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Let A=(A, E) be a model of ZF where A is a set and ESAXA, and K a
new predicate letter. We say that a subset K of A is a class of A if and only
if [ A, K] is a model of ZF(K) where K is interpreted by K and the replace-
ment scheme holds for all formulae involving both  and the new predicate
letter K. In this paper we prove some results about classes.

A class K of A is definable if and only if for some formula ¢(v,, vy, =+, Va)
not involving K and some elements aj, a,, *-, a, of A, K= {xeA|AE¢(x, a,,
ds '+, aq)}. We denote by def (.A4) the set of all definable classes of 4, and
say that a class K of A is undefinable if and only if Ke&def(A). Let £ be a
strongly inaccessible cardinal. Then V, is a model of ZF and every subset of
V. is a class of V.. Since |def (V,)|=|V,| <27+, there exist undefinable classes
of V.. In section 1, we prove the following :

THEOREM. If A is a standard model of ZF, then there exists an undefinable
class of A.

If 4 is a model of ZF, then [def (A), A] is a model of GB (Gddel Bernays
set theory). means that if 4 is standard, then there exists N2def (A)
such that [N, A] is a model of GB.

Let K and K’ be classes of (4. K and K’ are incompatible if and only if
[ A, K, K'1#ZF(K, K’) where K and K’ are new predicate letters and ZF(K, K’)
are axioms of ZF in the language (&, K, K). There are many incompatible
classes in countable models of ZF (Mostowski [7]). The existence of incom-
patible classes means that ZF(K, K’) and ZF(K)+ZF(K’) are not equivalent, in
other words, there exists a sentence @ such that ZF(K, K’)—® but ZF(K)
+ZF(K)=®. In section 2, we present such a sentence @ explicitly under some
assumption.

1. Undefinable classes.

We begin with some definitions from model theory. Let .£ be a first order
language and P a class of structures of £. P is inductive if and only if the
union of any chain M,EM,E - EM,E -+ (@<A) of structures from P is again
in P. Let &(vy, vy -, vn) be a formula of £. ¢ is said to be P-persistent
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when it holds that for every pair of structures MS M’ of P and any elements
a, Gy -+, G, of M, if M satisfies ¢(a,, a,, -+, a,), then M’ also satisfies it.
For example, all existential formulae are P-persistent. A structure M of P is
P-persistently complete if and only if for every extension M’ of M in P, every
P-persistent formula ¢(a,, a,, -+, ap) true in M’ is already true in M where
a,, a, -, a, are elements of M. The class of all P-persistently complete
structures is denoted by P’. The chain P2P'2P*2 --- 2P"2 --- (P*=(P"))
is called Cherlin chain. A subclass Q of P is said to be cofinal with P if and
only if every structure in P has an extension in Q.

LEMMA 1 [Cherlin]. Let P be a inductive class of structures. Then for
each n<w, P™ is inductive and cofinal with P.

For the proof of this Lemma, refer to Cherlin or Hirschfeld-Wheeler [5].

LEMMA 2. Every X ,ii-formula is P"-persistent.

PrROOF. We prove by induction on n. If ¢ is P*-persistent, then so is Jx¢
and —¢ is P"*!-persistent. Obviously every existential formula (¥,-formula) is
P-persistent. Assume that every 2X,-formula is P" !-persistent. Then every
IT ,-formula is P™-persistent, so every 2 ,.,-formula is P"-persistent.

The proof of is included in [6] However, we gave it because of
its brevity.

We write M<,M’ if and only if M is X,-elementary substructure of A,
namely for any elements a;, ds, -, @n 0f M and any 2,-formula ¢(vy, vy, -+, vy),
M satisfies ¢(a,, a,, -+, an) if and only if M’ satisfies it.

LEMMA 3. For every M, M’ of P*, if MSM’, then M<,M.

This Lemma follows immediately from

A set A is said to be x-complete if and only if for any subset B of A such
that the cardinality of B is less than &, \/ B A.

PROPOSITION. Let A be a standard transitive model of ZF. If A is cf
(On*)-complete, then there exists an undefinable class of A.

ProOF. Let £=(e, K) where € is binary and K is unary predicates, P=
{(a, b)e A| a is transitive, bSa, a, be A} and A=cf(On#). Obviously P is a
inductive class of (4. Let f be a cofinal function from A to On-, namely
dom (f)=A and aE}zf(a):OnJ. We define (a, b)S(a’, b’) if and only if (a, b) is

a substructure of (a’, b’), in other words a&a’ and b=an?b’.

We define (a,, b,)€ P for a<4 by induction. Let (a,, b) P be arbitrary.
Let (a@a+1, bas1) be such that (a., ba)E(Aas1, Das1)y QaS Aoy, V?’%a)gaa-{-l and
(@a+1, bar))E P* where a+1=pf+n for some limit ordinal 5. If « is a limit
ordinal, let (a,, b“):<p\<{x ag, ﬁk()a bg). Since A is A-complete, a,, b,=A for all

a<A. (The condition of A-completeness is used only in this place, cf. the proof
of VA»Sa..; and f is a cofinal function from A to On, therefore
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k<JlaQ=A. Let K= Ulba. We prove that K satisfies the [Proposition|
a a

First we show that [ A4, K] is a model of ZF(K). We prove that [ A, K]
satisfies replacement scheme. Let ¢(v;, v,) be a formula of £ with constants
in A and for some a< A,

[A, K]leEVxeadyg(x, v).
By for sufficiently large n and a, a€S aq+, and

(asn basn)EVXEaIye(x, y).

Then for every x=a, there is a yE ay4q,

(Qasn basn)ESG(x, ¥).
By [Lemma 3,

(Gasn+1s ba+n+1)t:¢(x: ¥).
SINCe Gasn€ datnss,

(Gasn+1s ba+n+1)|:Van3y€aa+,,¢(x, ¥),
(Gasn+1y basni)EINxEaTyezg(x, y).

Again by
[ A, K]EINxeaTyszg(x, v).

Hence it suffices to show that [ 4, K] satisfies the separation. Let ¢(v) be a
formula of £ with constants in A and a be an element of A. We must find
be A such that

[A, KlEb={x=a|¢(x)}.
By for sufficiently large n and «, a€a.., and for any x<a,
* (A, KlE¢(x)  if and only if (Gasn, basn) E@(x).

On the other hand, since <4 is a model of ZF and “(Ga+n, basn)E@(x)” can be
described in ZF, there exists a set b A such that

AEb= {xeal(aaM, bzx+n)F:¢(x)}-
Then by (*)

(A, KlEb={xca|gd(x)}.

Second, we prove that K is undefinable in 4. If not, for some formula
¢(v) not containing K with constants in A,

(A, KJEK={x]¢(x)}.
By Lemma 3, for sufficiently large » and «a,
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(@asn basn)Ebasn={x| ¢(x)} .

Pick d& a and assume Ak ¢(d). (Similarly for Ak —¢(d).) By the definition of
P, we can take (a’, ') P such that d=a’, d&€b’ and (au4n, basn)S(a’, b).
Since P" is cofinal with P, there is (a, b)e P™ such that (a’, ¥')S(a, b). Thus
d&b. On the other hand, AkE¢@(d) and (a, b)e P", so (a, b)E=¢(d) by
Therefore

(a, b)Eb# (x| $(x)}.
By Lemma 3,

(Gasns Darn)Ebasn# {x|p(x)},

(A, KJe K+ {x|¢(x)}.
This is a contradiction.

COROLLARY. Let A be a standard transitive model of ZF. If V4 EZF,
then Vi has an undefinable class in .

PrOOF. Vg is cf(a)-complete in A.

We write M<<M’ if M is an elementary submodel of M’.

LEMMA 4. Let A be a standard transitive model of ZF and cf (On-)>w.
Then {asO0nt| VI<LA} s closed unbounded in On.

Proor. Let P={VJ|asOn-}, then P is an inductive class of 4. Since
P ig cofinal with P, {a=O0n#|V{< P} is unbounded in Ons. Ve P" im-
plies Vi<, A, thus {acO0n*|V/<, A} is unbounded in On<’. Closedness is
obvious by definition. Since cf(On*)>w and {asOn| V;”-<Jl}:n(<\w {asOn|
Vi<, A}, the result follows.

A set X is said to be ordinal definable if and only if it is definable by some
formula @(v,, vy, =+, vm) of ZF with ordinal parameters, i.e. X={x|¢(x, ay, -,
an)} where ai, -+, an, are ordinals. We denote by OD the class of all ordinal
definable sets and by <,p the definable wellordering of OD.

Let £ be a first order language and P a class of structures of .£. A class
P is OD-inductive if and only if every element of P is ordinal definable i.e.
PZOD, P itself is an ordinal definable class i.e. for some formula ¢ of ZF
and some ordinals aj, @, -+, am, P={x|¢(x, ai, a,, -, an)}, and for every
sequence M, SM, S - EM,E -+ (a<A) of P such that <M,|a<2>€0D, a%M“
is an element of P.

LEMMA 5. Let P be an OD-inductive class. Then for each n<w, P™ is OD-
inductive and cofinal with P.

PrROOF. The proof is by induction on n. First we show that P" is cofinal
with P. It suffices to prove the case n=1. Let M&P, r=max{card (M),
card (L), ¥,} and <{¢,la<k) be an enumeration of all P-persistent sentences
with constant in M. Obviously we can take <{¢,|a<x>€OD.

Let M,=M. We define a sequence <M, |a<s>e 0D of members of P induc-
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tively as follows. For a=p+1, if M; satisfies @5 or every extension M’€ P of
Mj; does not satisfy ¢s, then we let M,=M;, otherwise for some extension
M’ e P of Mg, M’ satisfies ¢35, then we take M, to be the <,p-least of such M.
For limit ordinal «, let Ma=ﬁk<)aMﬁ. M,e P because P is OD-inductive and

{Ms|B<ay>€OD. (In fact it is definable from M,=0D and a.) Now we let

M*=\UM,. Obviously M'<P by the same reason as above. By construction
a<x

of M?', any P-persistent sentence defined in M and true in some extension of
M?* is also true in M. Iterating this procedure we get a sequence MEM'S
M?< .- such that M*e P and every P-persistent sentence defined in M* and
true in some extension of M**! is also true in M®*'. Let M“’:i\gw]\li. Then
Mee P is P-persistently complete. Now we get M“< P! such that MS M®.

The proof that P! is OD-inductive is the same as Lemma 1, so we omit it
(cf. [6], 79-81).

Let #=(B, ) be a standard transitive model of ZF and P[Bl={(V2, b)|
bSVE b=ODB. Then P[4#] is a class of structures of L=(<, K) and OD-
inductive in 8. We call a chain CSP[ 8] to be perfect if and only if

(1) for any M, M'eC, MEM’' or M'S M,

(2) for each n<w and any MeC(, there exists a M'eC\P"[#] such that
Mc M,

@) V{V2I(VE belCl=3.

By the proof of the existence of a perfect chain of P[ 4] implies
the existence of an undefinable class of @ (In the proof of [Proposition, we con-
structed a perfect chain by using cf(On<*)-completeness).

THEOREM. [If A is a standard model of ZF, then there exists an undefinable
class of A.

PrROOF. We may assume A is transitive. Since any standard transitive
model of ZF is w-complete, it suffices to prove the case cf(On)=p>w by Prop-
osition. By [Cemma 4, there is a strictly increasing function F such that

1;1
F:2

{a=s0nt| VAL A} .
onto

Remark that F is not a class of A but for any a<4, Flra is a set of A i.e.
FracsA. For Fla is a strictly increasing function from a«= A one-to-one onto
{8€0n*| V§<V#a} €A which is definable in 4. It follows from the inspec-
tion of the proof of |Proposition| and [Corollary] that there exists a perfect chain
Co of V#&p in A which is ordinal definable in 4. We take the <,p-least of
such C, in A. Similarly, we can take the <,,-least perfect chain C,,, of
V#as+n in A which extends the perfect chain C, of V., because C, is in A
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i.e. C,€A. If a is a limit ordinal, we take the union C, of the perfect chains
Cp of Vg, for B<a. The set of the perfect chains Cz of Vg, for f<a is
definable from Fla in 4, then the union C, is in .4 and a perfect chain of
Ve in A because Vg <V#a means P'[V#sl=V#sHNP*[Vial There-
fore for any a<4, we can take the perfect chain C, of V&, in 4 such that
CpSC, for f<a. Let C:aylca. By the same reason as above, C is a perfect

chain of 4. Then the follows.

2. Incompatible classes.

Let £ be the language of ZF and F be a new function letter. Let o(J)
be the following sentence.

“F is a function from On to On, closed unbounded and
strictly increasing,

AVa¥B(a<B=Vrnr<rsVre)

Na(V < Vrwy—a=F(0))
ANYVaVB(Vrar<:Vs<:Vrin—p=Fa) or f=Fa+1))”

where A<.B means that A is an elementary substructure of B in the language
L. Let @=c(FPAo(F)—Ya(Fla)=F'(a)). We prove that if ZF+o(F) is con-
sistent, then ZF(F, F)=® but ZF(F)+ZF(F ).

Leaving aside the proof for the moment, we define some notations and prove
lemmas in model theory. Let £ be a first order language and ¢(K) be a
set of sentences of £ which contain the predicate letter, K. K is said to be
explicitly definable with respect to o(K) if and only if there is a formula ¢ not
containing K such that o(K)Vi(K(#)—@(®) where & is a finite sequence of
variables. K is said to be implicitly definable with respect to o(K) if and only
if o(K)+a(K")Y3(K(@#)~K' (%) where K’ is a new predicate letter. K is said
to be implicitly ZF-definable with respect to o(K) if and only if ZE(K, K)+a(K)
+o(K) =V K(5) K (5)).

BETH’S THEOREM [refer to Bell-Slomson [17]. Kis implicitly definable with
respect to a(K) if and only if K is explicitly definable with respect to a(K).

First we prove ZF(F, F/)-®.

LEMMA 6. F is implicitly ZF-definable with respect to o(F), in other words,
ZF(F, F)+o(F)+o(F)=Ya(Fla)=F'(a)) where F' is a new function letter.

PROOF. The proof is by transfinite induction. Let a=0. We may assume
F0)=F'(0). We define 8, and 7, such that - SF'(7,)S<F(Bn)<F'(Yns1) . Since
F and F' are closed, F(,Ba,)zng(ﬁn)an)wF’(rn):F’(rw), where ‘Bw:nkgwﬁn and

Tw:ngufn- VF(0)<IVF(ﬂm):VF' G2 Vi, then Ve y<rVpey. By the defini-
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tion of o(F), F'(0)=F(0). Let a=p-+1. Both F(8-+1) and F/(8-+1) are defined
as the least 7 such that Vps=Vp 5<,V; then F(f+1)=F'(8+1). For limit
ordinal «a, V3<a(F(B)=F'(B))—F(a)=F'(a) because F and F’ are closed.

By Lemma 6, ZF(F, F))®. Next we show ZF(F)+ZF(F)+o(F)+a(F )+ ®.

LEMMA 7. F is not implicitly (explicitly) definable with respect to ZF(F)
+o(F).

PRrROOF. If not, there is a function G which is definable in the language £
such that ZF(F)+o(F)-VYa(Fla)=G(a)). By the definition of o(F), if ¢ is a
sentence of L, then ¢oVirpgkEd. Let ay=F(0)=G(0). Since Ja(G(0)=a) is a.
sentence of L, V, F3Ja(G(0)=a). Then for some a<ay, Va,EGO)=a. By the
definition of ¢(F), for some a<a, G(0)=a, this is a contradiction.

By ZFE(YA+ZF(F)+o(F)+ o(F) - Va(F(a) = F'(a)). Therefore:
ZF(F)+ZF(F)+ Q.

REMARK. If Cons(ZF-there is an inaccessible cardinal), then Cons(ZF+a(F))
where Cons(---) means --- is consistent.
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