f\cup f_{A}(y, t)),$ $\eta(y, t, s))$ ,

for $(y, t, s)\in(Y_{1}\cross[0,1)\cup(A\cup Y_{1}))\cross I$ .
Then $G_{1}(y, t, 0)=H_{1}(y, t, 1),$ $G_{1}(y, t, 1)=f\cup f_{A}(y, t)$ , for $(y, t)\in Y_{1}\cross[0,1)\cup(A\cap Y_{1})$
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and $G_{1}(y, 1, s)=f_{A}(y)$ , for $(y, 1)\in A\cap Y_{1},$ $s\in I$ . It is easy to check that $H_{1}|$

$Y_{1}\cross[0,1)\cross I:Y_{1}\cross[0,1)\cross Iarrow Q-E$ and $G_{1}|Y_{1}\cross[0,1$ ) $\cross I:Y_{1}\cross[0,1$ ) $\cross Iarrow Q-E$

are $F(q|Y_{1}, p)$-homotopies, respectively. By [7, Lemma 3.4], we obtain an $F(q, p)-$

map $f_{1}$ : $Y\cross[0,1$ )$arrow Q-E$ such that $f_{1_{\overline{F(q,p)}}^{-}}f|Y\cross[0,1$ ) and $f_{1}\cup f_{A\cup Y_{1}}$ : $Y\cross[0,1$ )
$\cup(A\cup Y_{1})arrow Q$ is continuous.

If we replace $A$ by $A\cup Y_{1}$ , then we obtain a map $f_{A\cup Y_{1}\cup Y_{2}}$ : $A\cup Y_{1}\cup Y_{2}arrow E$

which is an extension of $f_{A\cup Y_{1}}$ , and an $F(q, p)$-map $f_{2}$ : $Y\cross[0,1$ ) $arrow Q-E$ such
that $f_{2_{\overline{F(q.p)}}^{-}}\cdot f_{1}$ and $f_{2}\cup f_{A\cup Y_{1}\cup Y_{2}}$ : $Y\cross[0,1$ ) $\cup(A\cup Y_{1}\cup Y_{2})arrow Q$ is continuous. If
we continue this process, we obtain a map $f_{Y}$ : $Yarrow E$ , which is an extension of
$f_{A}$ , and an $F(q, p)$-map $f_{m}$ : $Y\cross[0,1$ )$arrow Q-E$ such that $f_{m_{\overline{F(q.p)}}}-f|Y\cross[0,1$ ) and
$f_{m}\cup f_{Y}$ ; $Y\cross Iarrow Q$ is continuous. Note that $f_{Y}$ : $Yarrow E$ is a fiber map over $B$ .
Clearly, $f_{Y}$ satisfies our requirements. This completes the proof.

THEOREM 3.2. Let $E,$ $B$ be compacia and dim $B<\infty$ . If $p:Earrow B$ is a
strongly regular maPtnng with ANR fibers, then for any map $q:Yarrow B$ of com-
pacta $\Phi:[Y, E]_{q,p}arrow\langle Y, E\rangle_{q,p}$ is a bijection.

PROOF. If we apply Lemma 3.1 with $A$ replaced by the empty set, we con-
clude that $\Phi$ is surjective. Also, if we apply Lemma 3.1 with $Y$ replaced by
$Y\cross I,$ $A$ replaced by $Y\cross\{0,1\}$ and $q:Yarrow B$ replaced by the composition $q\circ proj$ :
$Y\cross Iarrow Yarrow B$ , we conclude that $\Phi$ is injective.

By using Theorem 3.2, we can easily prove the following.
THEOREM 3.3. Let $E,$ $E’$ and $B$ be compacia and dim $B<\infty$ . SuPpose that

$p:Earrow B$ and $P’$ : $E’arrow B$ are strongly regular maplnngs with ANR fibers. Then
$p$ is fiber homotopy equivalent to $p’$ iff $P$ is isomorphic to $P’$ in $FR_{B}$ . Moreover,

if a fiber map $f:Earrow E’$ from $P$ to $P’$ induces an isomorphism in $FR_{B}$ , then it
is a fiber homqtoPy equivalence.

REMARK 3.4. In the statements of Theorems 3.2 and 3.3, we can not omit
the condition “strongly regular mapping”. Define a map $p:E=[0,3]arrow B=[0,2]$

by $p|[0,1]=1_{[0,1]},$ $p([1,2])=\{1\}$ and $p(t)=t-1$ for $t\in[2,3]$ . Clearly, the map
$p:Earrow B$ induces an isomorphism from $P$ to the identity map $1_{B}$ of $B$ in $FR_{B}$ ,
but there is no fiber map from $1_{B}$ to $p$ . Also, it is easily seen that we cannot
omit the condition “ANR fibers”.

THEOREM 3.5. Let $E,$ $B$ be compacta and dim $B<\infty$ . If $p:Earrow B$ is a
strongly regular maPping with ANR fibers, then $p$ is a shape fibration (see [9],
[10] for the definition of shape fibration).

PROOF. Consider the composition $p\circ proj:E\cross Qarrow Earrow B$ . Then, by [2],
$p\circ proj$ is a locally trivial fiber space with compact Q-manifold fibers. By [4], the
homeomorphism group of a compact Q-manifold is an ANR. By Scharlemann
[12, Theorem 2.1], we see that there are compact ANRs $M,$ $N$ and a locally
trivial fiber space $p;Marrow N$ such that $M\supset E\cross Q,$ $N\supset B$ and $p$ is an extension
of $p\circ proj$ with $\tilde{p}^{-1}(B)=E\cross Q$ . Since $p$ is a shape fibration, the restriction



248 H. KATO

$p\circ proj$ is also. Since $P$ is fiber homotopy equivalent to $p\circ proj$ , by [6] $P$ is a
shape fibration.

REMARK 3.6. In the statement of Theorem 3.5, we cannot omit the assump-
tion about the fibers of $p$ . In fact, there is a strongly regular mapping which
is a locally trivial fiber space and not a shape fibration. Let $E$ be the continuum
which consists of all points in the plane having the polar coordinates $(r, \theta)$ for
which $r=1,$ $r=2$ or $r=(2+e^{\theta})/(1+e^{\ell})$ and $B$ be the unit circle in the plane.
DePne a map $p;Earrow B$ by $p(r, \theta)=(1, \theta)$ . Clearly, $P$ is a strongly regular map-
ping (locally trivial fiber space), but it is not a shape fibration (see [11, p. 641]).

THEOREM 3.7. Let $E,$ $E’$ and $B$ be compacta and dim $B<\infty$ . SuppOse that
$p:Earrow B$ and $p’$ : $E’arrow B$ are strongly regular maPpngs with ANR fibers. If a
fiber map $f:Earrow E’$ from $p$ to $p’$ induces a strong shape equivalence, then it is
a fiber homotopy equivalence.

PROOF. By Theorem 3.5, $P$ and $P’$ are shape fibrations, respectively. By
[7, Theorem 4.1], $f$ induces an isomorphism in $FR_{B}$ . Theorem 3.3 implies that
$f$ is a fiber homotopy equivalence.

COROLLARY 3.8. Let $E,$ $B$ be compacta and dim $B<\infty$ . If $p;Earrow B$ is a
strongly regular maplnng with AR fibers, then $P$ is shrinkable, $i$ . $e.,$ $P$ is a fiber
homotopy equivalence from $p$ to $1_{B}$ .

PROOF. Since $P$ is a cell-like map and dim $B<\infty$ , by [8], $P$ is a hereditary
shape equivalence. In particular, it is a strong shape equivalence. By Theorem
3.7, $P$ is shrinkable.

REMARK 3.9. In the statement of Theorem 3.7, the assumption about the
fibers of $P$ cannot be omitted. In the plane $R^{2}$ , put $a_{0}=(0,0),$ $b_{0}=(1,0),$ $a_{n}=$

$(0, -1/n),$ $b_{n}=(1,1/n),$ $n=1,2,3,$ $\cdots$ Let $[p, q]$ be the line segment joining $p$

and $q$ in $R^{2},$ $p,$ $q\in R^{2}$ . Set $E= \bigcup_{n=0}^{\infty}[a_{0}, b_{n}]\cup\bigcup_{n=0}^{\infty}[a_{n}, b_{0}]$ and $B=[a_{0}, b_{0}]$ . Define

a map $p:Earrow B$ by $p(x, y)=(x, 0)$ , for $(x, y)\in E$ . Then $P$ is a strongly regular
mapping. Also, dePne a map $f:Earrow E$ by

$f(x, y)=\{\begin{array}{ll}(x, 0), (x, y)\in\bigcup_{n=0}[a_{0}, b_{n}],(x, y), (x, y)\in\cup[a_{n}\infty, b_{0}].\end{array}$

$n=0$

Then $pf=p$ and $f$ induces a strong shape equivalence, but $f$ is not a fiber
homotopy equivalence. In fact, $f$ does not induce an isomorphism in $FR_{B}$ .

REMARK 3.10. In the statements of Theorem 3.5, Theorem 3.7 and Corollary
3.8, we cannot omit the condition $\dim B<\infty$ . By using Taylor’s example and
the result of G. Kozlowski, J. V. Mill and J. Walsh [AR-maps obtained from
cell-like maps, Proc. Amer, Math. Soc., 82 (1981), 299-302], we obtain a strongly
regular mapping $f:Xarrow Q$ with AR fibers which is not shape shrinkable, where
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$Q$ is the Hilbert cube. By taking the cones of $X$ and $Q$ , we have the map $C(f)$ :
$C(X)arrow C(Q)\cong Q$ . Then $C(f)$ is a strong shape equivalence and a strongly regular
mapping with AR-fibers, but it is not shape shrinkable. By [7, Corollary 4.4],
$C(f)$ is not a shape fibration. Clearly, $C(f)$ is not shrinkable. Hence we cannot
omit the condition $\dim B<\infty$ .
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