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0. Introduction.

In [2], we have defined a G-extensible regularity condition on equivariant
sections of differentiable G-fibre bundle P. In this paper, we only consider the
case where P is a trivial G-fibre bundle as an application of Theorem 1.3 in [2].

We now formulate as follows: Let G be a compact Lie group. Let X, Y
be smooth G-manifolds. Then the r-jet bundle J7(X, Y) is naturally a differen-
tiable G-fibre bundle such that the action of G on J'(X, V) is defined by g(j%f)
=j%.(gfg™") where g&€G and f is a germ of a map X— Y at x€X. Let
J&(X, Y) be the subspace of J7(X, Y) consisting of r-jets of “equivariant local
maps” X — Y. Then Jz(X, V) is a G-invariant subspace of J(X, Y).

Now let 2(X, Y) be an open G-subbundle of J(X, Y)— X invariant under
the natural action by local equivariant diffeomorphism of X on J"(X, Y). Then
(X, V) is called a natural stable regularity condition.

We shall say that a map f: X — Y is Q-regular if j7A(X)CQ(X, V).

DerFINITION 0.1. Let 2(X, Y) be a natural stable regularity condition. We
say that (X, Y) is G-extensible if the following conditions hold :

There exists a natural stable regularity condition Q(XXR, Y)CJ(XXR, Y)
(where G acts on R trivially) such that

{ n(i*(Q(XXR, Y)=2(X, V)
(M2 (XXR, VINJo(XXR, Y))=2X, Y)NJ&(X, Y),

where 7: *(J(XXR,Y)—J"(X, Y) is defined by =n(ji;,0nf)=s%fi for the
canonical inclusion i: X< XXR. (We call that 2(XXR, Y) is the extension of
X, V).

From [2], we have the following theorem.

THEOREM 0.2. Let CZo(X, Y) be the space of the Q-regular equivariant maps
X—Y, with the C*-topology, and let I'(2x(X, Y)) be the space of continuous
equivariant sections of the map (X, YI)NJ&(X, Y)— X (with the compact-open
topology). Then, if Q(X,Y) is G-extensible,
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J7: CEa(X, Y) —> I't(L6(X, 1)

is a weak homotopy equivalence.

One of the example of Q-regularity condition is given by notions of Thom-
Boardman singularities.

Let I=(,, ---, i,) be a non-increasing sequence of r non-negative integers.
We define 2/(X, Y)CJ"(X, Y) to be the union of Thom-Boardman singularities
U{2¥|K<I in lexicographic order}. Then £7-regularity is a natural stable

regularity condition. (For the proof, see du Plessis (1.4), and the fact that
it is a G-subbundle is a trivial by definition).
We now define

m. f. d(Y)=min{dim Y#|H=G, for some ysY},
where Y# denote the fixed point set of H on Y and G, the isotropy subgroup
of yev.

Then we have the following theorem.
THEOREM 0.3. Let I be the r-sequence (i, -+, iy), 1=+ =1,=0. If i.>

dim X—m. f. d(Y)—d?, then Q' (X, Y) is G-extensible, where d’:§ias, and
s=

1 lf is_is+1>1
o.=
0 otherwise.

This result has been announced in as Theorem 6.1. The structure of
the proof is an equivariant generalization of du Plessis’ method ([3]). For r=1,
this result is an equivariant version of Feit’s k-mersions theorem [1].

In section 1, we shall prove

All manifold should satisfy the second countability axiom.

The author wishes to express his hearty thanks to the referee for careful
readings.

1. Proof of Theorem 0.3.

Notations in this section are the same as those of du Plessis [3] We shall
show that, under the condition in the extension may be taken as
QUXXR, V).

Since m. f. d(Y)<dim Y, if ,>dim X—m. f. d(Y)—d?, then 27(X,7Y) is ex-
tensible (du Plessis [3], Theorem 2.7), and the extension is 27/(XXR, Y).

It remains to show that {(Q1(XXR, Y)NJHXXR, Y)=21(X, )NJa(X, Y).
G: J(XXR, Y)—J(X,Y) is defined by (e f)=7%(fip), where i, : X — XXR
by i,(x)=(x, p)).

Now, if f is a local equivariant map from an invariant open set in XXR
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to Y, then fi, is also equivariant. So it holds that {(Q7(XXR, Y)NJe(XXR, Y))
Cc'(X, Y)NJa(X, Y) by Lemma (2.1) of [3]
For the proof of converse, we need the following two lemmas.

LEMMA L1 Let y=jofe 31X, Y), I= (G, -, i), define dI:TZ)_ias, where
§=

as=1 if i;—1is41>1 and O otherwise. Then

(@) If dim Y—dim X+-i,4-d'=h, then there is a subspace WCE, of dimW
=h such that

us Hom (Ko -+- o Ky, W)Nd s «(Ko)=1{0} at y for any s<r.

() If m.f.d(Y)—dim X+i,_,+dvir-1i=h,._ >0 and m. f. d(Y)—dim X1,
+d?=0, then there is a subspace WCE, of dimW=dim Y—m.f. d(Y)+1 such
that usHom (K o0 --- o K, W)Nd;,(K)=1{0} at y for any s<r—1 and

ir—l'—ir——hr—l (hr—1>1>

dim (u,__l Hom (K‘r—l 00 Kl: W)de(KT—1>) é{
ir—l_ir (hr—lzl) .

We need the following two lemmas to prove Lemma 1.1.

SUBLEMMA 1.1.1. Let U, V, W be vector spaces, and let b: U — Hom (V, W)
be a linear map of rank r.

(a) If r<dim W, then there 1s a subspace ACW of dim A=dim W—r such
that Im (b)n\Hom (V, A)={0}.

(b) If r=dim W and there is a positive integer s with dim W>s, then there
exists a subspace ACW of dim A=s-+1 such that

dim (Im(b) "Hom (V, A))=r—dim W-s+1.

PROOF. (a) See du Plessis [3], Lemma (3.1) (a).

(b) Since rank (b)=r=dim W >s, there is a subspace U'CU of dimU’'=
dim W—(s+1) such that rank (b|U’)=dim W—(s-+1). Hence, by (a), there is an
(s+1)-dimensional subspace ACW such that &(U’)~"Hom (V, A)={0}. Thus
dim (Im(b) "Hom (V, A))<r—(dim W—(s+1)). Q.E.D.

SUBLEMMA 1.1.2. Let b: K—Hom (KQL, W) be a linear map of rank r
which is symmetric in K.

(@) If r=dim W, there 1s a subspace ACW of

dimW—r+1 (r>1)
dim A:{
dimW—r (9"
such that Im (b)) "Hom (KQ L, A)={0}.

(b) If r=dim W and there is a positive integer s with dimW>s, there is
a subspace ACW of dim A=s+1 such that
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r—dim W+s (dim W>s+1)
r—dimW+1+s (dimW=s+1).

PROOF. (a) See du Plessis [3], Lemma (3.2) (a).

(b) If dim W=s+1, the result follows by Sublemma 1.1.1 (b). Now suppose
dim W>s+1. If there is a subspace ACW of dim A=s+1 such that Im (b))
Hom (K® L, A)={0}, we have the result. So suppose otherwise; then let ¢ be
a maximal integer such that there exists a subspace BCW of dim B=t with
Im (b)) "\Hom (KQ L, B)={0} (s+1>t=0). For convenience, we choose a basis
{b;}2, of W such that <b,, -+, b,)=B. Then for each weW—5B, Im ) N
Hom (KQ L, B)+ {0}. Hence, there exists a k=K such that Im (b(k))C<w, B)
and Im (k))& B. For b; 0>t), let k;=K be such that Im (b(k,))C<b;, B> and
Im (b(ky))ZB. Then b(k;+y1), -+, b(ks) is a linearly independent set.

For each pair (%, k') KX K, we may regard b(k)(k’) as a linear map L —
W. Clearly Im (b(k;)(k;)C<b;, B> for each j=t+1. But b(k)(k)=b(k)(ks),
since b is symmetric, and so

dim (Im (b)) "Hom (KQ L, A))= {

Im (b(k:)(k))CTKbs, BY>N<b;, B)=B if i#j.

(i) Suppose Im (b(k)(k))EB 1=t-+1, -+, h; then b({kss1, -, kry) N Hom
(KQQL, <byy1+biss, -+, bir1+bsrs, BY)={0}. (For if there is a k:j:E’:)Jrlekj such
that

Im (b(R))CT<bsr1+brss, =+ bisrtbsse, B>, then

Im (b(R)(k)—A:b(k)(Ek))CTB for each i=s+1>¢.

Hence Im (2:;0(k:)(k:))C<bis1+brss, =+, brarFbsiooN<bi, B>=B. So, ;=0 for each
1=s-+1 (G.e. k=0)).
Then

dim (Im (O) "Hom (KQ L, <bis1+bisa, -+, bra1tbsse, BY)Sr—dimW4-s.
(ii) Suppose Im (b(%;)(k;)C B for some i=t+1. Let k=K be such that
Im (b(k;)(E)Z B, so that ke<{ksiy, -, kpy (for if k=_z’:}121ki, Im (b(%;)(R))
i=i+

=Im (b(k)(k:)) and Im (b(Ek)(k;)—2A:b(k:)(k))CT B. So, Im (b(k)(E)CB. Itis a
contradiction), and b(%) is linearly independent of b(k,.,), -+, b(ky).
We now suppose i<s-+1, then

b<<k) k8+2: ks+3: T kh>)mH0m (K®L: <bt+1y ) bs+1; B>): {O}'

(For if Ezyb(k)—%-i_%rz ab(k;) and Im (§)C<b;41, -+, bs+1, BD, then Im (E(k,)—

pb(k)(k:))C B. Since Im(b(k)(k:))C<bi, B, then Im(pub(k)(ki))CT<bssy, =+, bsis, BY
N<bi, B>=B. Thus Im (ub(k)(k:))CB. But, by hypothesis Im (b(k)(k;)CB.
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Then #=0, so that Im ©)=Im( 3 ab(k)) C Bees, =, busss BY N\ Busa, =+, bad
={0}).

Alternatively, suppose i=s+1. We may assume :=s-+1 without loss of
generality. Then, by the same argument in the case i<s-+1, we have

b({k, kst1, Rsssy -+, Rad)NHom (KQ L, <bi41, -+, bs, bssa, BY)={0}.

In either case, there is a subspace ACW of dim A=s+1 such that
dim (Im (b)) "\Hom (KQ L, A))<r—dim W+s.
This completes the proof. Q.E.D.
PrOOF OF LEMMA 1.1. (a) See du Plessis [3], Lemma (2.6) (a).
(b) We note that
dim Y—dim X+, ,+d*vir-1=h,_ +(dim Y—m. f. d(Y)).
Hence, by hypothesis,

dim Y—dim X-+i,_,+divir-1>(dim Y—m. f. d(Y)).

Now we let s=dim Y—m. f. d(Y), then (by (a)) there is a subspace W,_,CW
of dim W,_;=h,_;+s such that

us Hom (K0 --- 0 Ky, W, ) N\ dgy (K;)= {0} for any s<r—1.

Then u,-,|Hom (K, 00 K, W,_,) is injective (see du Plessis [3], the proof
of Lemma (2.6) (a)).

Define L=d;*(u,-s Hom (K,_;0 -0 K;, W,_))NK,_;. Then b;.,(L)CHom
(Ky-y0--0 Ky, W,r_y), (where b;-, is the bundle map given in Lemma (2.5) in

[3)), so we have a map
b: L—> Hom (K, ;o0 K;, W,_))
such that for any subspace W/ CW,.,,
b(LynHom (K,_y0 - o Ky, W)=d(K,-1) N\ sy Hom (K;_; 0 - 0 Ky, W),

We now distinguish two cases.
(1) L=K,_,; then rank (b)<rank (d,|K,_,)—1=1i,_.,—1,—1. We suppose that
r=rank (b)<dim W,_.,=h,_;+s. In this case if h,_,=1, then we have

dim (Im (b)) "Hom (K,_,0 .- o K;, W,_,))=rank (b)<i,_.,—1,—1.

If A,-:>1, (by Sublemma 1.1.1 (a)) there is a subspace ACW of dim A=h,_,
+s—7 such that Im (b)) \Hom(K,_;0 -0 K;, A)={0}. So if h,.,>7, then dim A
=h,yt+s—r=s+1. If y=h,.,, for some subspace L’'CL of dim L'=h,,—1
such that rank (b)|L’=h,.,—1<dim W,_;,. Hence, by sublemma 1.1.1 (a)Ythere
is a subspace ACW,_, of dim A=dim W,_,—(h,.,—1)=s-+1 such that b(L)n
Hom (K,_.;0 -0 K;, A)={0}. Thus dim (Im (b)) \Hom (K,_;0:-0K;, A))<7r—
(hpoy—D=El i~ — 1= A 1=t —1,—heoy.
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Alternatively, suppose rank (b)=dim W,_;=h,_;+s. By Sublemma 1.1.1 (b),
there is a (s+4-1)-dimensional subspace W/ CW,_, such that

dim (Im (b)) \Hom (K,_; 0 --- 0o K;, W))=<rank (b)—dim W,_;-+s
éir—-l—v—ir'—hr—l .
(2) L=K,_y; then b: K,_;—Hom (K,_;Q(K,_,0 -0 K)), W,_,) is a sym-
metric map of rank (b)=rank (d,| K,-)=1,-1—1,.

We now suppose that y=rank (b)<dim W,_,=h,_,+s. In this case, if h,_,
=1, then we have

dim (Im () "Hom (K,_,0 - o K;, W,_))=rank (0)<1i,_.,—1i,.
If h,_;>1, (by Sublemma 1.1.2 (a)) there is a subspace ACW of
hrrts—r+1  (>1)
hyit-s—7 (r=b

such that Im (b)nHom (K,_,0 -0 K;, A)={0}. So, if y=1, then dim A=h,_1+s
—r=s+1. If h,.,=7=1, then dim A=h,_;—7+s+1>s+1.

If y>h,.,, for some subspace L'CK,.; of dim L’=h,_, such that rank (b| L")
=h,,<dim W,_,. Hence, by Sublemma 1.1.2 (a), there is a subspace ACW,_,
of dim A=dim W,_,—h,_;+1=s+1 such that 6(L")"Hom (K,_;0 --- 0 K;, A)={0}.
Thus,

dim Az{

dim (Im (b)f\HOH’l (K'r~1 G0 Kl; A))ér——hr—lzir—l_ir—hr—l .
Alternatively, suppose rank (b)=dim W,_;. By Sublemma 1.1.2 (b), there is
a (s+1)-dimensional subspace W’CWT_I such that
tro1—dim W,_,+s

dim (Im (b)) "\Hom (K,_ 0 --- 0 K, W’))é{
Troy—dim W,_;+1+s

lrer—1—hro1—S+S dim W, _;>s+1)
é{ Irei—lp—hpoy—s-+1+s (dim W,_,=s+1)
lrer— 1l Rpey (hr-1>1)
:{ bty Rl (hea=1).
This completes the proof. Q.E.D.

LEMMA 1.2. Let R", R? be Euclidean spaces on which G acts orthogonal.
Let f: (R™ 0)— (R?, 0) be smooth equivariant map such that jjfeX’(R", RP).

If there is a local submersion k: U — R? (where q<dim (R?)%) of an in-
variant neighbourhood of 0€RP such that ji(kf)e21(R", RY), then there is a
local smooth equivariant map F: (R"XR, (0, 0)) — (R?, 0) such that Jhoke
Q' (R"X R, R?) and ji(Fi)=jif.
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PROOF. Since % is a submersion, there is an invariant neighbourhood U of
0= R? and a local diffeomorphism # of U onto a neighbourhood V of 0= R?
such that the following diagram commutes :

h

ROU > VCR?=RIXR??
* l /
R? (where p is a canonical projection).

Now U is an invariant neighbourhood and % is a diffeomorphism, then we
introduce a G-action on V such that k& is a G-equivariant diffeomorphism. We
note that, in this action, dim V9=dim (R?)°. We explain f'=hf=(f1, -+, [ by
coordinate functions f;. By the hypothesis I(fi, -, fp)=I(f1, -+, f=1(f1,
-+, fo), (where I(f)=I(f,, ---, f,) denote the Boardman Symbol of f=(f,, -:-, fp).

1) The case R*X0VC V¢4 If necessary, by changing the coordinate in
0X R?™%, we may assume that (¢+1)-th coordinate is contained in fixed point
set V° Thus, in the representation fh=f'=(f1, ---, f3), fp+1 is G-invariant
function.

We now define G-equivariant map :

FiWxX(—ee)—V
by :
F'(x, )y=(f1(x), =+, [ox), Faus()+1, fgea), =5 f5(2))
for sufficiently small invariant neighbourhood W x(—ee¢) of (0, 0)e R" X R.

By the definition, it is clear that F’i=f’. Let a be the diffeomorphism of
R™X R defined by a(x, t)=(x, t—fs+:(x)). Then F'a(x, t)=(f1(x), -+, fo{x), t,
Fora(2), =+, fo(x)). Since a(0, 0)=(0, 0), jHo,nFEXI(WX(—e¢), V) if and only
if LoFacsI'(R*XR, R?). It follows from Lemma (2.2) of that j7.oF @
eJI(R"X R, R?) if and only if j;f" X (R™, R?*). (Where f"(x)=(f1(x), ---,
Fox), fara(x), -+, f(x)). By the definition of Boardman Symbol, we have
I(fs o OIS, s o Farn s TOIZISL, o, [o)-

From the hypothesis of the theorem, we have I(f;, -, fo=I(pf")=I1(phf)
=I(kf)=I(f). Hence, jif"<II(R", RP™Y) if and only if jikfeX'(R", RY.

We now define local equivariant map

F:Wx(—ee)—U
by F(x, )=h"'F(x, t).
By the assumpsion, it is clear that ;i oFeQ/(Wx(—ce¢), U) and ji(Fi)=
JART )= (R =]t f.
2) RIX0N VgV By the same technique as the case 1), we construct
local equivariant map
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F: Wx(—ee)—> U such that ji, o FeI(W x(—ee¢), U) and j5(F)=7s5f.

This completes the proof. Q.E.D.
ProOOF OF THE THEOREM 0.3. It is enough to show that for each y=j3f
e¥(X, Y) there is a local submersion k: U — R? (where ¢<dim Y %/») of a
G sm-invariant neighbourhood U of f(x) in Y such that jh(kf)eR/(X, RY (by
and differentiable slice theorem). This fact follows from Lemma
(2.4) of and in exactly the same way that Theorem (2.7) of

follows from Lemma (2.4) and (2.6) of [3]. Q.E.D.
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