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Introduction.

Dold studied in [5, 6] the fixed point index in connection with fibre pre-
serving maps. In this paper we shall consider the coincidence Lefschetz
numbers for a pair of fibre preserving maps, and prove various theorems which
are variants of the Dold’s results. Some of the results in are obtained for
generalized cohomology, but we shall be concerned with only the classical
cohomology. Our method is different from that of Dold, and is the one employed
by Becker and Gottlieb in their study [1, 9] of the transfer homomorphism.

Let p: E— B be a fibre bundle such that each fibre M,=»"(b) (b€ B) is an
oriented compact m-manifold, and such that the local system {H™(M,)},cp is
trivial. For simplicity, such a fibre bundle will be called an m-orientable fibre
bundle. In this paper we shall consider frequently a pair of fibre preserving
maps f, g: E—E’ from an m-orientable fibre bundle p: E— B to an m-orienta-
ble fibre bundle p’: E’—B’. Let h, [: B— B’ denote the maps induced from
f, g respectively. If h=] we define an element A, ,=H™E), called the
Lefschetz coincidence class for f and g (see §2). This class is fundamental in
our study.

For an m-orientable fibre bundle, the integration along the fibre can be
defined, and also an orientation class is defined. We review briefly these facts
in §1. If b is a coincidence point of A and /, we have the coincidence Lefschetz
number A(fy, g»), where fy, go: My— M} (’=h{b)=I1(b)) are induced by f, g
respectively. We study in §2 conditions under which A(f,, g,) is independent
of the choice of b, and in § 3 relations among the coincidence Lefschetz numbers
A(f, g), Ah, ) and A(f;, g,) in the case when B and B’ are oriented compact
n-manifolds. In §4 we deal with A(f, g) for equivariant maps f, g: M— M,
where M is an oriented connected compact manifold on which a finite group
acts. We show in §5 that the coincidence transfer homomorphism 7, , can be
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defined in some cases, and in §6 that the Lefschetz-Hopf trace formula holds
for 7, , under some assumption. In §7 we define the coincidence-coincidence
index on the analogy of the coincidence-fixed-point index in Dold [6], and study
its properties. The results obtained in §2~§7 are generalized in §8 to the
case of fibre bundle having fibre manifold with boundary.

By a manifold we mean a topological manifold without boundary. The
coefficient ring R of cohomology is to be a principal ideal domain.

1. Preliminaries.

If p: E— B is an m-orientable fibre bundle having fibre M, then we have
a homomorphism
pr: HY™E; R)—HYB; R),
called the integration along the fibre. In terms of the spectral sequence, this is

defined to be the composite

Htm(E)==D%etm=Da.m onto

Egc,m

CEY"=HYB; H"M; R)) o HYB; R),

where x4 is induced from «x:H™M; R)— R given by x(a)=<a, [M]>, the
kronecker product of ac H™(M ; R) and the fundamental homology class [M].

The integration along the fibre satisfies the following properties (2], [9]).

(1.1) If B is an oriented compact manifold, then p, agrees with the Gysin
homomorphism induced by p.

(12) If g: B—D is an n-orientable fibre bundle, then ¢p: E—D is an
(m-+n)-orientable fibre bundle and we have

(gph=qp:.
(1.3) For BeH*(B; R) and re H¥(E ; R), we have
P(p*B=1)=B~pir.
N(1.4) Let p: E—Y be an m-orientable fibre bundle with fibre M, and let
¢: EF—FE be a fibre preserving map such that ¢ induces an isomorphism of

H™(M ; R) onto H"‘(A71 ; R) preserving orientation. Then the following diagram
commutes :

=%

H¥E; R)—2 HXE; R)
y P
S‘D*
H*(B; R) H*Y ; R),
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where ¢:Y—B is the map induced by ¢. In particular, this is true for a
pull-back diagram

B i E
p P
Y L B.

(15) Let p;: E;—B; be an m-orientable fibre bundle (i=1, 2). Then
DX Pt EyX E;— By X B, is an (m,-+m,)-orientable fibre bundle, and we have

(D1 X (T 1 XT)=(—=1)"172=TD py 7 X porTe
for y;e H¥(E;; R).
If p: E— B is an m-orientable fibre bundle and B, B, then we have

p: H"™E, Eo; R)—~HYB, By; R)

(Ey=p"YB,)) defined similarly and satisfying (1.1)~(1.5) under appropriate con-
ditions.
Next, we shall define the orientation class of an m-orientable fibre bundle
p: E—B. To begin with we shall recall the following fact ([107], [11]).
Let p:(E, E’)— B be a fibre-bundle pair with fibre pair (M, M’). Assume
that
R if g=m,
HY(M, M’ ; R)::{
0 if g#m,
and the local system {H™(M,, M}; R)},eps is trivial. Then there exists the
Thom class u H™(E, E’; R) which is uniquely characterized by the property
that its restriction on every fibre pair is a preferred generator.
Given an m-orientable fibre bundle p: E— B, we consider the fibre square
EXE and its diagonal dF. Then the projection p,: EXE—E to the first

factor vyields a fibre-bundle pair plz(E1>3<E, E;ﬁE—dE)-%E with fibre pair
(M, M—pt). Since the pull-back p,: E §E—+E is m-orientable and H™M,

M—pt; R)y=H™M; R), it follows that the local system {H™(M,w, Mpywr—e;
R)} g is trivial. Since HYM, M—pt; R)=0 if g=#m, the fibre-bundle pair has
the Thom class, which is denoted by u(p)EH"‘(E?E, E>l§E—dE; R). We call

u(p) the orientation class or the fundamental cohomology class of the fibre
bundle p: E— B.
We put
A(P)=u(p)lE>‘§EEH"‘(E>§E; R),
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and call it the diagonal cohomology class of p: E— B.

If B is a point, u(p) agrees with the orientation class of the manifold M
which will be denoted by u(M)e H™(MXM, MXM—dM; R). Therefore, in
this case, A(p) agrees with the diagonal cohomology class of M which will be
denoted by AM)e H™(MXM; R).

The following properties (1.6) and (1.7) are easily verified.

(1.6) For the pull-back diagram in (1.4) we have

u(P)=(exX &y u(p), AP)=(gx@*A(p).
(1.7) With the notation in (1.5), we have

u(piX p2)=THu(p) X u(p.),

A(py X p)=THA(p1) X A(p») ,
where

TZ:;: (EIXEI, Elel_dEl)X(szEz, EZXEZ—dEg)_"(EXE, EXE'—dE>
By By By By B B

(E=FE,XE, B=B,XB,) is the map interchanging the second and the third
factors.

2. The independence of Lefschetz number from fibre.

Let M and M’ be an oriented compact m-manifolds, and let f, g: M—M’
be continuous maps. Then we denote by A(f, g) the Lefschetz number for f and
g, i.e. the Lefschetz trace of the composite

%

& f
H*(M; Q) —> H¥M’; Q) —> H*(M; Q),
where g, is the Gysin homomorphism induced by g.
Consider the image of the diagonal cohomology class A(M’) under the

homomorphism (f, g)*: H™(M’xXM’)—H™(M). Then the following is known
&1 02D

(2.1) Af, g)=<f, gr*AM"), [MDeZ.

Let p: E—B and p’: E'— B’ be m-orientable fibre bundles, and f, g: E—E’
be fibre preserving maps covering a map h: B— B’. Then we have a homo-
morphism (f, g)* :H*(E’I>3<,E’ ; Ry = H*(E ; R). For the diagonal cohomology class
A(p’), we put

Nre=(f, @*A(p)eH™E; R),
and call it the Lefschetz coincidence class for f and g.
Let C; , denote the coincidence set of f and g:

Cy. o= {ec E|f(e)=g(e)}.
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PROPOSITION 2.1. If Ay z#0 then C; 0.
PROOF. We have a homomorphism

(f, @+ HXE'XE', E'XE'—dE"; R)—H*E, E=Cy.4; R),

and it follows that A, ,=(f, @)*A(p’) is the restriction of (f, g)*u(p’)e
H*E, E—Cy 4; R) on E. Therefore if C;,,=0 then A/ ,=0.

For b= B, let f;, g,: My— M}, denote the maps induced from f, g respec-
tively.

LEMMA 2.2. For the inclusion 1,: My— E, we have

N I8 LM, D=2(fs, g)ER.

PROOF. From a commutative diagram

1
M, ’ E
(for 80) (f, g)
'/>< 4
A/[;z.(b)XAI;,,(b) ik E'XE’

(¢ : inclusion), we get
A\ 5, e=1(f, g*A(p")
=[5, V¥ XV)*A(P" )=S0, go)*AM 05

which proves the result by (2.1).

THEOREM 2.3. Let p: E—B and p':E’'— B’ be m-orientable fibre bundles,
and let f, g: E—E’ be fibre preserving maps covering a map h: B— B’. Assume
that B is pathwise connected. Then we have

(2.2) DN\ 5 e=4(fs, o)1

In particular, A(fs, g») does not depend on b= B.
PrROOF. From a pull-back diagram

I

M, E
pIM, b
(b} L B

and it follows that
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DN 5 e=DIM)AEN 7, e=<F N\ 1. oo LMD =S5, 8b) -

Since B is pathwise connected, this shows (2.2).

A fibre bundle p: E—B is said to be Q-orientable if the local system
{HYp~Yb); Q)}sep is trivial for every ¢q. A Q-orientable fibre bundle having
fibre an oriented compact m-manifold is m-orientable.

We have the following theorem. (Compare Proposition (8.20) in and
Theorem 2 in [3].)

THEOREM 2.4. Let p: E— B be an m-orientable fibre bundle over a pathwise
connected space, and let p’:E’'— B’ be a Q-orientable fibre bundle over a
paracompact Hausdorff space such that each fibre is an oriented compact m-mani-
fold. Let f, g: E—E’ be fibre preserving maps covering h, l: B— B’ respec-
tively. Then A(fy, g») does not depend on b&=Cy, ;.

Proor. Take a lifting function p: E';B’I—»E” for the fibre bundle

p': E’—B’ ([1I]). For each path ¢< B’’, define a continuous map ¢, : p’~'(¢(0))
—p' " a(1)) by @.(e)=p(e’, o)D)

Let b, b,=C,.;, and take a path w= B! such that w(0)=b, and w(l)=b,.
Consider the pull-back #: E—1 of p: E— B under w:/— B. Define f”, g’ E—E’
by

f(t, e)=¢, (fle), g'(t, e)=g(e),

where t€], e E, and o, B’ is defined by

o(s)=

{ ho((1—-2s)t) if 0=s=1/2,
lo((2s—1)¢t) if 1/2=s=1.

It follows that f’ and g’ are fibre preserving maps covering [w:[— B’, and
hence by [Theorem 2.9 A(f,, g, does not depend on t=I, where f}, gi: p~'(t)
— p""Ylw(t)) are induced from f’, g’ respectively. In particular, it holds that

(2.3) Afo g0=2A/1, 8D .

Regard p~(0)=p-'(b,) and p~'(1)=p~(b,) via the projection to the second factor.
Then we have

f::zgoo'ifbi: gingl
for i=0, 1. Since p’: E'— B’ is Q-orientable, ¢¥, : H*(p’'"(b}); Q)—H*(p" (b)) ; @)
is the identity, where bj=h(b;)=I(b;). Consequently it holds that
(2-4) Z(f;’ g:):'z(fbl’ gb1> .

From (2.3) and we get A(fo, 85,)=A(f5,, gv,). This completes the proof.
ExaMpLE. The following is an example of by, b:€Cy,; With A(fo, o)
A(f5,, gv,)- (cf. the final paragraph in [5]). Let E denote the quotient space
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obtained from the 3-dimensional torus S'xS'XxS! by identifying (z;, z,, z;) With
(—2zy, Z3, Z5), and define p: E—B=S' by p([z, 25 2:])=2}. Then we have a
fibre bundle over S* having fibre S'XS*. This fibre bundle is 2-orientable, but
it is not @Q-orientable. Define a fibre preserving map f: E—FE by f([zl, 22, Z3])
=[Z,, Z,, Z5], and put g=id. In this case, & is the reflexion on S' and [=id,
and so Cp,; is two points =1. We see that A(f,, g,)=4 and A(f-;, g-1)=0.

8-

3. Product formula for Lefschetz numbers.

We shall first prove
PROPOSITION 3.1. Let p: E—B be an m-orientable fibre bundle over an

oriented compact n-manifold. Then E is a compact (m-+n)-manifold oriented
canonicelly, and it holds that

(DX P ABY—A(p)=AE) EXE

for the diagonal cohomology classes A(B)e HY(BXB; R), A(p)c—H’"(E;gE i R)
and A(EYe H™™MEXE ; R), where (pXp)*: H¥(BXB; R)—»H*(E>J§E ; R).

PrROOF. The first conclusion can be proved easily by making use of
spectral sequence.

We say that a subset C of M is a small cell if C has an open neighborhood
OCM such that (O, C) is homeomorphic to (R™, V™), where V™ is the closed
unit ball. Take a neighborhood T of dE in EXE such that T.,={e’€E|(e, &)
T} for each e= E satisfies the following condition: there exist a coordinate
neighborhood (U, %) for p: E— B and a small cell C in M such that »: UXM
=~ p~Y(U) maps p(T.)xXC onto T,. Moreover, take an open neighborhood N of
dB in BXB such that NC(pxX p)T and N,={b’eB|(b, b')=N} is a coordinate
neighborhood around » which is homeomorphic to the open unit n-ball V™. Put

W=(pX p)"(N).

The projection p,: EXE—FE to the first factor yields a fibre-bundle pair
j)lz(E>§E, E§E-T)HE with fibre pair (M, M—C), and also a fibre-bundle

pair p,: (W, W—T)—E with fibre pair (V*X(M, M—C)). Since p: E—B is
m-orientable, so is the pull-back ;ble?E—»E. It follows that pl:E?E—»E

is a subbundle of p,: W— E and the inclusion E>§E —W is a fibre homotopy
equivalence. Therefore p,: W— E is also m-orientable. From these facts and
H™M; R) if g=m,

HYM, M—C; R)z{
0 if g#=m,
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H™V*XM; R) if q=m,
HY(V*xX(M, M—C); R):{

if g#=m,
we see that there exist the Thom classes

uo(p)EHm(E>1§E, E>§E~T; R),

3.1
a(pye H™(W, W—T; R)
such that
uBEXE, EXE=T)=u/p),
HPIEXE, BEXE=T)=udp),
and so
(3.2) a(p)l E>§E:A(Z)) .

We have the following commutative diagrams :

(pXp)*
H™"(BXB, BXB—dB)

H™(W, W—E?E)

¥ Xl
H™B, B—pt)— H® V", V*—pt)—> H"(V", V*"—pt)XM),

H"(W, W—EX E)QH"(W, WeT) —> [Im+n(W, W—(EXENT)

~— \]
H"(V", V*—pt)XM)QH™V*X(M, M—C)) —> H™*™(V"XM, V*"XM—pt xXC)
«— H™™W, W—dE) <— H™™EXE, EXE—dE)

<~— H™™V*XM, V"XM—pt) <— H™™E, E—pt),

where unlabeled arrows are induced by inclusions, B and E being identified
with bX BCBX B and eX ECEXE. From these diagrams it follows that

(33) (X py*u(By—a(p)=uE)|(W, W—(EXENT)),

where u(B) and u(E) are the orientation classes of B and E. This and (3.2)
imply the second conclusion, and the proof is complete.

The following theorem generalizes the product formula on Euler numbers.
(Compare also (2) of p. 162 in [4].)

THEOREM 3.2. Let p: E—B and p': E'— B’ be m-orientable fibre bundles
over oriented compact n-manifolds, and let f, g: E—E’ be fibre preserving maps
covering h: B—B’. If B is connected, it holds that

(34) Af, 8=Ah, WA(fy, g»)=(deg My(B)A(fs, gu)
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for b€ B, where y(B’) is the Fuler number of B’.
Proor. The following diagram commutes :

’ ’ X p*
B B — LY gy H*(E' X E)

(f, & (f, g)*
p*

H*(B) ~H*(E).

(h, h)*

Therefore it follows from [Proposition 3.1 and [Theorem 2.3 that
plf, @*AE)=pi(f, g)*(A(E")| E’ XE")

=p(f, @*(p" X p'V*AB")—A(p")
=p(p*(h, W)*A(B' )= (f, &)*A(p")
=(h, *AB =Py ¢
=A(fu, go)h, h)*A(B’).
For the map ¢: B— pt, we have
A1, @=(qpi(f, gr*AE"),
ACh, h)=q,h, h)*A(B’).
Therefore it holds that
A, )=XSv gu)ah, h)*A(B")

=2(fo, g)A(h, h).
Since it follows that
A(h, h)y=<(h, W*A(B"), [B]>

={h*d*A(B"), [B])=<d*A(B"), h«[ BT
=(deg h){d*A(B"), [B"]>=(deg h)x(B"),

the proof is complete.

can be generalized to the case f and g cover different maps.
To begin with we shall recall some facts on the coincidence index.

Let A and M’ be oriented compact m-manifolds, and let f, g: M—M’ be
continuous maps. Let V be an open set of M such that the coincidence set
C=Cyy,qwv of flV, g|V:V—-M’"is compact. Then we put

Fe=<{S1V, glVY*u(M"), oc>EZ,
where (f|V, g|V)*: H*"(M'XM’, M'"XM’'—dM")—H™(V, V-C) and o, is the
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fundamental homology class around C. I%, is called the coincidence index of
f1V and g|V. The following properties are easily verified (cf. [12].

(i) If C=0 then I} ,=0.

(ii) 'If K is a compact set such that CCKCV, then

17, =f1V, gl V)*u(M'), ok .
(iiiy If V’ is an open set such that CCV’CYV, then
17, =17, .

(iv) If V is represented as a finite union of open sets V; such that every
Ci=Cjy, giv; 18 compact and C;NC;=0 (i+#), then

Vs
If= S 1.

W) IF =2/, g

Let C, be a pathwise connected component of C; ,. Take an open neigh-
borhood V of C, such that VNC, ,=C,. Then, by (iii) above, I}, does not
depend on V. We write I(f, g;C,)=I} . and call it the coincidence index of f
and g around C,.

The following theorem generalizes [Theorem 3.2, and is a version of Theo-
rem (8.18) in [5].

THEOREM 3.3. Let p: E—B and p’: E'— B’ be m-orientable jibre bundles
over oriented compact n-manifolds, and let f, g: E—E’ be fibre preserving maps
covering h, l: B— B’ respectively. Let {C,} denote the set of pathwise connected
components of Cy,;. Then it holds that

(3.5) A, &)= X I(h, 15 C)A S, 8,)

for b,=C,.
In particular, if B is connected and p’: E'— B’ is Q-orientable, then we have
(3.6) Af, @)=k, DA(fo, g0)

for beCy, .

ProOoOF. First we notice that the following facts: (i) Since C,,, is compact,
the set {C,} is finite and all C, are compact. (ii) A(fs,, g»,) does not depend on
b,eC, by and A(f,, g in the particular case does not depend on
beCh,i by

It follows from the proof of that there exist an open neigh-
borhood N’ of dB’ in B’X B’ and an element A(p’)e H™(W’) satisfying

3.2y A1) E"XE"=A(p),

(3.3 (p" X p'V*u(B')—A(p")=u(E") (W', W —E’ >B<,E’) ,
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where W’ = (p’ X p')"(N’) and (p’ X p'y*: H"B' X B’, B’ x B’ — dB') —
H*W', W'—E'XE"). In fact, if we put A(p)=a(p’)|W’ then (32) and (33)

imply (3.2)" and (3.3)’.

Take a family {U,} of disjoint pathwise connected open sets in B such that
U,NCy,1=C, and (h, DU,CN’. Put V,=p Y(U,), K,=p *(C)), f,=7'V,, g.=g| V..
Since

Cf,gCU I/vy ny,g,,CKvy
y
it follows from the properties of coincidence index mentioned above that
Xf, 9=I5 =T Ir

= 2 Sy g8)*u(E"), 0g > .

Therefore it suffices to prove
3.7) {Sor g)*u(E’), og p=I(h, I; CA(fs,, gb,).

Consider the following diagram :

y *
HH )=t HNE, E—K)— = HX(V., V.~ K))
Py P Pu
i *
H*(B) = - H*B, B—C,) H*U,, U,—C,)

~

where p,=p|V, and j, k are inclusions. For y= H*(E, E—K,) we have
kR*7, 0k p=<1, WLED={*r, [ED
={pug*r, LBD=<7*pi1, [BD=Xp1T, kxoc,>
=LR*PT, 0c,)=L{Puk*T, 0c) .
Therefore it holds that
(3.8) LS @Y u(E"), 0g,p=<pu(fs, g)*u(E"), o’cy>.

From a commutative diagram
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H¥E'XE', E'"XE"—dE’)

i* (flv’ g»)*
' (fo, 8
HXW', W’-—E'2<E’) HYV,, V.~ K,)
| ,
("% p')* P
(h,, 1L)*
H*(B'XB’, BxB'—dB") -~ H*U,, U,—C,)

(1 : inclusion) and (3.3), it follows that
(for @*u(E)=(f,, g.)*(p"X p"V*u(B')~A(p"))
— p¥(hy, LY*u(B))~(f,, g.)*A(p").

From a commutative diagram

* )
HX(W") U &) HX(V.,) P —= H¥(U,)
;% i i*
v ) ) (P K,)*
HXE' X E") S 87 g, LS HXC,)

(i: inclusions), (3.2)" and it follows that
pv!(jw gv>*5(p’):2<fb,’ gby)l ’

because C, and K, are pathwise connected.
Consequently we have

Pl g)*u(E")
= pu(pi(hs, @)*u(B)~ (1., g)*A(p")
=(hy, ¥U(B)~pu(for 8)* AP
=2Afs,» g, )N, LY*u(B’).

By this and it follows that

(S &8)*u(E), 0k,
=Afv,» Go,)X(hy, L)*u(B), 0c.>
=Afs,, 2o )I(h, 1;C.).
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Thus [3.7) holds, and the proof of (3.5) is comblete.
Since
Ah, h=21(h, I;C.),

(3.6) follows from and (3.5). This completes the proof.

4. Lefschetz numbers of equivariant maps.

An application of proves the following theorem. (Cf. Theorem 4
in [4])

THEOREM 4.1. Let M and M’ be oriented compact m-manifolds on which a
finite group Il acts, and let f, g: M— M’ be equivariant maps. Assume that M
s connected and the action on M is free. Then A(f, g) is divisible by the order
[II| of II.

Proor. (I) First we consider the case when Il acts by orientation pre-
serving homeomorphisms.

Take the fibre bundles

b EH>I§M—>BH, P E[I;]<1\/[’—>BH
associated to the universal bundle of I/. It follows that p and p’ are m-orien-
table, and there are fibre preserving maps

f:za’ﬁf, gzzd%ig: EH%M—»EH;;M
covering 1d : BIl — BII. For the Lefschetz class Ay,’gEHm(EH?;]\/I), it holds

by that
a*N7.5 LMD>=Af, @),

where 1: M—EIl ;]<M is the inclusion.
Since the action of I/ on M is free, there is a natural isomorphism

H*(EI];;M)%H*(M/H)

under which *: H*(EI];;M)—»H*(M) corresponds to w*: H(M/II)— H*(M)
induced by the projection 7 : M—M/Il. We know
a*H™M/IDcC | IT\H™M).

Therefore A(f, g) is divisible by |/I7].

(II) Next we consider the general case.

For N=M and M’, consider the product manifold S'X N of S'={zeC||z|=1}
and N, and define an action of /I on it by
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(z, «-x) if « preserves orientation,
a-(z, x):{ ) _

(z, a-x) if a reverses orientation,
where a<]l, ze S, xeN. It follows that II acts on S'XN by orientation
preserving homeomorphisms and that the action on S!'XAf is free. By identi-
fying xeN with (1, x)&S*XN, N may be regarded as an invariant subspace
of S'XN. We have equivariant maps 'fp,, idXg:S'XM—S'XJM’, where
pa: S'XM—M is the projection to the second factor. Therefore, by the fact
proved in Case I, A(V’fp,, id X g) is divisible by [I]]. Since

(4.1) AW pay 1d X g)=A(f, &)
as is shown in the following, A(f, g) is divisible by |II].
A1 fp,, 1d X g) is the Lefschetz trace of the composite

(1d X g 1

H*S'>M: Q) HYS'YX M’ ; Q) —> H*M’: Q)

* 3
—> H*(M; Q) — H*S'XxXM; Q),
and a diagram ‘

T+ =4 H*(M")
¥ pt
S X M) —— B s )

is commutative, as is easily checked. Therefore A(i'fp., td X g) is the Lefschetz
trace of f*I"*p¥fg,=s*g,. This completes the proof.

REMARK. Although no theorem of the type of appears in
{5, 6], the author was informed from Dold that Theorem (8.18) in yields
immediately the following result: Let X be an ENR on which a jinite group II
acts freely, and let f: X— X be an equivariant map such that the fixed point set
of f is compact. Then the fixed point index of f is divisible by |II'!.

5. Coincidence transfer homomorphism.

Let p: E—B and p’: E’— B’ be m-orientable fibre bundles, and let f, g:
E— E’ be fibre preserving maps covering a map h: B—B’. Then, after the
definition of the fixed point transfer homomorphism due to Becker-Gottlieb [1],
we call the composite
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~Nrse e b ,
H*(E; Ry—> H*(B; R)

(5.1) H*E; R)

the coincidence transfer homomorphism of f and g, and denote it by z, ,.

THEOREM 5.1. The coincidence transfer homomorphism satisfies the follow-
ng properties:

(i) If HXE; R) is regarded as an H*(B; R)-module via p*: H¥(B; R)—
H*(E; R), then 7 4 1s an H*(B; R)-homomorphism.

(i) If B is pathwise connected, we have

Tf,g<1):/2<fb> gb)) (bEB)-

(i) (coincidence property) If ty o#0 then Cy ,#0.
(iv) (pull-back property) Let

E ¢ E E’ L E’
p p P’ b’
Y Y - B, Y’ LAY §

be pull-back diagrams, and let k:Y—Y’ be a continuous map such that ¢"k=he.
Define f, §: E—E’ by

(3, ©=(k(y), f(&)), &, )=(k(y), g(e))
(veY, eeE). Then the following diagram commutes:

o*

H*(E; R) HX(E; R)
(5.2) Tr.g TR
90*
H*B; R) ~H*Y ; R),

(v) (product property) For 1=1,2, let p;: E;—B; and p;: E;—B; be
ms-orientable fibre bundles, and let f;, gi: E;—E; be fibre preserving maps
covering hy: B;— Bj. Then the following diagram commutes:
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X
H¥E,; RYQH*(E,; R) H¥E,XE,; R)
(53) Tf1'81®rf2’52 - F1%f2 81783
) |
H*(B,; RYQH*(B,; R) + H¥(B, X B;; R)

ProoF. (i) follows from (1.3), and (ii) follows from (i) is
obvious from [Proposition 2.1. (iv) and (v) are easily shown by making use of
(1. 4)~(L7).

When we do not assume m-orientability of fibre bundle, we have the fol-
lowing theorem.

THEOREM 5.2. Let p: E— B be a fibre bundle having fibre M a connected
oriented compact manifold, and let f, g: E—FE be fibre preserving maps cover-
ing id: B—B. Then there exists a homomorphism ts ,: H¥E ; R)—H*(B; R)
which agrees with s , in (5.1) if p is m-orientable, and which satisfies (i), (ii),
(iii) in Theorem 5.1. Furthermore the following (iv) and (v) hold.

(iv) Let
E
L
B

be a pull-back diagram, and define f, §:EN—>EN‘ by

4

<32

~

P
©

F(y, 0=(y, f(e), &y, &)=(y, g(e)

(yeY, eeE). Then we have the commutative diagram (5.2).

(v) For i=1, 2, let p;: E;— B; be a fibre bundle having fibve M; a con-
nected oriented compact manifold, and let f;, gi: E;—FE; be fibre preserving
maps covering id : B;— B;. Then we have the commutative diagram (5.3).

ProoF. We begin with constructing from p: E— B an (m-1)-orientable
fibre bundle

p:LE—B

with fibre S'X M, where m=dim M and S'={z=C]||z|=1}.
Take an atlas {(U;, »,)} jes for p: E— B, and consider the topological sum

U S'XMxU;.

jed



Coincidence Lefschetz numbers 767

Identify (z, x, H)eS'XMXU; with (2, x/, b )ES'XMXU} if b'=b, p; ,(x")=
7;x), and z’=z or Z according as 7;';7;,: M— M preserves orientation or
not, where %;,: M— p~%(b) is the homeomorphism defined from »;: MXU;—
p~*(U;). Then LE is defined to be the quotient space, and p is defined by
pl(z, x, by]=b, where [(z, x, b)]JeLE is represented by (z, x, b)S'XMxU,.
It is obvious that p is (m-1)-orientable fibre bundle having fibre S'x M.

By identifying »x, b)e E with [(1, x, b)J€LE, p: E—~ B may be regarded
as a subbundle of p: LE— B. There is a fibre preserving retraction r: LE—FE
given by r[(z, x, b)l=nix, b) if (z, x, H)ES'XMXU,.

We have a fibre preserving map

ifr: LE—LE
covering id: B— B, where i: E— LE is the inclusion. Define
Lg:LE—LE

by Lg({(z, x, b)])=[(z, y, b)], where (z, x, b), (z, ¥, ))ES'XMXU;, and y=
7758705(x). This is also a fibre preserving map covering id : B— B.
We have now the coincidence transfer homomorphism 7,y 1,: H*(LE ; R)
— H*(B; R). Using this, we define z,,, to be the composite
T*

(5.4) H¥E; R)—> H*(LE; R)

Tifr.Lg

H*B; R).

If p: E-— B is m-orientable, then it follows that p=¢Xp: S'XE — pt X B=2DB,
ifr=constXf and Lg=id X g. Therefore, by (ii) and (v) of [Theorem 5.1, we
have

Tifr £e? (V) =Tconstx s, iax g(LX7T)
—Tconst, id(l) X Ty, g<r>:1 X Tf, g(r)
:Tf, g<r)

for ye H¥(E ; R). This shows that the new 7, , agrees with the old =, , if p
is m-orientable.
Next, we shall show that 7, , satisfies the properties (i)~(v).
(i) For B H*(B; R) and y= H*(E; R), we have
Ty, e(D*B—1)=Tssr L7 (p*B~7)
=Tifr Lg(ﬁ*ﬁvr*r):ﬁvfifr, Le?*7
:ABVTf:gT

by (i) of [Theorem 5.1l
(i) The restriction of ifr, Lg on fibre are
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Is L

pe
S'X M, ——> M, —> M, —> S'X M,

degb
SIXIWZ, — SIXA4D

respectively. Therefore, if B is pathwise connected, we have
Tf,g(D:—“Tifr,Lg?’*(l):Tifr,Lg(l)
=A(tf oo 1d X go)=A(fv, &v)

by (ii) of [Theorem 5.1 and [(4.1),

(iiiy We have Cysp,1,=Cy ,. Therefore, if C, ,=0 then i, ;,=0 by (ii)
of [Theorem 5.1, and so 7, ,==0.

(iv) Take an atlas {(Uj, )}, for p:E—B, and consider an atlas
{(V,, )} jes for P E—Y defined by Vj:go‘l(Uj)hj Cix, »=(y, nix, ¢(y)) with
yeY, xM. Construct p: LE— B and (p)": LE—Y by making use of these
atlases. Define (,b:(LE)N-»LE by

Oy, Uz, x, D=[(z, x, ¥)],

where yeY, (z, x, ))eS'XMXU; and (z, x, y)eS'XMXxV;. It follows that ¢
is a bundle isomorphism of (p)~:(LE)—Y to () : LE~3—>Y, and that (if7)~,
(Lg)~: (LEy—(LE)~ correspond respectively to ifr, Lg: LE—LE under .
This and (iv) of show

T?,Z@*:T(UT)N, ch)~S5*T’*:SD*Tifr, Lgr*:SD*Tf, g-
(v) Define ¢: LE,XLE,—S'XL(E,XE;) by

90([(21, x5, 007, [(ze, x4, 02)]1)
:<2122) [(Zly (-xly x2)) (bh b?))]))
where (z;, x4, b)ES' XM x U}, {(Ui, 99} jesr» being an atlas for p,: E;— B;
(=1, 2). It follows that ¢ is a bundle isomorphism of p;Xp,: LE;XLE,—
B X By to ¢X(p1X ps)" 1 S'XIL(E X Ey)— pt X By X B;=B, X B,, and that (i,f7r1) X
(tafarse), LgiXLgy: LE;XLE,—~LE,XLE, correspond respectively to constX
Wi X fo)r, tdXL(gi1X gy): S'XL(E,X Ey)— S*}X L(E,XE,) under ¢. This and (v)
of show

Tr e (TR Try g,(T2)
=Tiyf e L T D) X Tiypyry, L2735 (72)
S=Ti firixigfary LeyxLeolT1X T ¥ (71X T2)
=Ticrixsn Ligyxap? T T1X72)

=Tk sy gyxas(T1X72) -
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6. Lefschetz-Hopf theorem.

In this section we show that under some assumption a Lefschetz-Hopf trace
formula holds for the coincidence transfer homomorphism z,,, in [5.1)

Let p: E— B be a fibre bundle having fibre M a compact manifold, and
assume that p has a rational cohomology extension of the fibre, i.e. a linear
map 0: H¥(M; Q)— H*(F ; Q) such that the composite

7 i
HYM;; Q) —> HXE ; Q) —> H*(My; Q)
is an isomorphism for each b= B. Then, by the Leray-Hirsch theorem 1),
an isomorphism
H*B; Q)QH*M; Q)=H(E ; Q)

of vector spaces is given by
BRar— p*pf—ba.

The following theorem is a version of Theorem (6.18) in [5].

THEOREM 6.1. Let p: E—B and p’': E'—B be m-orientable fibve bundles
over an oriented compact manifold B, and assume that p’ has a rational
cohomology extension of the fibre. Let f, g: E—E’ be fibre preserving maps
covering id : B—B. Then the image of Y€ H*E ; Q) under =5 ,: H¥E ; Q)—
H*(B; Q) equals the Lefschetz trace of the composite

I ™~ g
H*E"; Q)—> H¥E; Q) —> H*(E; Q) —> H*(E'; Q)
regarded as an H*(B ; Q)-endomorphism, where g, is defined by means of the
canonical orientation of E and E’.

We begin with

LEMMA 6.2. If p: E—B is an m-orientable fibve bundle over a compact
manifold B, and p;: E>‘§E—+E denote the projection to the i-th factor (i=1, 2),
then the composite

L \_,A

b
H*E: R) —> HYEXE; R)

D
H*(E>§E;R)—I—>H*(E;R)

is the identity.
Proor. If we consider the inclusion of each fibre

i

M -~ EXE
B

D | b1
pt ~F,
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it follows from the definition of A(p) that
pulA(p)=pa*A(p)=C*A(p), M D=1
and hence b A(p)=1. Therefore we have
pu(pFa—A(p))=a— puA(p)=a
for ac H*(E ; R). Thus it suffices to prove
pra—A(p)=pFa—A(p).
It follows that there exist an open neighborhood W of dE in EigE and a
homotopy p.|W=p,|W: W—E (see p. 81 of [7]). Hence it holds that
(p1)*=(po0)* : HXE; R)—~H*W; R),
where 1: W—»E%(E is the inclusion. Therefore, for the excision
¥ H*(E?E, E§E~dE; Ry=H*(W, W—dE ; R),
we have
F(pra—u(p))=1*pfa—i*u(p)

=*pFa—1*u(p)=1*(pFa~—u(p)).
Since this shows that
pra—u(p)=pya—u(p)

in H*(E%< E, E?E—a’E ; R), we get the desired result by restricting to H*(E igE).

PROOF OF THEOREM 6.1. Let 8: H¥(M’'; Q)—H*(E’; Q) be a cohomology
extension of the fibre for p’: E’—B. Let p;: E’;{E’—»E' denote the projection

to the i-th factor (=1, 2). Then p¥0: H*M’; Q)HH*(E’?E’; Q) is a coho-
mology extension of the fibre for p,: E’%;E’—»E’. Therefore an isomorphism
HY(B; Q@H*M'; Q@H*M'; Q=H*E'XE'; Q)
of vector spaces is given by
BRaiQay— pip™* B p¥o— piba, .
Take a basis {a;} of H*(M’; @), and put
Alp")= 2 pp"* Buy— pibai—pila;

with 3,;€H*(B; (). From a pull-back diagram
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E'XE' P E’
B
2 I
E’ d - B

we have

pup¥=p"*p1.
By we have

pu(—A(p' ) pF=id .
Thus, putting

o=7—f*0a;,

it follows that
g(r—r*0as)
=pu(ps gro—A(P"))

= Z pu(pFgioo=pFp"* Brs— pibar—piba;)
= 3 (=113 pu (¥ (g1 =)~ PF(p"* Br—Oats)
= 2 (=D 41D p¥(giov—bas)— p"* Buy—Oexs
= T (—1yprip*(pi(gioe—ba)~Br)~bax,

where ¢,;=|8:;]+la:|. Since {fa;} is an H*(B; Q)-basis for H*(E’; @), the
above expression shows that the Lefschetz trace of the H*(B; Q)-endomorphism
a(r=)f* agrees with

3 (1D p{(gi0 00—
= 3 (=% pigor—g*0a)— By
- lZ; (—1)'#ii' p (o~ g*0a;)—Bi; -

On the other hand, it follows that
Ts, (= p:(r—(f, g*A(p"))
= I p(r—(f, g (P D™ iy b0 pifay)

= 123 (7~ p*Biy—f*0a;—g*0a;)
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= zZ; (—1)5‘:;“'j“j);(divg*ﬁaj)Vﬁij .

This completes the proof.

COROLLARY 6.3. Let p: E—B and p’: E'— B’ be m-orientable fibrve bundles.
Assume that B is an oriented compact manifold, and that p’ has a rational
cohomology extension of the fibre. Let f, g: E—E’ be fibre preserving maps
covering h: B—B’. Then the tmage of yc H¥(E; Q) under t;, ,: H¥E ; Q)—
H*(B; Q) equals the Lefschetz trace of the composite

F _

H*(Bng'; Q) — H*(E; Q) ~—r> H*(E, Q)i H*(Bz/\’E’ ; Q)
regarded as an H*(B ; Q)-endomorphism, where B; E’ is the fibre product of
h:B—B and p': E'—B’, and f, & are given by f(e)=(p(e), f(e)), F(e)=(p(e), g(e))
(e E).
ProoF. It follows from the pull-back property in that
7. 5=75 . H¥E; Q)—H*(B; Q).

The pull-back p,: B}>3<,E’~—>B of p': E’—B’ under h:B-—B’ has a rational
cohomology extension of the fibre, and f, g: B]>3<, E'—F cover id: B—B.
Therefore we get the result by [Theorem 6.1.

7. Coincidence-coincidence index.

Let p: E—B and p’: E’— B’ be m-orientable fibre bundles over oriented
compact n-manifolds, and let f, g: E—E’ be fibre preserving maps covering a
map h: B—B’. Let ¢: E— B be a continuous map. With these data we shall
define an integer J(f, g; ¢), called the coincidence-coincidence index of (f, g; ¢),
as follows. This is a variation of the coincidence-fixed-point index in [6].

Consider the diagonal cohomology class A(B)e H"(B X B), then we have

(p, ©)*A(B)e H(E)
and hence

(b, @) AB)~ Ny ,EH™ME).

Giving E the canonical orientation, we define

J(f, g5 @)=p, @)*AB)~N\y.o [ED .

PropoOSITION 7.1. If J(f, g; ¢)#0 then Cp ,NCy, z#0.
Proor. Consider the orientation classes u(B)e H*(BX B, BX B—dB) and
u(p’)eHm(E’;g E’, E’1>3<,E’——dE’). Then we have elements (p, o)*u(B)e
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HYE, E—C,,,) and (f, g)*u(p’)c H™E, E—Cy,,). It follows that (p, ¢)*A(B)—
(f, @)*A(p’) is the image of (p, @)*u(B)—(f, g)*u(p’)eH™ ™(E, E—(Cp,oNCy. )
in E. Therefore if Cp, ,N\Cy, ;=0 then J(f, g; ¢)=0. This proves the result.
The following is a version of Theorem (2.1) in [6].
THEOREM 7.2. J(f, g; ¢) equals the Lefschetz trace of the composite

H*B; Q) fi HXE; Q) g H*B; Q).
Proor. It is known that
(B~IBINAB)=(—1)8
for e HY(B; R) ([(10]). Therefore we have a commutative diagram

Hq(E) V/\f»g - Hom(E) 2 Hq(B)
~[E] ~[E] \A(B)
—1)ym —_ , —1)
Hyonoi B) — 226 oy py Ve ),

‘Take a basis {3;} of H¥(B; @) and put
AB)= % ¢i;8iX B, e HW(BXB; Q)
2%

with ¢;;&Q. 'Then, in virtue of the above diagram, it follows that
T5. e (BA=D@*Bi— N1, e)
=(—=1)'"BI D po (A 5 g~ (0* B~ LEDNA(B)
=(—1)1simED izk cixlBu PN\ 5. e~ (@*B~LED)) B
=(—1)'# iZ; cinlp*Br—0*Bi— Ny o LED Be.
Therefore the Lefschetz trace of 7, ,¢* agrees with
iEjCiﬂf)*ﬁi‘“@*ﬁjv/\ o LED
={(p, @)*AB)—=Ay.q LED
=J{f, g;¢).

This completes the proof.
COROLLARY 7.3. If ¢=¢’-p: E—B with ¢': B—>B and B is connected,
then
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J(T, g o)=2¢")ASs, 80,

where A" )=A(¢’, id) is the Lefschetz number of ¢'.
PrOOF. By J(f, g; ¢) equals the Lefschetz trace of the com-

posite
1% *

14 b Tr g
H*(B; Q)—> H*B;Q)—> H¥E; Q)—> H*B; Q),

which send B to A(f3 g»)¢’*(8) by [Theorem 5.1. Therefore we have the result.
COROLLARY 74. If B=B’, h=1d and B 1is connected, then

J(s &5 )=/, &)

holds for any ¢: E— B homotopic to p: E— B.

Proor. We have J(f, g; @)=x(B)A(fs, g») by [Corollary 7.3, and we have
2f, ©=x(B)A(fs, g») by Therefore J(f, g; @)=A(f, 2).

Let p: E— B be a fibre bundle having 6: H*(M; Q)— H*(E ; )), a rational
cohomology extension of the fibre. Then, for a homomorphism p: H¥*(B; Q)—
H*E: Q) and an H*(B; Q)-endomorphism y: H*(E ; Q)— H*(E ; )), we define
an endomorphism {p, v} of H*(B; Q)QH*(M; Q)=H*E ; Q) by

{0, V}(BRa)=pp—vba .

For ye H¥(E ; Q), let o.(r) denote the Lefschetz trace of the composite

HAE ; Q) —> HH(E; Q) —— HYE ; Q)

regarded as an H*(B; Q)-endomorphism. Then we have a homomorphism
o,: HXE; Q)—H*(B; Q).

The following is proved in (3.6) in [6].

LEMMA 7.5.- The Lefschetz trace of {0, v} equals that of o,p.

The following is a version of Proposition (3.5) in [6].

PROPOSITION 7.6. Assume that B=DB’, h=id, and both p and p’ have
rational cohomology extensions of the fibre. Then J(f, g; ¢) equals the Lefschetz
trace of the endomorphism {o*, f*gi}.

PROOF. By the definition, o+, ¢*B (BEH*(B; Q)) is equal to the Lefschetz
trace of the composite

& . f* p*p—
HXE; Q) —> H¥E"; Q) — HXE; Q)

H*E; Q)
regarded as an H*(B; @)-endomorphism. Therefore, by [Theorem 6.1 we have
O peg, @*=1y, g0 H¥(B; Q)— H*(B; Q).

Since
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Tr(o p4g, o*)=Tr{p* f*g}
Tr(zy, s0*)=J(f, g; ¢)
by Lemma 7.5 and [Theorem 7.2, we have the result.

8. Generalizations to manifolds with boundary.

In this section, the theorems proved in the preceding sections will be
generalized to the case of fibre bundles having fibres manifolds with boundary.

Let M and M’ be oriented compact m-manifolds with boundary, and let
/> g: M— M’ be continuous maps. If g maps the boundary M in the boundary
M’, then the Lefschetz number A(f, g) is defined, similarly to the case of
manifold without boundary, to be the Lefschetz trace of the composite

*

& S
H*(M ; Q) —> H*(M'; Q) —> H*(M; Q).

For a compact manifold M with boundary, let DM denote the double of M,
i. e. the quotient space obtained from the topological sum M\UM. of M and its
copy M_ by identifying x< M with its copy x.€M_. DM is a manifold, and
if M is oriented then DM is canonically oriented. There is a retraction
r: DM— M defined by r(x)=7(x_)=x (x&M). For a continuous map g: (M, M)
—(M’, M”"), the double Dg:DM-—DM’ of g is defined by (Dg)x)=g(x),
(Dg)x-)=g(x)- (x€M).

LEMMA 8.1. Let M and M’ be oriented compact manifolds with boundary,
and let f: M—M and g: (M, M)—(M’, M) be continuous maps. Then, for
i'fr, Dg: DM— DM’, we have

Af, @=A0'fr, Dg),

where 1" : M'— DM’ is the inclusion.
PrRoOOF. Consider a diagram

. Dg),
HAOM) — E(DM) ~2E2 pr DA
i* i/*
id
&
HYM) H*(M?)

of cohomology with coefficients in Q. Since "*(Dg),=gi* as is shown below,
the diagram commutes. Therefore we have

A0 fr, Dg)=Tr(r*f*'*(Dg))
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=Tr(f*"*(Dghr*)
=Tr(f*g)=A/, ).
The following diagram commutes :

¥

H*DM) H*(M),

~[DM] ~[M]
Jx kx

Hy(DM) ———— Hy(DM, M.) H (M, M)

where ¢, j and k are the inclusions. Consider the similar diagram for M’, and
consider the homomorphisms between the corresponding groups induced by g
and Dg. Then, for ac H¥DM ; R), we have

kx(i"*(Dg)a~LM' D)= ji(Dgha—~L[DM"])
= D@(a~LDM D=(Dg)xjs(a~LDM])
=(D@)skx(*a~[M])= kigs(T*a~[M])
=ki(gi*a~[M"]).

This shows "*(Dg),=g;1*, and completes the proof.
Let p: E— B be a fibre bundle having fibre M a compact manifold with
boundary. We write
E: U Mb N
bEB
and call it the bhoundary of E. Then the double DE of E is defined similarly
to the double of a manifold with boundary. If B is a compact manifold, then
E is a compact manifold with boundary, and E, DE agree with the boundary,
the double of the manifold F respectively.

Define p: DE— B by p(x)=p(x_)=p(x) (x=E). It follows that p is a fibre
bundle having fibre DM. We call p: DE—>B the double of the fibre bundle
p:E—B.

There exists a fibre preserving retraction » : DE — E given by r(x)==1(x_)=x.
Therefore we have a split exact sequence

. ]* l*
(8.1) 0—> H¥E, E; R)— H¥DE; Ry 2 HXFE; R)—>0.
7,*

Let p: E’— B’ be also a fibre bundle having fibre M’ a compact manifold
with boundary, and let g: (F, E)—(E’, E") be a fibre preserving map. Consider
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the doubles p: DE—B and p’: DE'—B’. Then we have a fibre preserving
map Dg: DE— DE’ defined by Dg(x)=g(x), Dg(x.)=g(x)-, (x=E).

The notion of m-orientability is generalized as follows. Let p: £—B be a
fibre bundle such that each fibre M,=p"'(b) is an oriented compact m-manifold
with boundary. If the local system {H™(M,, My} is trivial, we say that
p: E— B is m-orientable.

It follows that if p: E— B is m-orientable, so is p: DE— B.

For an m-orientable fibre bundle p: E— B, we have the integration along
the fibre

p:H*™E, E; R)—~HB; R).

Let p:E—B and p’:E’'—B’ be m-orientable fibre bundles, and let
f, g: E—L’ be fibre preserving maps covering i : B— B’. Assume

g(E)CE’.
Then the Lefschetz class N\ ,©H™E, E; R) is defined by
j*/\f,g:(id'”r*i*)/\ irfr.Dg

in terms of [8.I) where A ;.p,€H™DE; R) is the Lefschetz coincidence
class for the fibre preserving maps ¢fr, Dg: DE—DE’. It follows that
FUEN 1 e=1E N gr. 0 EH™ DM, ; R) for the homomorphism j*: H™(M,, M,; R)
—H™DM,; R).

Since Cy, ;=Ci fr. pg, [Proposition 2.]] remains valid. Applying to
ifr, Dg, it follows from Theorem 8.1 that the lemma remains valid. Therefore
we see from the proofs that Theorems and remain valid. Similarly it
follows that Theorems and 3.4 remain valid, and that remains
valid if g(M)C M.

The coincidence transfer homomorphism v, , is defined to be the composite

~INS. g

. D
H*FE; R) >H*E, E; R)—> H*B; R)

similarly to [5.I), or to be the composite

r¥*

H*E; R)— H¥DE; R)

Ti fr.Dg

H*(B; R)

by making use of the coincidence transfer homomorphism of i’fr, Dg: DE— DFE’.
remains valid. In fact, the properties (i)~(iv) are easily
verified, and (v) is proved as follows.
Proof of the product property of z; ,. Define q: DE,XDE,— D(E,XE,) by

q(xy, x)=q(x1-, X2-)=(X1, X3),
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q(x,-, xz)ZQ(xly Xg-)=(xy, Xy)-
(x;€E,, x,=E,). Then we have
rq=riXtsa,

where v: D(E, X Ey)—EXE,, r;: DE;—E; (i=1, 2) are the retractions. Define
q : DE{XDE!— D(E|X E}) similarly. Then we have

V(i X fDrg=q (G fir X fors)
D(g1X g2)4=¢"(Dg:1x Dg).
Consider the homomorphism (g’ X ¢’)*: H*(D’ >< D, D >< D' —dD'; R)—
H*(D} % DY) S (DIX Dy)—d(Di{x Dy); R), where D'= D(E’xEo), D;=D(E?) and
B'=B{x D, It is easily checked that
(@' X @ u(piX poy=u(pi< py).
Therefore we have
(@' X @ FATPTX pR=AF1 X P3) .
It follows from (1.4) that a diagram

*

H¥D(E,XE,); R) M NS H*(DE,XDE,; R)

(MN (Fx B,

HXB,XB,; R)

commutes.

Thus, using the product property in [Theorem 5.1, the following equalities
hold for 7= H*(E;; R) (1=1, 2), 7=711X7s p=pD1XDs, p'=piX D5, f=f1Xf; and
g=g X gs

Try g17'1 ><Tf2v 82T2

=T fyry De T 1 X Tl vy, DasT 3 T e

=Ty fyryxihfare DayxDes (1 X T)¥T

T4 firixiyforg DexDgs L T T

=D X PG r*r— (@1 frri X is fore, DX Dgo)*A(P]X p3)
=X P(q*r¥ 7=l fir X s fors, DX Dgo)* (@' X ¢ )*AP")

=(D1 X Pohg*(r¥r—(ifr, Dg)*A(P"))
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=p(r*r—(ifr, Dg)*A(p")
:fif'r, Dgr*r
:tf’ g‘/v .

This proves the product property.

For a fibre bundle p: E— B having fibre a connected oriented compact
manifold with boundary and for fibre preserving maps f, g: E—E covering
id: B— B, the conclusion of is still valid if g(E)—E. The proof
is completely analogous to that of [Theorem 5.2

We see that remains valid if we assume the existence of
rational cohomology extension of the fibre for the fibre-bundle pair p’: (E’, E’)
— B as well as for p’: E'— B.

The coincidence-coincidence index can be also generalized, and the theorems
in Section 7 remain valid.
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