Classes on ZF models

By Masahiro YASUMOTO

(Received Nov. 20, 1978)

Let $\mathcal{A}=(A,E)$ be a model of ZF where A is a set and $E\subseteq A\times A$, and \overline{K} a new predicate letter. We say that a subset K of A is a class of \mathcal{A} if and only if $[\mathcal{A},K]$ is a model of $ZF(\overline{K})$ where \overline{K} is interpreted by K and the replacement scheme holds for all formulae involving both \in and the new predicate letter \overline{K} . In this paper we prove some results about classes.

A class K of \mathcal{A} is definable if and only if for some formula $\phi(v_0, v_1, \cdots, v_n)$ not involving \overline{K} and some elements a_1, a_2, \cdots, a_n of A, $K = \{x \in A \mid \mathcal{A} \models \phi(x, a_1, a_2, \cdots, a_n)\}$. We denote by $\operatorname{def}(\mathcal{A})$ the set of all definable classes of \mathcal{A} , and say that a class K of \mathcal{A} is undefinable if and only if $K \in \operatorname{def}(\mathcal{A})$. Let κ be a strongly inaccessible cardinal. Then V_{κ} is a model of ZF and every subset of V_{κ} is a class of V_{κ} . Since $|\operatorname{def}(V_{\kappa})| = |V_{\kappa}| < 2^{|V_{\kappa}|}$, there exist undefinable classes of V_{κ} . In section 1, we prove the following:

THEOREM. If \mathcal{A} is a standard model of ZF, then there exists an undefinable class of \mathcal{A} .

If \mathcal{A} is a model of ZF, then $[\operatorname{def}(\mathcal{A}), A]$ is a model of GB (Gödel Bernays set theory). Theorem means that if \mathcal{A} is standard, then there exists $N \supseteq \operatorname{def}(\mathcal{A})$ such that [N, A] is a model of GB.

Let K and K' be classes of \mathcal{A} . K and K' are incompatible if and only if $[\mathcal{A}, K, K'] \nvDash ZF(\bar{K}, \bar{K}')$ where \bar{K} and \bar{K}' are new predicate letters and $ZF(\bar{K}, \bar{K}')$ are axioms of ZF in the language $(\subseteq, \bar{K}, \bar{K}')$. There are many incompatible classes in countable models of ZF (Mostowski [7]). The existence of incompatible classes means that $ZF(\bar{K}, \bar{K}')$ and $ZF(\bar{K}) + ZF(\bar{K}')$ are not equivalent, in other words, there exists a sentence Φ such that $ZF(\bar{K}, \bar{K}') \vdash \Phi$ but $ZF(\bar{K}) + ZF(\bar{K}') \vdash \Phi$. In section 2, we present such a sentence Φ explicitly under some assumption.

1. Undefinable classes.

We begin with some definitions from model theory. Let \mathcal{L} be a first order language and P a class of structures of \mathcal{L} . P is inductive if and only if the union of any chain $M_0 \subseteq M_1 \subseteq \cdots \subseteq M_\alpha \subseteq \cdots (\alpha < \lambda)$ of structures from P is again in P. Let $\phi(v_1, v_2, \cdots, v_n)$ be a formula of \mathcal{L} . ϕ is said to be P-persistent

when it holds that for every pair of structures $M \subseteq M'$ of P and any elements a_1, a_2, \cdots, a_n of M, if M satisfies $\phi(a_1, a_2, \cdots, a_n)$, then M' also satisfies it. For example, all existential formulae are P-persistent. A structure M of P is P-persistently complete if and only if for every extension M' of M in P, every P-persistent formula $\phi(a_1, a_2, \cdots, a_n)$ true in M' is already true in M where a_1, a_2, \cdots, a_n are elements of M. The class of all P-persistently complete structures is denoted by P'. The chain $P \supseteq P^1 \supseteq P^2 \supseteq \cdots \supseteq P^n \supseteq \cdots (P^{n+1} = (P^n)')$ is called Cherlin chain. A subclass Q of P is said to be cofinal with P if and only if every structure in P has an extension in Q.

LEMMA 1 [Cherlin]. Let P be a inductive class of structures. Then for each $n < \omega$, P^n is inductive and cofinal with P.

For the proof of this Lemma, refer to Cherlin [3] or Hirschfeld-Wheeler [5]. LEMMA 2. Every Σ_{n+1} -formula is P^n -persistent.

PROOF. We prove by induction on n. If ϕ is P^n -persistent, then so is $\exists x \phi$ and $\neg \phi$ is P^{n+1} -persistent. Obviously every existential formula (Σ_1 -formula) is P-persistent. Assume that every Σ_n -formula is P^{n-1} -persistent. Then every Π_n -formula is P^n -persistent, so every Σ_{n+1} -formula is P^n -persistent.

The proof of Lemma 2 is included in [5]. However, we gave it because of its brevity.

We write $M
leq_n M'$ if and only if M is Σ_n -elementary substructure of M', namely for any elements a_1, a_2, \dots, a_m of M and any Σ_n -formula $\phi(v_1, v_2, \dots, v_m)$, M satisfies $\phi(a_1, a_2, \dots, a_m)$ if and only if M' satisfies it.

LEMMA 3. For every M, M' of P^n , if $M \subseteq M'$, then $M <_n M'$.

This Lemma follows immediately from Lemma 2.

A set A is said to be κ -complete if and only if for any subset B of A such that the cardinality of B is less than κ , $\cup B \in A$.

PROPOSITION. Let \mathcal{A} be a standard transitive model of ZF. If A is cf $(On^{\mathcal{A}})$ -complete, then there exists an undefinable class of \mathcal{A} .

PROOF. Let $\mathcal{L}=(\in, \overline{K})$ where \in is binary and \overline{K} is unary predicates, $P=\{(a,b)\in A\mid a \text{ is transitive, }b\subseteq a,\ a,b\in A\}$ and $\lambda=\mathrm{cf}\,(On^{\mathcal{A}})$. Obviously P is a inductive class of \mathcal{A} . Let f be a cofinal function from λ to $On^{\mathcal{A}}$, namely $\mathrm{dom}\,(f)=\lambda$ and $\bigcup_{a<\lambda}f(\alpha)=On^{\mathcal{A}}$. We define $(a,b)\subseteq(a',b')$ if and only if (a,b) is a substructure of (a',b'), in other words $a\subseteq a'$ and $b=a\cap b'$.

We define $(a_{\alpha}, b_{\alpha}) \in P$ for $\alpha < \lambda$ by induction. Let $(a_0, b_0) \in P$ be arbitrary. Let $(a_{\alpha+1}, b_{\alpha+1})$ be such that $(a_{\alpha}, b_{\alpha}) \subseteq (a_{\alpha+1}, b_{\alpha+1})$, $a_{\alpha} \in a_{\alpha+1}$, $V_{f(\alpha)} \subseteq a_{\alpha+1}$ and $(a_{\alpha+1}, b_{\alpha+1}) \in P^n$ where $\alpha+1=\beta+n$ for some limit ordinal β . If α is a limit ordinal, let $(a_{\alpha}, b_{\alpha}) = (\bigcup_{\beta < \alpha} a_{\beta}, \bigcup_{\beta < \alpha} b_{\beta})$. Since A is λ -complete, $a_{\alpha}, b_{\alpha} \in A$ for all $\alpha < \lambda$. (The condition of λ -completeness is used only in this place, cf. the proof of Theorem) $V_{f(\alpha)} \subseteq a_{\alpha+1}$ and f is a cofinal function from λ to $On^{\mathcal{A}}$, therefore

ZF models 617

 $\bigcup_{\alpha<\lambda}a_{\alpha}=A$. Let $K=\bigcup_{\alpha<\lambda}b_{\alpha}$. We prove that K satisfies the Proposition.

First we show that $[\mathcal{A}, K]$ is a model of $ZF(\overline{K})$. We prove that $[\mathcal{A}, K]$ satisfies replacement scheme. Let $\phi(v_1, v_2)$ be a formula of \mathcal{L} with constants in A and for some $a \in A$,

$$[\mathcal{A}, K] \models \forall x \in a \exists y \phi(x, y).$$

By Lemma 3, for sufficiently large n and α , $a \in a_{\alpha+n}$ and

$$(a_{\alpha+n}, b_{\alpha+n}) \models \forall x \in a \exists y \phi(x, y).$$

Then for every $x \in a$, there is a $y \in a_{\alpha+n}$,

$$(a_{\alpha+n}, b_{\alpha+n}) \models \phi(x, y)$$
.

By Lemma 3,

$$(a_{\alpha+n+1}, b_{\alpha+n+1}) \models \phi(x, y)$$
.

Since $a_{\alpha+n} \in a_{\alpha+n+1}$,

$$(a_{\alpha+n+1}, b_{\alpha+n+1}) \models \forall x \in a \exists y \in a_{\alpha+n} \phi(x, y),$$
$$(a_{\alpha+n+1}, b_{\alpha+n+1}) \models \exists z \forall x \in a \exists y \in z \phi(x, y).$$

Again by Lemma 3,

$$[\mathcal{A}, K] \models \exists z \forall x \in a \exists y \in z \phi(x, y).$$

Hence it suffices to show that $[\mathcal{A}, K]$ satisfies the separation. Let $\phi(v)$ be a formula of \mathcal{L} with constants in A and a be an element of A. We must find $b \in A$ such that

$$[\mathcal{A}, K] \models b = \{x \in a \mid \phi(x)\}.$$

By Lemma 3, for sufficiently large n and α , $a \in a_{\alpha+n}$ and for any $x \in a$,

(*)
$$[\mathcal{A}, K] \models \phi(x) \quad \text{if and only if } (a_{\alpha+n}, b_{\alpha+n}) \models \phi(x).$$

On the other hand, since \mathcal{A} is a model of ZF and " $(a_{\alpha+n}, b_{\alpha+n}) \models \phi(x)$ " can be described in ZF, there exists a set $b \in A$ such that

$$\mathcal{A} \models b = \{x \in a \mid (a_{\alpha+n}, b_{\alpha+n}) \models \phi(x)\}.$$

Then by (*)

$$[\mathcal{A}, K] \models b = \{x \in a \mid \phi(x)\}.$$

Second, we prove that K is undefinable in \mathcal{A} . If not, for some formula $\phi(v)$ not containing \overline{K} with constants in A,

$$\lceil \mathcal{A}, K \rceil \models K = \{x \mid \phi(x)\}.$$

By Lemma 3, for sufficiently large n and α ,

$$(a_{\alpha+n}, b_{\alpha+n}) \models b_{\alpha+n} = \{x \mid \phi(x)\}.$$

Pick $d \in a$ and assume $\mathcal{A} \models \phi(d)$. (Similarly for $\mathcal{A} \models \neg \phi(d)$.) By the definition of P, we can take $(a', b') \in P$ such that $d \in a'$, $d \in b'$ and $(a_{\alpha+n}, b_{\alpha+n}) \subseteq (a', b')$. Since P^n is cofinal with P, there is $(a, b) \in P^n$ such that $(a', b') \subseteq (a, b)$. Thus $d \in b$. On the other hand, $\mathcal{A} \models \phi(d)$ and $(a, b) \in P^n$, so $(a, b) \models \phi(d)$ by Lemma 3. Therefore

$$(a, b) \models b \neq \{x \mid \phi(x)\}.$$

By Lemma 3,

$$(a_{\alpha+n}, b_{\alpha+n}) \models b_{\alpha+n} \neq \{x \mid \phi(x)\},$$

$$[\mathcal{A}, K] \models K \neq \{x \mid \phi(x)\}.$$

This is a contradiction.

COROLLARY. Let \mathcal{A} be a standard transitive model of ZF. If $V_{\alpha} \models ZF$, then $V_{\alpha}^{\mathcal{A}}$ has an undefinable class in \mathcal{A} .

PROOF. $V_{\alpha}^{\mathcal{A}}$ is $cf(\alpha)$ -complete in \mathcal{A} .

We write $M \lt M'$ if M is an elementary submodel of M'.

LEMMA 4. Let \mathcal{A} be a standard transitive model of ZF and $cf(On^{-})>\omega$. Then $\{\alpha \in On^{\mathcal{A}} \mid V_{\alpha}^{\mathcal{A}} \prec \mathcal{A}\}$ is closed unbounded in $On^{\mathcal{A}}$.

PROOF. Let $P = \{V_{\alpha}^{\mathbb{Z}} | \alpha \in On^{\mathbb{Z}}\}$, then P is an inductive class of \mathbb{Z} . Since P^n is cofinal with P, $\{\alpha \in On^{\mathbb{Z}} | V_{\alpha}^{\mathbb{Z}} \in P^n\}$ is unbounded in $On^{\mathbb{Z}}$. $V_{\alpha}^{\mathbb{Z}} \in P^n$ implies $V_{\alpha}^{\mathbb{Z}} \prec_n \mathbb{Z}$, thus $\{\alpha \in On^{\mathbb{Z}} | V_{\alpha}^{\mathbb{Z}} \prec_n \mathbb{Z}\}$ is unbounded in $On^{\mathbb{Z}}$. Closedness is obvious by definition. Since $\mathrm{cf}(On^{\mathbb{Z}}) > \omega$ and $\{\alpha \in On^{\mathbb{Z}} | V_{\alpha}^{\mathbb{Z}} \prec_n \mathbb{Z}\} = \bigcap_{n < \omega} \{\alpha \in On^{\mathbb{Z}} | V_{\alpha}^{\mathbb{Z}} \prec_n \mathbb{Z}\}$, the result follows.

A set X is said to be ordinal definable if and only if it is definable by some formula $\phi(v_0, v_1, \dots, v_m)$ of ZF with ordinal parameters, i.e. $X = \{x \mid \phi(x, \alpha_1, \dots, \alpha_m)\}$ where $\alpha_1, \dots, \alpha_m$ are ordinals. We denote by OD the class of all ordinal definable sets and by $<_{OD}$ the definable wellordering of OD.

Let \mathcal{L} be a first order language and P a class of structures of \mathcal{L} . A class P is OD-inductive if and only if every element of P is ordinal definable i. e. $P \subseteq OD$, P itself is an ordinal definable class i. e. for some formula ϕ of ZF and some ordinals $\alpha_1, \alpha_2, \cdots, \alpha_m, P = \{x \mid \phi(x, \alpha_1, \alpha_2, \cdots, \alpha_m)\}$, and for every sequence $M_0 \subseteq M_1 \subseteq \cdots \subseteq M_\alpha \subseteq \cdots (\alpha < \lambda)$ of P such that $\langle M_\alpha \mid \alpha < \lambda \rangle \in OD$, $\bigcup_{\alpha < \lambda} M_\alpha$ is an element of P.

LEMMA 5. Let P be an OD-inductive class. Then for each $n < \omega$, P^n is OD-inductive and cofinal with P.

PROOF. The proof is by induction on n. First we show that P^n is cofinal with P. It suffices to prove the case n=1. Let $M \in P$, $\kappa = \max \{ \operatorname{card}(M), \operatorname{card}(\mathcal{L}), \aleph_0 \}$ and $\langle \phi_{\alpha} | \alpha < \kappa \rangle$ be an enumeration of all P-persistent sentences with constant in M. Obviously we can take $\langle \phi_{\alpha} | \alpha < \kappa \rangle \in OD$.

Let $M_0=M$. We define a sequence $\langle M_\alpha | \alpha < \kappa \rangle \in OD$ of members of P induc-

ZF models 619

tively as follows. For $\alpha = \beta + 1$, if M_{β} satisfies ϕ_{β} or every extension $M' \in P$ of M_{β} does not satisfy ϕ_{β} , then we let $M_{\alpha} = M_{\beta}$, otherwise for some extension $M' \in P$ of M_{β} , M' satisfies ϕ_{β} , then we take M_{α} to be the $<_{oD}$ -least of such M'. For limit ordinal α , let $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$. $M_{\alpha} \in P$ because P is OD-inductive and $\langle M_{\beta} | \beta < \alpha \rangle \in OD$. (In fact it is definable from $M_{0} \in OD$ and α .) Now we let $M^{1} = \bigcup_{\alpha < \kappa} M_{\alpha}$. Obviously $M^{1} \in P$ by the same reason as above. By construction of M^{1} , any P-persistent sentence defined in M and true in some extension of M^{1} is also true in M^{1} . Iterating this procedure we get a sequence $M \subseteq M^{1} \subseteq M^{2} \subseteq \cdots$ such that $M^{i} \in P$ and every P-persistent sentence defined in M^{i} and true in some extension of M^{i+1} is also true in M^{i+1} . Let $M^{\omega} = \bigcup_{i < \omega} M^{i}$. Then $M^{\omega} \in P$ is P-persistently complete. Now we get $M^{\omega} \in P^{1}$ such that $M \subseteq M^{\omega}$.

The proof that P^1 is OD-inductive is the same as Lemma 1, so we omit it (cf. $\lceil 5 \rceil$, 79-81).

Let $\mathscr{B}=(B,\in)$ be a standard transitive model of ZF and $P[B]=\{(V_{\alpha}^{\mathscr{B}},b)|\ b\subseteq V_{\alpha}^{\mathscr{B}},\ b\in OD^{\mathscr{B}}\}$. Then $P[\mathscr{B}]$ is a class of structures of $L=(\in,\vec{K})$ and OD-inductive in \mathscr{B} . We call a chain $C\subseteq P[\mathscr{B}]$ to be perfect if and only if

- (1) for any M, $M' \in C$, $M \subseteq M'$ or $M' \subseteq M$,
- (2) for each $n < \omega$ and any $M \in C$, there exists a $M' \in C \cap P^n[\mathfrak{B}]$ such that $M \subseteq M'$,
- $(3) \quad \bigcup \{V_{\alpha}^{\mathfrak{G}} | (V_{\alpha}^{\mathfrak{G}}, b) \in C\} = \mathfrak{B}.$

By the proof of Proposition, the existence of a perfect chain of $P[\mathfrak{B}]$ implies the existence of an undefinable class of \mathfrak{B} (In the proof of Proposition, we constructed a perfect chain by using $cf(On^{\mathcal{A}})$ -completeness).

Theorem. If $\mathcal A$ is a standard model of ZF, then there exists an undefinable class of $\mathcal A$.

PROOF. We may assume A is transitive. Since any standard transitive model of ZF is ω -complete, it suffices to prove the case $\operatorname{cf}(On^{\mathcal{A}}) = \mu > \omega$ by Proposition. By Lemma 4, there is a strictly increasing function F such that

$$F: \lambda \xrightarrow{\text{onto}} \{\alpha \in On^{\mathcal{A}} \mid V_{\alpha}^{\mathcal{A}} < \mathcal{A}\}.$$

Remark that F is not a class of A but for any $\alpha < \lambda$, $F \upharpoonright \alpha$ is a set of \mathcal{A} i. e. $F \upharpoonright \alpha \in A$. For $F \upharpoonright \alpha$ is a strictly increasing function from $\alpha \in A$ one-to-one onto $\{\beta \in On^{\mathcal{A}} \mid V_{\mathcal{F}}^{\mathcal{A}} < V_{\mathcal{F}(\alpha)}^{\mathcal{A}}\} \in A$ which is definable in \mathcal{A} . It follows from the inspection of the proof of Proposition and Corollary that there exists a perfect chain C_0 of $V_{\mathcal{F}(0)}^{\mathcal{A}}$ in A which is ordinal definable in \mathcal{A} . We take the $<_{\mathcal{OD}}$ -least of such C_0 in \mathcal{A} . Similarly, we can take the $<_{\mathcal{OD}}$ -least perfect chain $C_{\alpha+1}$ of $V_{\mathcal{F}(\alpha+1)}^{\mathcal{A}}$ in \mathcal{A} which extends the perfect chain C_{α} of $V_{\mathcal{F}(\alpha)}^{\mathcal{A}}$, because C_{α} is in \mathcal{A}

i.e. $C_{\alpha} \in A$. If α is a limit ordinal, we take the union C_{α} of the perfect chains C_{β} of $V_{F(\beta)}^{A}$ for $\beta < \alpha$. The set of the perfect chains C_{β} of $V_{F(\beta)}^{A}$ for $\beta < \alpha$ is definable from $F \upharpoonright \alpha$ in \mathcal{A} , then the union C_{α} is in \mathcal{A} and a perfect chain of $V_{F(\alpha)}^{A}$ in A because $V_{F(\beta)}^{A} < V_{F(\alpha)}^{A}$ means $P^{n}[V_{F(\beta)}^{A}] = V_{F(\beta)}^{A} \cap P^{n}[V_{F(\alpha)}^{A}]$. Therefore for any $\alpha < \lambda$, we can take the perfect chain C_{α} of $V_{F(\alpha)}^{A}$ in \mathcal{A} such that $C_{\beta} \subseteq C_{\alpha}$ for $\beta < \alpha$. Let $C = \bigcup_{\alpha < \lambda} C_{\alpha}$. By the same reason as above, C is a perfect chain of \mathcal{A} . Then the Theorem follows.

2. Incompatible classes.

Let \mathcal{L} be the language of ZF and F be a new function letter. Let $\sigma(F)$ be the following sentence.

"F is a function from On to On, closed unbounded and strictly increasing,

where $A \leq_{\mathcal{L}} B$ means that A is an elementary substructure of B in the language \mathcal{L} . Let $\Phi \equiv \sigma(F) \wedge \sigma(F') \rightarrow \forall \alpha(F(\alpha) = F'(\alpha))$. We prove that if $ZF + \sigma(F)$ is consistent, then $ZF(F, F') \vdash \Phi$ but $ZF(F) + ZF(F') \not\vdash \Phi$.

Leaving aside the proof for the moment, we define some notations and prove lemmas in model theory. Let \mathcal{L} be a first order language and $\sigma(\bar{K})$ be a set of sentences of \mathcal{L} which contain the predicate letter, \bar{K} . \bar{K} is said to be explicitly definable with respect to $\sigma(\bar{K})$ if and only if there is a formula ϕ not containing \bar{K} such that $\sigma(\bar{K}) \vdash \forall \bar{v}(\bar{K}(\bar{v}) \leftrightarrow \phi(\bar{v}))$ where \bar{v} is a finite sequence of variables. \bar{K} is said to be implicitly definable with respect to $\sigma(\bar{K})$ if and only if $\sigma(\bar{K}) \vdash \forall \bar{v}(\bar{K}(\bar{v}) \leftrightarrow \bar{K}'(\bar{v}))$ where \bar{K}' is a new predicate letter. \bar{K} is said to be implicitly $Z\bar{F}$ -definable with respect to $\sigma(\bar{K})$ if and only if $Z\bar{F}(\bar{K}, \bar{K}') + \sigma(\bar{K}) + \sigma(\bar{K}') \vdash \forall \bar{v}(\bar{K}(\bar{v}) \leftrightarrow \bar{K}'(\bar{v}))$.

BETH'S THEOREM [refer to Bell-Slomson [1]]. \bar{K} is implicitly definable with respect to $\sigma(\bar{K})$ if and only if \bar{K} is explicitly definable with respect to $\sigma(\bar{K})$.

First we prove $ZF(F, F') \vdash \Phi$.

LEMMA 6. F is implicitly ZF-definable with respect to $\sigma(F)$, in other words, $ZF(F, F') + \sigma(F) + \sigma(F') \vdash \forall \alpha(F(\alpha) = F'(\alpha))$ where F' is a new function letter.

PROOF. The proof is by transfinite induction. Let $\alpha=0$. We may assume $F(0) \ge F'(0)$. We define β_n and γ_n such that $\cdots \le F'(\gamma_n) \le F(\beta_n) \le F'(\gamma_{n+1}) \cdots$. Since F and F' are closed, $F(\beta_\omega) = \bigcup_{n < \omega} F(\beta_n) = \bigcup_{n < \omega} F'(\gamma_n) = F'(\gamma_\omega)$, where $\beta_\omega = \bigcup_{n < \omega} \beta_n$ and $\gamma_\omega = \bigcup_{n < \omega} \gamma_n$. $V_{F(0)} <_{\mathcal{L}} V_{F(\beta\omega)} = V_{F'(\gamma\omega)} >_{\mathcal{L}} V_{F'(0)}$, then $V_{F'(0)} <_{\mathcal{L}} V_{F(0)}$. By the defini-

ZF models 621.

tion of $\sigma(F)$, F'(0)=F(0). Let $\alpha=\beta+1$. Both $F(\beta+1)$ and $F'(\beta+1)$ are defined as the least γ such that $V_{F(\beta)}=V_{F'(\beta)} <_{\mathcal{L}} V_{\gamma}$, then $F(\beta+1)=F'(\beta+1)$. For limit ordinal α , $\forall \beta < \alpha(F(\beta)=F'(\beta)) \rightarrow F(\alpha)=F'(\alpha)$ because F and F' are closed.

By Lemma 6, $ZF(F, F') \vdash \Phi$. Next we show $ZF(F) + ZF(F') + \sigma(F) + \sigma(F') \not\vdash \Phi$. Lemma 7. F is not implicitly (explicitly) definable with respect to $ZF(F) + \sigma(F)$.

PROOF. If not, there is a function G which is definable in the language \mathcal{L} such that $ZF(F)+\sigma(F)\vdash \forall \alpha(F(\alpha)=G(\alpha))$. By the definition of $\sigma(F)$, if ϕ is a sentence of L, then $\phi \leftrightarrow V_{F(0)} \models \phi$. Let $\alpha_0 = F(0) = G(0)$. Since $\exists \alpha(G(0)=\alpha)$ is a sentence of L, $V_{\alpha_0} \models \exists \alpha(G(0)=\alpha)$. Then for some $\alpha < \alpha_0$, $V_{\alpha_0} \models G(0)=\alpha$. By the definition of $\sigma(F)$, for some $\alpha < \alpha_0$, $G(0)=\alpha$, this is a contradiction.

By Lemma 7, $ZF(F)+ZF(F')+\sigma(F)+\sigma(F') \nvdash \forall \alpha(F(\alpha)=F'(\alpha))$. Therefore $ZF(F)+ZF(F') \nvdash \Phi$.

REMARK. If Cons(ZF+there is an inaccessible cardinal), then $Cons(ZF+\sigma(F))$, where $Cons(\cdots)$ means \cdots is consistent.

References

- [1] J.L. Bell and A.B. Slomson, Models and ultraproducts, North-Holland Publishing Company, Amsterdam, 1969.
- [2] G. Cherlin, A new approach to the theory of infinitely generic structures, Yale-University, 1971.
- [3] G. Cherlin, Model theoretic algebra, selected topics, Lecture Notes No. 521, Springer-Verlag, New York.
- [4] H. Gaifman, Two results concerning extension of model of set theory, Notices, Amer. Math. Soc., 15 (1968), 947.
- [5] J. Hirschfeld and W.H. Wheeler, Forcing, arithmetic, division ring, Lecture notes. No. 454, Springer-Verlag, New York.
- [6] H. J. Keisler, Model theory for infinitely logic, North-Holland Publishing Company, Amsterdam, 1971.
- [7] A. Mostowski, A remark on models of the Gödel-Bernays Axioms for set theory, Sets and classes, North-Holland Publishing Company, Amsterdam, 1976, 325-340.
- [8] G. Takeuti and W.M. Zaring, Axiomatic set theory, Springer-Verlag, New York, 1973.

Masahiro YASUMOTO
Department of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464
Japan