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§0. Introduction.

In a previous paper [5], the present author studied variations of the
metric tensor, the Christoffel symbols and the second fundamental tensors of
submanifolds of a Riemannian manifold under infinitesimal variations of the
submanifolds.

In this paper, we assume that submanifolds under consideration are compact
and orientable and we obtain, using integral formulas, some global results on
infinitesimal isometric, affine and conformal variations of the submanifolds.

§1. Preliminaries [1].

We consider an m-dimensional Riemannian manifold M™ covered by a
system of coordinate neighborhoods {U;x"} and denote by g;;, ['% and V;
the metric tensor, the Christoffel symbols formed with g;; and the operator
of covariant differentiation with respect to I'% of M™ respectively, where,
here and in the sequel, the indices 4, ¢, j, k, --- run over the range {1/, 2/, ---, m'}.

We then consider an n-dimensional compact orientable Riemannian mani-
fold M™ covered by a system of coordinate neighborhoods {V; y¢} and denote
by geo, I'%, Ve, Kaep® and K., the metric tensor, the Christoffel symbols formed
with g., the operator of covariant differentiation with respect to [I'%, the
curvature tensor and the Ricci tensor of M™ respectively, where, here and in
the sequel, the indices a, b, ¢, --- run over the range {1, 2, ---, n}.

We assume that M™ is isometrically immersed in M™ by the immersion:
M"—M™ and represent the immersion by

xh=xh(y").
Since the immersion is isometric, we have
(1.1) gcb:Bchbigji ’

where we have put B,/=0d.x’ (3,=0/0y°).
We can assume that [B,*] gives the positive orientation of M™.
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We choose m—n mutually orthogonal unit normals C,* to M™, where, here
and in the sequel, the indices x, y, z run over the range {n-+1, ---, m}. The
metric tensor of the normal bundle of M™ is given by

(12) gw:cz jcyigji .
Now, the equations of Gauss for M™ are written as
(13) chbh: hcbxczh ’

where
VcBbh:acBbh’*"F?chiji—rgb a.h

is the van der Waerden-Bortolotti covariant derivative of B,* and h.,® are
components of the second fundamental tensor with respect to the normal C,".
On the other hand, the equations of Weingarten for M™ are written as

(1.4) Ve, *=—hy B,

where
v.C,"=0.C,*+I'yBC,'—I'5C"*

is the van der Waerden-Bortolotti covariant derivative of C,* Iy, being
components of the linear connection induced in the normal bundle, that is,

Fc'y:(accyh'f'r";chjcyi)cxh

and C*,=C,'g¥"g;s, g¥® being contravariant components of the metric tensor
of the normal bundle of M™ and

hcay:hcbngagzy ’

g% being contravariant components of the metric tensor of M™.

§2. Infinitesimal variations [2] [3] [5].

We now consider an infinitesimal variation of M™ given by
2.1) r=x"+EMy)e,

where £"(y) is a vector field defined along M™ and ¢ is an infinitesimal.
Under the infinitesimal variation the vectors B,* tangent to M™ are
transformed into B,"*=0,%*=B,"40,£"¢ tangent to the deformed submanifold.
Carrying B,* at (Z*) back to (x") parallelly, we obtain
gbn:Bbh+F?i(x+$€)Eijt5 ’
that is,



Infinitesimal variations 47

(2.2) By =By +(TM)e,
neglecting terms of order higher than one with respect to ¢, where
(2-3> ngn:ab§h+F?iBbj§i .

In the sequel we always neglect the terms of order higher than one with
respect to .

Thus putting 5Bb":§b”*Bbh, we have
(2.4) 0By"=(VpéM)e .
If we decompose &* as
(2.5) §r=£B+£°C,",

equation can be written as

(2.6) 0By =[(Vs€*— hy®26%) B + (Vo™ + hpa "6%)C" Je .
Thus, from and we find
2.7) 5gcb:<v05b_l’vic_thbez)e ’

where 605:Ecgcb and hcbz:hcbygyz-
From we find [5]

(28) agba:_(Vb$a+Va5b_2hbaz§z)s,

where V=g%V, and h®%,=h...g%g%".

When dg.,,=0, we say that the infinitesimal variation is isometric and
when 0g.=21g«s¢, A being a certain scalar, we say that the infinitesimal
variation is conformal. If the variation is conformal and 2 is a constant, we
say that the infinitesimal variation is homothetic.

From we have
THEOREM A. [5] In order for an infinitesimal variation (2.1) of a sub-
manifold to be isometric, it is necessary and sufficient that

(29) v05b+vb$c—2hcbx$x=0 .

THEOREM B. [5] In order for an infinitesimal variation (2.1) of a submani-
fold to be conformal, it is necessary and sufficient that

(2.10) VebotVobe—2he6"=24gcs ,

A being a certain scalar.
Using [2.7) and [2.8) we calculate the infinitesimal variation of the
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Christoffel symbols

1
g’bzf(acgbe_l" 0vGce—0eLch) 2"
and obtain

1
(212) 5["&:?[vc(agbe)'l—vb(agce)_ve(agcb)]gw ’

which, using we carn write as
(213) arcab:[vcvbga+chba§d_Vc(hbaxsw)_vb(hcaxéz)_l_Va(hcb.zsr)je .

If 6I'4=0, we say that the infinitesimal variation is affine and if oI'%
=(02py+0¢p.)e for some 1-form p,, we say that the variation is projective.

Thus we have

THEOREM C. [6] In order for an infinitesimal variation (2.1) of a sub-
manifold to be affine, it is necessary and sufficient that

(214> chb$a+chbasd—vc(hbazgx)_vb(hcax51>+va(hcbzéx):0 .

Now we have the following integral formula [4]
. ‘
215) [[(e7.008 4 Ku620+ (T8t Vb (Vo8 + T8 —(7a8%)? | d V=0,

which is valid for an arbitrary vector field &% in a compact orientable
Riemannian manifold M™, dV being the volume element of the manifold.
From (2.15), we can easily derive

216 [[{e"VTee K -2 6+ V)

+%(vcsbwbsc—2hcby5v><vcsb+v"sc—%%sr)
+ (vc§b+vb§c—2hcbyEy)hwzsz
—(V = 18T | 2V =0,

which is valid for arbitrary &* and &*.

Now suppose that an infinitesimal variation (2.1) of the submanifold is
isometric. Then since it is affine, we have from which, we have, by
transvection with g<,

(2.17) g NE+ K * 6 —2V°(h* 267)+ V(A 26%)=0.
We also obtain from
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(218) (Vc$b+vbgc_thbyEy)th.zEx:0
and
(2.19) (Ve — e 2€7)(VE")=0.

Conversely if [(2.17) and [2.19) are satisfied, we have, from [2.16)
Vc&b“}’vbsc_thby&y:O:

which shows that the infinitesimal variation is an isometry. Thus we have

THEOREM D. [5] In order for an infinitesimal wvariation of a compact
orientable submanifold of a Riemannian manifold to be isometric, it is necessary
and sufficient that we have (2.17), (2.18) and (2.19).

§3. Infinitesimal isometries.

Suppose that the infinitesimal variation [(2.1) is an isometry. Then we

have Thus substituting into
1 1
(3.0) S AE )= 58PV TE )

=(gV VM +(VEN(VE),
we find

1 ‘
—Z—A(Sa Ea): - chCEb‘f“ {Zvc(hcaxsx)_Va(hcch:c)} $a+ (chb)(vcfb) ’
from which, by integration over M?,

0=S[—chEC$”—2h°”x$’”Vc&+ (R 27X (Vo€ +(VeEN(Veép)1d V

or
JC Koo — 8Tt T+ (o8 XT)+(TEN(V.£)]d V=0
Since is an isometry, we have
Vebo+Vibe=2hw,€%,  Vo&*=h 6"
Thus substituting these into the above equatiop, we find
3.2) S[—chfcfb—z(h“’y heve)§VE7+(he* 267+ (V€ (V&) 1d V=0 .

From we have
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THEOREM 3.1. If an infinitesimal isometric variation of a compact orientable
submanifold M™ of a Riemannian manifold M™ satisfies

(33) chEch_)_z(hwy hcbz)Eysxéo ’

then &% satisfies

V.£2=0 and cosequently K,E°E°=0
and

hcbxgx:O s

that is, M™ is geodesic in the direction &%. Moreover if M™ is irreducible, then
&e=0, that is, the variation is normal and the submanifold is geodesic in the
divection of the variation.

§4. Infinitesimal affine variations.

For an infinitesimal affine variation we have [2.14), from which, by
transvection with g, we obtain

4.1) ZOVNE + K * 62 —2V(h® :67)+V%(he*2€7)=0
and, by contraction with respect to ¢ and b, we have

(4.2) Ve(Vab®—ha":6)=0

and consequently we obtain

(4.3) V&% —hy*E%=constant.

Thus becomes

([ T8+ Tt2hay ) (To8+ P20 %)
(Tt Toe—2han, §h,6 |V =0

because of {(7,6)dV=0.
Thus if
(4.4 (Vebot+ Vol —2hepy EV)R,E7=0 .
then we have, from the equation above,
(4.5) Vebo+Voe—2he, Y =0.

The converse being evident, we have
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THEOREM 4.1. If an infinitesimal affine variation of a compact orientable
submanifold of a Riemannian manifold satisfies (4.4) then the variation is an
isometry.

§5. Infinitesimal conformal variations.
If an infinitesimal variation is conformal, we have

(51) Vc&b+vbgc_2hcbeI:22gcb

for a certain function 2, from which, transvecting with g, we find
1 a a X
(5.2) R A )
Thus we can write [5.I) as

(5.3) Vb Voo 2hans (Ve — o) =0
On the other hand, for an infinitesimal conformal variation, we have
0g=22g¢ and consequently from
(5.4) 0% =(0%4py+ 0§ A, — ZcsA®)E
where 1,=V,2 and 2*=V?%4, that is,
(5.5) VeVos® + Koo — Vel ho® 26%)— Vol he® 2€7)+V(hevs€™)
=08+ 05— G erh”
from which, transvecting with g, we find
gONNE + Ky ®6%—2V(ho® 1 65)+ V% (he*2€%)=—(n—2)2%,
or, A being given by
(5.6) N NGE + K 26— 2V (he? 1€7) V% (hef2E7)

n—2
n

+ VoV —het:6%)=0.
Now, we can transform into
(57) S[{ngcvbéa + Kdaéd __zvc(hcaxé.r)_{_Va(hchEx)

n—2

V(T8 —htE") e

n R
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1 2
+'é'{v,c.éb"*‘vbSc_thby&y—"z(vese‘_heexsz)gcb}
c &b b &c cb £x 2 d d &x\,ch
XV P2t 87— (Tt o 17)g")

2
{ Tl Tobe— 2o £ — (Vo= ) g 287 | AV =0.

Thus if the infinitesimal variation is conformal, we have and con-
sequently

589 [Tt T 2hany = (Ve85 ey £ gl 2, 67=0

and also [(5.6)
Conversely if and are satisfied, we have from

2
Vc’fb"‘ VbEc_thbysy —%"(veée'— heey Sy)gcbzo ’

which shows that the infinitesimal variation is conformal. Thus we have
. THEOREM. 5.1. In order for an infinitesimal variation (2.1) to be conformal,
it is necessary and sufficient that (5.6) and (5.8) hold.
Substituting into we find

S A=~ Ko 8+ 28,165 —E.9%(ht,E%)

n—2
n

Eava(vese" heezéz)-i_(vcsb)(vcéb) .
from which, integrating over M™,
|- Kate—(hu6)(TbsHTu+ het7(Ta®)

n—
n

+

L (Te8 = h NV (TEN(T0 | 2V =0,
Since the variation is conformal, Wé have
Vel Vb= 2hn (Ve )5
Substituting this into the above integral formula, we find
[~ atetr—2n, 80 hour=Ehe, 9T~ b6+ e 185(T,8)

n—2
n

-

(Voo o) T+ (UL |4V =0,
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from which
1 c e 1 X
(5.9) |- Koo —2(hry—g?het, Y hers—gaha®s )06

n—
n

_|_

L (T H TNV |4 V=0.

Thus from we have
THEOREM b5.2. If an infinitesimal conformal variation of a compact orientable
submanifold M™ of a Riemannian manifold M™ satisfies

(5.10) Kot € +2( 1, = ghet, ) hare— ka2 )§6720,

then, &% satisfies
V.£2=0 and consequently K ,&E=0
and

1
hcbxsx:_ﬁgcbhddxgx s

that is, M™ is umbilical in the direction £%. Moreover if M™ is irreducible, then
£2=0, that is, the variation 1s normal and the submanifold is umbilical in the
direction of the variation.
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