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§0. Introduction.
In this paper we consider the nonlinear evolution equation of the form
(E) du(t)/dt+og'(u(t)>f(t) 0=t=T,

in a real Hilbert space H. Here, for almost every t<[0, T, 9¢° is the sub-
differential of a lower semicontinuous convex function ¢! from H into
]—00, 0o (§'sE+00).

Since Brézis first treated the equation (E) in the case ¢'=¢ is inde-
pendent of ¢, many authors have investigated the existence, uniqueness and
regularity of solutions of (E). (See Attouch and Damlamian [1], Kenmochi
[5], Maruo [6], Watanabe [8], Yamada [10], [11], etc.)

This paper establishes an existence, uniqueness theorem for strong solu-
tions of (E) under relatively weak assumptions on the f-dependence of ¢*
generalizing the results of [1], [5], [6], [8] and [1I]. We employ the
method of Kenmochi [5], that is, we would like to approximate (E) by differ-
ence approximations with respect to the time. We also use the idea of
Maruo [6] under these hypotheses to establish estimates for solutions of the
approximation schemes. The main advance over [10, 11] is the relaxation of
a hypothesis on the {-dependence of the ¢' from absolute continuity to bounded
variation.

The contents of this paper are as follows. §1 recalls the basic properties
of a lower semicontinuous convex function ¢. In §2 we list the basic hypo-
theses and state the existence theorem for (E). §3-7 comprise the proof of
the theorem. §3 shows the measurability of ¢ (v(-)) for any strongly meas-
urable function ». In §4 we prepare some lemmas which play important roles
in §5. In §5 we drive recursive inequalities for solutions of the approxima-
tion schemes and establish estimates for them. In §6 we prove that the
approximate solutions converge as the mesh of the partitions approaches zero.
Then we get the local existence of the strong solution. In §7 we prove the
global existence of it.

The author would like to express his gratitude to Professor H. Tanabe
for his useful suggestions and encouragements.
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Notations.

H denotes a real Hilbert space with the inner product (-, -) and the norm
[-1.

C([0, T]; H] denotes the space of strongly continuous functions u : [0, 7]
—H with the norm |ull=max{|u(t)|;0=t=T}. L%*0, T; H) denotes the space
of strongly measurable functions v: J0, T[—H such that

vl z2co. 7; H):(S: |v] Z’dl‘)uz< 400,

§1. Preliminaries.

In this section we collect some known results on the subdifferential of a
convex function. For the proofs see Brézis [2], [3] or Watanabe [8].

Let ¢ be a lower semicontinuous convex function from H into ]—oo, co],
¢p*=-+co. The effective domain D(¢) of ¢ is defined by

D(¢p)={usH; ¢(u)<+oo} .
For each u= D the set
odp(uw)y={weH; ¢(v)—g(u)=(w, v—u), for all ve H},

is called the subdifferential of ¢ at v and the domain of the subdifferential

0¢ is defined by D@¢)={ucsD(§); ¢ is not empty}. Then the subdifferential

0¢ is, by definition, monotone in H, i.e. (v1—vy, u;—u,)=0 if v,€0¢(u,), 1=1, 2.

It is known that 0¢ is maximal monotone in H, i.e. R(14+-20¢)=H for all 2>0.
Now for each 270, 1[ and u= H we define

(L1) Jau=(1+10¢) ",
1.2) gzig(u):inf{gzi(v)—l——zli—lu——vlz; UEH}.

We can show that the infimum of is always attained by the unique
element Ju:

1

(1.3) $:(W)=¢(J )+ o lu—Joul*.
Furthermore we have

(1.4) d(iw)<p,(w)<é(u)  for any ucH,
(1.5) 121301 2 (w)=¢(u) for any ueH,

(1.6) lxir?],zu:u for any usD(g).
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LEMMA 1.1. For each 2€]0, 1[, ¢, is a Fréchet differentiable convex func-
tion on H and the Fréchet derivative 0¢; of ¢; is equal to the Yosida approxi-

mation (a¢)1_—(1—h) of 0¢. More precisely,

(17) 0=4:0)— 20 —~(@)), v—w= lo—ul?

holds for any 210, 1[ and u, ve H.
REMARK 1.1. By the above lemma we shall write d¢; instead of (9¢);

=2"11-J2).
REMARK 1.2. By we have %(u—];u)eagﬁ(hu):

1.8) ¢(v)—-¢(]1u)g%(u—]1u, v—/Ju)  for all veH.

§2. Statement of Theorem.

Let T>0 be fixed. We shall consider the problem under the following
assumption (A).

(A1) There is a set 0 ZC[0, T] of zero measure such that ¢* is a lower
semicontinuous convex function from H into ]—oo, 0o with the non-empty effec-
tive domain for each t<[0, T]—Z.

(A2) For any positive integer r there exist a constant K,>0, an absolutely
continuous function g,:[0, T1—R with g, L*0, T) and a function of bounded
variation h,:[0, TJ>R such that if t€[0, T]1—Z, xD(@") with |x|<r and
s€[t, T]1—Z, then there exists an element %< D(¢*) satisfying

{ |Z—x| =1 g.(s)—g.()] (p*(x)+ K,
P (X) =@ (x)+| h(s)— h ()| (p*(x)+K,) ,

where a is some fixed constant with 0=Za =<1 and

2 if O_S_aé%,
B=
1
. —_—_— <
l1—a if 2“ asl.

REMARK 2.1. The assumption (A) implies, in particular, that for each
positive integer 7, there exists a positive constant K, satisfying

@1 $'(x)+ K20

for each t[0, T]—Z and x=H with |x|<Zr.
In fact, let x€H with |x|=r be fixed. Then if x is in D(¢?), (2.1) follows
from (A.2). If x is not in D(¢"), then ¢‘(x)=-oco. Therefore we have [2.1)
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We now define a strong solution of (E).

DEFINITION 2.1. Let u:[0, T]—H. Then u is called a strong solution of
(E) on [0, T] if (i) u is in C([0, T]; H). (ii) » is strongly absolutely conti-
nuous on any compact subset of 10, 7[ and (iii) u(¢) is in D(¢*) for a.e.
t<[0, T] and satisfies (E) for a.e. [0, T.

Then we have:

THEOREM. Let the assumption (A) be satisfied. Then for each fe L*0, T ; H)
and ueD(@"), the equation (E) has a unique strong solution u on [0, T] with
u(0)=u,. Moreover, u has the following properties.

(i) For all t]0, T]—Z, u(t) is in D(@"), and ¢"(u(t)) satisfies td*(u(t))
e L0, T) and ¢*(u(t))e L*0, T). Furthermore for any 0<o<T, ¢"(u(t)) is of
bounded variation on [0, T1—Z.

(ii) For any 0<6<T, u 1is strongly absolutely .continuous on [0, T], and
t2du/dte L¥0, T ; H).

In particular, if u,=D(¢°), then u satisfies

(1) For all t<[0, T1—Z, u(t) is in D(¢*) and ¢*(u(t)) is of bounded vari-
ation on [0, T]—Z.

(iiY u is strongly absolutely continuous on [0, T] and satisfies du/dt
e L¥0, T; H).

REMARK 2.2. As for (i) and (i), see Definition 3.1.

REMARK 2.3. The assumption (A) is a generalization of [1], [5], [6], [8],
and [11]. That of Kenmochi is reduced to the case when Z is an
empty set, a=0, g, and A, are Lipschitz continuous at that of Yamada [10, 11],
to the case when Z is an empty set and A, is absolutely continuous especially.

§ 3. Measurability of ¢ (v(+)).

When we prove the theorem, we use the following lower semicontinuous
convex function ¢f from L*0, T ; H) into ]—oo, co] with the nonempty effec-
tive domain such that
T
ACOLE A ICOCIA U}

—+oo otherwise.

B.1 of (v)={

We shall show the measurability of ¢'(v(-)) to guarantee the well-definedness
in this section. The fact that the effective domain is not empty will be
shown by in the next section. First we prepare the fundamental
lemmas for functions of bounded variation.

DeriNiTION 3.1. Let f be a real-valued function defined on [0, T]—N,
where N is a set of zero measure. We put
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VIf=sup{Z:2 | f(t ) —f(tr-D1;
0=t <t <+ <to =T, {t;}05;52C[0, T]—N} .

The extended real number VIf is called the total variation of f over
[0, T]—N. If VIf<oo, then f is said to be of bounded variation over [0, T]— N.

REMARK 3.1. Let f be of bounded variation over [0, T]—N. Then

(i) The inequality V§f+V.if<V{f holds for 0=s=<t=T,

(ii) The function [0, T]=t—V{f<R is non-decreasing and bounded, where
we define V!f=0 for any t<[0, T].

LEMMA 3.1. Let m(t) be a non-decreasing function on [0, T and b(t) be a
bounded function on [0, T]—N satisfying the following inequality

(3.2) b(t)—b(s)=m(t)—m(s)

for any s, t<[0, T1—N with s<t. Then b(t) is of bounded variation on
[0, T1—N.
Proor. We have
m(s)—h(s)=m(t)—b(t)

by Define c¢(t)=m(t)—b(t). Then c¢(¢) is non-decreasing and bounded on
[0, T]J—N. So b(t) is of bounded variation on [0, T]—N since b(?) is written
b(t)=m(t)—c(t). g.e.d.

COROLLARY 3.1. Let b(t) be of bounded variation on [0, T]—N. Then there
exists a function of bounded variation b(t) on [0, T such that b(t)=b(t) for any
te[0, T]—N.

ProOOF. Define m : [0, T1—R by m(t)=Vib, then b(t) and m(t) satisfy the
assumption of Lemma. Set c(#)=m(t)—b(t). Since c¢(¢) is non-decreasing and
bounded on [0, T]—N, there exists a non-decreasing function & on [0, 7] such
that &(¢)=c(t) for any t<[0, T]—N. Then b(t)=m(t)—&(t) is a function which
has the required properties. q.e.d.

Using the idea due to Attouch and Damlamian [1, Lemma 1], we get the
following lemma. The proof is analogous to that of Yamada [10, Lemma 3.1]
and is omitted.

LEMMA 3.2. Let {¢'} satisfy (A). Then there exist two positive constants
C, and C, such that

(3.3) ¢ (x)+Cilx[+C,=0

holds for all t<[0, T]—Z and x=H.

For each 1€70, 1[ and u=H we now set Jiu=(1-+20¢")"'u and ¢i(u)
=@'(Jhu)+@2D)|u—Ju|% Then by Remark 1.1, we have 0gi=1"1—J9.
Next we shall show that ¢%(x) is of bounded variation on [0, T]—Z with
respect to t. The following lemma is essentially due to Yamada [10, Propo-
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sition 3.1].
LEMMA 3.3. Let {¢'} satisfy (A). Then
(1) There is a positive constant C, independent of 2, t and x such that

(34) |J5x| 22| x|+Cs  for te[0, T1-Z.

(ii) For each 270, 1[ and x € H, ¢4(x) is of bounded variation on [0, T1—Z.
Proor. Let 2€70, 1[ and x=H be fixed. Then by (1.2) and (1.8) we have

(35) P+~ | x—vl 2 g4(x)
and
36 $ )30 = = (x—Jix, v—J42)

for all t<[0, T]1—Z and veH. Next if v,eD(¢°) be fixed, then by the
assumption (A) there exists a function on [0, T]—Z such that

@7 a(0)=vo, la(t)|=r,—1 and ¢ (a(t)=M,

for t<[0, T]—Z where r, and M, are positive integers. Hence taking v=a(t)
in we obtain for t<[0, T] -7

3.8) ¢A(x)<¢‘(a(t))+ = a(l‘)lz<M T (I x[470)?,

“which shows that ¢j(x) is bounded in ¢t<[0, T]—Z. Also taking v=a(t) in
(3.6) we obtain

M,— ¢(]ax)> |J3x I'“’——l]axl(lxl—l-ro) Tolxl

for t[0, T]—Z. Hence using [3.3)] we find that [3.4) holds.

Now we put r=sup{|/Jix|; tE[O, T1—-Z, 210, 1[}, which is finite by
(3.4). Since Jix<D(0¢*)C D(¢*), by using assumption (A) again we see that,
for each s, te[0, T]—Z with s<t, there exists we D(¢*) such that

lw—J3x| =1 g)— g ($*(Jix)+ K»)*,
{ ¢ (W) =@ (Jix)+ [ h (D)= h() (P (J3x)+ K>) -
Therefore taking v=w in we obtain for s, t<[0, T]—Z with s<t¢
3.9) [ he(8)— ho($)| (P3(x)+ Kr)+¢°(J3x)— ¢ (T i)
——(x—]ax Jix—Jix)— 1 g:(t)— ()] 1095(x) | ($3(x)+ K»)* ,
where we used [1.4) We note

—(x —Jix, Jix—=Jix)2 -+ 22 (Ix=Jix*—|x—=Jix|®).
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Consequently using and we obtain
3.10) | ()= ho(5) | ($3(x)+ K>)
+1gA8)— g ()| |09i(x) (Pi(x)+ K)* = $i(x)—$i(x)

for any s, t[0, T]—Z with s<t. By Remark 1.1, and [(3.8), there exists
positive constant C,, ; independent of ¢ such that

31D 1004(0)| =Ca.2, i(0)=Ca.,

for any t<[0, T]—Z. Hence by [(3.10) and [3.11)

B12)  ¢i(x)—¢i(x)
S1hA() = hel( I (Co 2+ K+ | 81— g(5)| Cy, 2(Ca, 2+ K)*
=D 2 {Vih,+Vig-—(Vih,+Vight,

where D, ;=max{C,, 1+K,, C; i(C, +K,)*}. (3.12) implies (ii) by [Lemma 3.1l
g.e.d.

As a consequence of we have the following lemma which we
need.

LEMMA 34. Let {¢'} satisfy (A) and let v:[0, T]J—H be a strongly meas-
urable function. Then ¢*(v(2)) ts a measurable function on [0, TJ.

ProOOF. Since v:[0, T]—H is strongly measurable, there exists a set
Z,C[0, T} of zero measure such that {v(t); t[0, T]—Z,} is separable. Let
{ra}.2. be a dense subset of {v(t); +<[0, T]—Z}. Then, by and
t—¢i(r,) can be extended to a function of bounded variation on
[0, T] for each n. So the set of discontinuous points of ¢i(r,) is numerable.

Denote it by D, and define ZzzZUZIU(QDn). Then for any n, [0, T]—2Z,

St—¢i(r,) is continuous, and Z, is a set of zero measure.

Now, let ¢ be any given positive number. Choose a closed subset F, of
[0, 7] such that [0, T]—F.DZ,, the measure of [0, T]—F, is not larger than
¢ and v|F, is continuous on F. by Lusin’s theorem. We shall show that
F.=>t—¢i{(v(t))eR is continuous. By

(3.13) |0gi(x)| = | A (x—J5x)| =27*(3| x| +C5)
for all t€[0, T]—Z and x=H. Hence using [(1.7) and [3.13), we have

|BI0)= 1) | = @l x] 151 +C y—x
for all t[0, T]—Z and x, yeH. Therefore
| pi(w(s))—gi(v(t))]
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< 110D 1)+ $Hr)— i)+ 81— 10|
< @S| HIral +CHI U =7l + 161 = i)

—{——}!—(4|v(t)| H17al +C)v(t) =7,

<25 5upl ()| +Cot [o(D—ra T ) —oD] +] (D)7}

+1 i) —@i(ra)l.

Let tF, be fixed. Then for any »>0, there exists n such that |v(¢)—r,| <7.
Moreover there is d(r,)>0 such that seF. with |s—t|<d implies |@3(rn)
—@i(rn)| <y and |v(s)—v(¢)| <7». We have seen above the following: for each
>0, there exists ¢>0 such that

| pi(v(s)—@i(w(D))] é%(S.Se‘;plv(')l +Co+7)-27+7

for all seF, with |s—t]| <ad.

. Therefore ¢;(v(+)) is Lusin-measurable and so measurable. By [1.5), ¢‘(v(¢))

=lxim @i(v(t)) for almost all t<[0, T]. Hence ¢'(v(+)) is measurable. q.e.d.
-0

§4. Lemmas.

In this section we summarize some consequences of the assumption (A).
The following lemma is well known and essential in obtaining necessary
estimates.

LEMMA 4.1. Let {ai}i®, {0x} %0 {Ci}i®o be sequences of non-negative num-
bers such that

ar=(1+bp)ag-1+tce, k=1,2, -, n.

Then (1) aké(ao‘i_Zj,ile)eXp Zjilbj, k—:l, 2, e, N
(11) ak§(al+21£2€j)exp Zjigbj, k:2, 3, - , n
Proor. (ii) follows (i). We prove (i). By the induction

ap= {Hjil(l"i_bj)} ao+215—1 {Hz=§+1(l+bl)} Cj.

b

Therefore
ar<(exp X4 b)a,+(exp 500 ki)

:(eXp Eji]bj)(ao+2j};16j) . ‘ g.e. d.

Since k. in the assumption (A) is of bounded variation on [0, 7], the set
of its discontinuous points is numerable. Denote it by D, and define Z,

=ZU{C} D,}. Then Z, is a set of zero measure. We denote the strong con-
r=1
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vergence by — and the weak convergence by =,
LEMMA 4.2. Assume (A). If x,€D(¢'n) with |x,|=r, ¢"(x,)=L, t, t,

[0, T]—Z, with t,=<t, xnﬂx m H and t,—t as n—oo where r and L are
positive integers, then

(4.1) $'(0)<liminf §*a(x,).

Proor. Using (A), we can find ¥, D(¢") for each n such that

|Zn—xa| =1 g()—g:(t) [ (L+K)*
and

P En) =@ (xa)+ 1 ho(t)—ho(t) (LK)
Since inﬂx in H and ¢%(-) is lower semicontinuous in H, we have
6*(x)<liminf 3'(2,)
<timinf §*n(xn)+(L+K,) lim| h(t)—hi(t2)]
zlimgnf o'n(xy). g.e.d.
REMARK 4.1. If we replace Z, by Z in the above lemma, we have
¢‘(X)§lig£nf ¢tr(xy)+H(L+K)Vih.

The following lemma is essentially due to Kenmochi [5, Lemma 3.3 and
its Corollary]. The proof of it is a slight modification of that of Yamada
79, Lemma 3.2].

LEMMA 4.3. Let {¢'} satisfy (A). Then there exist positive constants 0, 7,
and M which have the following properties: for each t<[0, T]—Z, there exists
a strongly absolutely continuous function v, on [{, min{t+d, T}1=1,s such that

(1) lv)l=r,  for selis,
(i) [vds)—vds)l S+ | "L gl d
for sy, 5.1 with $1=5,,
(iii) ¢’ (s)H=M Jor s€ls—Z,,
1 1 $ < AL
(iv) ml.‘félzs}fﬁzf () =g (1)) -
1
1 2 1
O§a<§ if we replace « and K,, by > and K, +1 respectively in the fol-

PrROOF. We assume —=a=1, noting that the proof also holds under
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lowing proof. Let v, D(¢°) be fixed, then by assumption (A) there exists a
function a on [0, T]—Z satisfying Let M and 6 be constants defined
by

4.2) M=(exp VEh, Mo+ Krp)—Kr,
-1 T 71/ d-a) -(l-a)/a -1
(43) o=2({ 1 g0 dr)- oo (MK

Note ZUD,cZ, Fix any t,&[0, T]—Z,. For simplicity we assume #,+0<7T.
Choose d, so that t,+0,[0, T]1—Z, and 0=0,<20. There is a sequence of
partitions {t,=17<t?<---<i2=t,+0,} such that {t3},2,C[0, T]—Z,. Now, we
are going to build a sequence {u}}.%, as follows: Let ul=a(t,)=a,. When
ut € D(@%™) with |u,2,| <r, is given, we choose uj<D(g'%) with |u}| <7, by
using (A) so that

(44) |uf—uss| S| &r(t8)— &ro(tam) (@ 1 (s )+ K )*
(4.5) G R (up) =G 1(ug™) + | Ary(E1)— heo(8m) | (@5 1(us™ )+ Krp)
This is well-defined by and [43). Then we have

(4.6) lui—ao <1, gFWp=M, k=01, -, n.

Define a sequence {u,},2, of strongly absolutely continuous functions on
[tO; t0+51] SuCh that

@) ()= —EL o WS et e, 1]
tk“' E—1 tk-"tk—l

By [(4.4), [(4.5), [4.6) and (4.7) we have

(4.8) |lua(t)l=r,  for any t,<t=<t,+0;,

9  luO—un) M) Ighldr  for te=sst=tita,

where e*=max{|t7—¢%,|; 1=k=n}.
Using and Hérder’s inequality, we have

1/(-a)

uz——uk‘zl n n n\-a/{1-a) n n 1/(1-a)
I er=22%(e%) |k —u,|

€%

25

tr

=Sn(epy oo eper o[ g1 dt) MK Yoo
-1

7]

:(M-I—Kro)a/a—a)(gz“ol % 1/(1—a>dt> .
to

Thus we get

1-a)

@iy (e a T s [T g oo dr)
. 0
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by (4.7). Therefore the sequence {u,} and {u,} are bounded in L*(¢,, {,+6,; H)
by (4.8) and noting %§a§l. There exist a subsequence {u,;} of {un}

and a strongly absolutely continuous function u such that

(4.11) Un;—u  in L¥(to, to+d,; H),
(4.12) up, =’ in L¥to, te+6:; H),
(4.13) un(H>u(t) in H  for any t&[t, to+d].

Therefore (i) and (ii) are given by (4.8), (4.9) and We shall show the
properties (iii) and (iv). Let te[t,, t,+08,]—Z, be given. There is an interval
[t:8, tiotal such that t=[t:%, tidal for any n where we define ¢,%,=T.
Set t*=t,. By (4.9) we have

t+en
(4.14) un(t—un®d S MK gl dr
Therefore we have

(4.15) un (") u(t) in H

for any te&[to, to+0,] as j—oo by [413) and [414) From we obtain

¢ " (u(t )+ Ky = (@ o(u(t o)+ Ky, exp VigI=(@'(uo)+ K, ) exp Vi, .
Using [(4.15), Lemma 4.2] and the above inequality, we have
(4.16) *(u(t))=liminf ¢""/(u(t™))=(P*(uo)+K,,) exp Vi — K., =M
J—Dw

for t<[t,, to+0,]1—Z, This implies (iii). Since h,, is continuous at t=t,,
we have

limsup @ (u(t)<¢to(u,)

titg tELLg, Lo+d11-2Z g
by (4.16). This implies (iv). g.e.d.

REMARK 4.2. If we do not need the property (iv) for v,(-), we can replace
Z, by Z in the statement of the above lemma. In fact, repeat the proof
noting Remark 4.1.

COROLLARY 4.1. Let {¢'t satisfy (A). For each t€[0, T]1—Z, and each
xeD(¢") there is a function ve L*(0, T ; H) such that u(t)=x, ¢ ((-))e LX0, T),
v is right-continuous at t and

limsup  ¢*(v(s))=¢4(x).

sit,s€(0,T1-Zy

PrROOF. By assumption (A), for each t=[0, T]—Z and each x € D(¢") there
exists a function a, on [0, T]—Z such that
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ax(t):xr |a.r()|§r.z—1 and ¢(az())§Mx

for any -=[0, T]—Z where r, and M, are positive integers. Repeat the
proof of replacing a by a,, then we get a function v, , instead
of v, satisfying the properties (i), (ii), (iii) and (iv) replacing d, r, and M by
0z, ¥z and M, respectively. Thus we can easily construct a function v.
g.e.d.

LEMMA 4.4. Let {¢'} satisfy (A). Suppose ue L¥0, T ; H) such that ¢ (u(-))
e L0, T) and fe L0, T; H). Then f€o®@f(u) if and only if f(t)€0g (u(t))
for a.e. t€7]0, TL.

PrROOF. Use then we can show this lemma with a slight
modification of the proof of [5, Proposition 1.17.

§5. The main estimates.

We assume that {¢‘} satisfy (A).

In the next section we prove the existence of a local strong solution by
showing the convergence of solutions of certain problems approximating (E).
As a step towards this goal we establish some estimates in the present
section.

First by Remark 4.2 there are a positive constant M and family of
{ve; te[0, T]—Z} of H-valued strongly absolutely continuous function v, on
I, ;=[t, min{t+4, T}] satisfying the properties (i), (ii) and (iii) in Lemma 4.3
For simplicity we consider the problems approximating (E) on [0, §]. We
denote by p the function v,, and é by 7,. Then we have

(6.1) | p(5)|=C for t[0, T41,
62) |5(t) =Bt | =C|lgn(@l de for b, =[O, T,
53) #(p(1)=C for te[0, T\1-Z,

where C=max{r,, (M+K,)*, M}.

Let fe L*0, T ; H), u,=D(¢°). We may assume T,€[0, T]—Z, without
loss of generality. There is a sequence of partition P*={0=¢t7 <7<« <t2=T},}
such that {¢7},2,C[0, T\]—Z, and t;,—¢;.1=t;.,—t;-, for j=2, ---, n. We pro-
pose to approximate (E) by the discrete problems

Uj—Uj-1
(5.4) 17 —1t5
ui=u,€D(¢"),

+a¢tg(u2)9f;l: ]:1: 27 e, N,

where
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1 e )
fJ:——T—n—g j(f)dfi .]:l} 2: ct, M.
5 —15-1 9t
Since the subdifferential is maximal monotone in H, {u7},2, is defined induc-
tively by [5.4). Define the step sizes e}=t3—1t7_, for j=1, 2, ---, n. Then we
have
(55 630Nz —(FLEE, w—ug)+ (5, x—u))

J

for all x€H and j=1, 2, ---, n. Define ef=¢? and set ¢"=max{e}; j=0, 1,
-, n}. From now on we assume ¢&" is sufficiently small. Denote by C,
constants independent of f, u,, ¢%u,), n and j. For simplicity we drop n if
there is no fear of confusion.

LEMMA 5.1. There is a positive constant M,=M,(|| fllz2co. 7, m>» |Uol) Such
that

(5'6) lu?léMly fOT léjén)
B.7) et ()< M, .

Proor. We assume %§a§l, noting that the proof also holds under
0§a<-§- if we replace a by % in the following proof. Denote p(¢7) by p7.
Substituting p7 for x in we see that

Uj—Uj

5.8 ¢4(p;)— ¢ (u) = —( b= ug)+(Fy py—u)=I+1I

€5
for j=1, 2, ---, n. Now we observe that
I=e7"(u—p;—(Uj-1—Dj-0)+Dj—Dj-1, U;—by)
e {|uj— i1 2= lwjo1—pjal luy— Pl = 1 pj—Pj-u| lu;— ps1}
Zei {|u;— i1 2 =27 ujo1— P 1 2—27 u;— p;] 2
=277 py—bj-1| P27 5w~ ps1%

2727 = 172 uyer— by |27 L= |

|24l dz] '}

by (6.2). Let us estimate the final term. We have

| (4 ’ ?— | of{Y ruva-a 217
e\ lenldr| =ep|es{| ! lenlvawds
tj-a tj-1

oralf;

j-1
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-1 tj J11/ - 2(1-a)
=] 1ggo-wde

tj—l

§(2a—1)ej+2(1_a)511 | g,/ |- dr
i-1

Therefore
(5.9) 132_1851{|u;‘_1’j|2—|uj—1'—Pj-1lz‘—5jluj_pJ‘|2
tj 711 -a)
—csej—csgtj_llgro\ ra-e gzl
(5.10) Hz—\fllu—p;| = =27 f;12=27 u;— p,|*.

By (5.1), and we have

GID)  Gh(p)— i) SC+Cilus| +ComCHCulus—py | +Csl 1] +C,
<Cut27u;— 1.

From [(5.8), [5.9), [(5.10) and [5.11), we deduce

y
|uj_Pj|2§(1"35j)_l{|uj—l”Pj—112+C5(€j+St]_ llgrﬁl1/<1'a)df+6;'lfj]2)}
-
ti i
<(+4e)lupi— s+ Cofest | 1glre-odet (7 (71mac).
j-1 Lj-1

Applying Lemma 4.1, we have

ti t;
612)  lu—psl = luempol (4] g o mde (7 f12az) s,
Return to and using [5.9) and [5.10),

(5.13) €j¢lj(“j)§2_l‘{— lu;— D12+ ujer— P12+ Cre;

+C7 Ngalraode |7 | frdeae u—p,17).
tj-1 tj-1
Combining (5.12) and (5.13), we find
614 Tdegw)=Co{lu—pult+t,+ ] g1 v o0 e+ 717120}
g.e.d.

COROLLARY 5.1. There is a positive constant L,=Cy+|@°(u,)| such that
615 Sepfans Lo+ (Tl galtdet (T 1715 upol?)

for 1< j=n.
PrROOF. By definition ef=¢?. Then we have
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(5.16) 530 (ut) =14 (uo) < 17| ¢°(uo)|
for 1=j<n. Hence we have [5.15) by (5.14) and |(5.16). g.e.d.

From now on we take r=[+M,+|u,|+17 in the assumption (A). We
may assume ¢'i(u?)+K,=1 for 0<;<n without loss of generality by noting
(A). For simplicity let g, h and K denote g,, h, and K, respectively. We
prepare some simple lemma which is useful for estimates.

LEMMA 5.2. There is a positive constant C, such that

P o NI CHRIURBES o

J

<Cfer @m0+ g Pas|@-itum K.

PrOOF. We assume %§a§1, noting that the proof is simpler if O§a<%.

By using Hoérder’s and Minkowski’s inequalities,

&5 g(t)—g(t ;)" (u;-1)+K)*

<ei([,)_1g/1de) (@UmstusoH Ko gH )+ K)

= {efgs )+ K o7 (g 1remede T (g )+ K

Jj-1

=[@a—1)

X(g*-1(u;-1)+K)

e ) H O 20— a) | g e ds]
J j-1

€j-1

§[(261’—1)£j—1(¢tj-l(uj-1)‘f‘K)—{—Z(]__-a)Si]:— |g’|”‘1‘“’dz-]
X(pt-1(u;-)+K). ed

The following lemma is the most important. The central idea of the
proof is due to that of Maruo [6, Lemma 2.2].
LEMMA 53. There is a positive constant L,=L,(| fllzeco.r: m>» 1%ol, ¢°(to))
such that
1
(5.17) pITLN

n
i

(5.18) ST(uN=L, for 1<j=<nmn.

-luf—u} 4 |?’= L,

Proor. By (A) there exist #; for each u;_;,, 1=j=n, such that

d—uj-1| =1 g(t;)—g(t-1 ti-1(u ;o) +K)*,
(5.19) {lu uj-1| =1g(t)—g(t -0 (¢*2(u;-)+ K)

¢tj(ﬁj)§¢tj_l(uj—l)+ | h(tj)—h(tj—l) | (¢tj'1<uj—1)+K> .
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Taking #; as x in we have
(5.20) ¢ti(ti ) — ¢ (uy)z —e3' (wy—u oy, @y—u)+(f; d;—u)=I+II.
(5.21) I=e7*(uj—ujoy, Uj—Ujrt U — ;)
=275 {luy—uyma P — o — 1151 %
227167 o |P— 2765 (1 )= gt o) | MG () + KO
by
(5.22) U=(f;, #;—uj-rtus-i—uy)
=—filla—us = fil Tuj—uyl
=27, fi12 =27 e = uyoq | P— g5 £ P— 4 e o —uy ]
=—273¢;| f512—47 7 lu—uj-q|®
—27%e7" gt )—g(t ;- | (g"2(u;- )+ K)*
by [6.19). Using (5.21) and (5.22) in (5.20), we have
G433 s-1)+ | h(E )=t j-) [ ($45-2(u j-1) + K)—*i(u)
> 4767 Uy o1 | 22736 £y 12— 70| gt ) — gt -0) | (@2t 5or) O
From this inequality and we get
(5.23)  4le7 | u;—ujoy | 2 (P (u )+ K)
t

=1+ At )—h(t5-) 1)1 (u;-)+K)+ %Se :

j=-1

|f1*dz

J

+C9[€j—1(¢lj‘1(uj—1)+K)+S _llg’|5dz-](¢ti-1(u,-_1)+K).

t
ty

Therefore
(5.24) ¢liu)+K

R AN
xexp{Vih+C{ 71 ¢/ 1Pde+Cy Sidsecs(@t-1(ue )+ KO}

(ot K+ (71 71%a)
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N
xexp|Vish +c9(1+L0)§0’ |g’|Pde

ts
+CoLo| t+ /1 127+ o= p01*]}
by Lemma 4.1 and [Corollary 5.1. We set

T
(5.25) =exp{VIh+C,(1+ L), 1¢')7de

+CL T+ 112+ 1w pol?]}
By (5.24) and we have
626) g+ £
+ Ly )+ K+ 5 (117
x{Visn+ 1+ Lo g/ 1Pdr-rCoLo[ £+ [ 1 A1+ uo— ol

So, there is a positive constant Lj=L(|flrz2c0.7; m>, %o, ¢°(1s)) such that

(5.27) Pi(u)=Lj.
Returning to (5.23) and using we obtain
St =ty "< L a.e.d.

1

The following corollary is trivial from (5.26).
COROLLARY 5.2. There is a positive constant L,=L,(|u,|, ¢°(u,)) such that

tn 0 n t? ’ t?
IWN=gwo+ L1+ Vi h+(7 g/ Pde+(? I f2de+ o1}
0

LEMMA 5.4. There is a positive constant My=M,(|| fllr2co.7; 15> |Uo|) Such
that

1
(5.28) D 3lui—uia P S M.,

J

(5.29) t1 i(uH=M,, 1=j<n.
PROOF. Multiplying (5.23) t7, we have

(5.30) 477l uy—ujo, | P+t (@0 (u )+ K)

<{1+1h)—nieDI+G[7 121

t
tj-1
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+Cat a9ty )+ KO (35 )+ K)

+—§’—t,.S:_1| flude.

By the way

G3) gD+ E)
=(t;—t;-0(@%(u;-)+ K)+1,-1(¢55-(u;-1)+ K)
=¢;651185-1(@" - W(uj-0)+ K)+ £ 5-4(¢" - (u;-1)+ K)
<ej-(@ -1 (uy-0)+K)+15-1(-1(u;-)+K)

By and (5.31), we have

(6:32) 4767t w1 () +K)

"1 g Pd e Coe a1, ) H KO}

t
tj-—l

< {1+ 1A= k(10| +G|

XAt j-1(@*7-1(ujoy) + K)+ej-1(@t3-1(u ;- )+ K)}

3 (4
+7th’ I fl2de .

tj—l

for 2<j<n. Using [Lemma 41 (ii) and Lemma 5.1, we obtain

T
)+ )M KT+ S T 17170
T
+(M,+KT) exp| VER+C{ 18/ 1Pde+CM+CTK |}

T
xexp{Vih Jrcﬁ,g0 lg’ Iﬁdr+Cng+C9TK} .

Thus we have (5.29). Return to and use and [5.29), then we
get (5.28). g.e.d.

REMARK 5.1. As easily checked, we see the following :
M; and M, can be chosen so as to be bounded on each bounded set of
| fllzeco.r, > and |u,!|, and also L, and L, can be chosen so as to be bounded
on each bounded set of ||/, |u,] and ¢°(u,).

Now, define step functions u™ and V"u™ for each n as follows:

1 .
—(uj—uj.,) i telj
€j

u™(t)=uj and YV u™(t)=

for j=1, 2, ---, n, where I?=[0, t7] and I%3=]t%_,, t%] for j=2, -, n.
LEMMA 55. For any s, t[0, T,] we have
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lum(t)—u™(s)| V([ t—s[+2e™)L,.
PrOOF. Let seI?, tel? and j<k. Then by Lemma 53,
lun(t)—u™(s)|=|uf—ujl
=| Zifn(ui—ul)|

1 1/2
.—é_{zi:ljeﬂ—sn— |2 —u%_4| 2} {Ei:’}ﬂs?} 172

(2

SV(t—s|+2eML;. g.e.d.

§6. Local existence of strong solutions.

In this section also we assume that the condition (A) is satisfied and
show that a suitable subsequence of {u"},2, constructed in the previous section
converges to a strong solution on [0, T,].

By and the sequence {u"},2, and {y"u"},, are
bounded in L%*0, T,; H), so there is a subsequence {n,} of {n} such that

6.1) urk By in L0, T, H),
and
(6.2) Vrrurk @ in LX0, Ty H),

as k—oo for some u, #= L*0, T,; H). For simplicity we denote these sub-
sequences {u™*} and {V*tu™t} by {u™} and {V"u"} again respectively.

We can show the following three lemmas with a slight modification of
the proof of Kenmochi [5, Lemmas 5.1, 5.2, and 5.4].

LemMmA 6.1. @#=u’ in L¥0, T ; H).

LEMMmA 6.2. (a) u is a strongly absolutely continuous function on [0, T}
such that u(0)=u,.

(b) There is a subsequence {u™} of {u" sucn that u™*(t)>u(t) in H for
all te[0, T,] as k—oo,

.. Ty Ty
LEMMA 6.3, llrkmnfgo (Trryre, u"k)drgg ', w)dr.
o0 0

For simplicity we denote the subsequence {n.} by {n} again.
Now define a function ¢;(x)=¢!i(x) if tI? and x<H, and a function
0, : LX0, T ; Hy—]—o0, o] by
T
0. ()= { [Doiwndr it veD@y),

+oo otherwise,



642 S. YOTSUTANI

where D(@,)={ve L¥0, T,; H); ¢;w(-))e L0, T,)}. Denote @f* of by
@. Then we can show the following lemma with a slight modification of

the proof of Kenmochi [5, Lemma 3.4], noting our and that A4 is
continuous on [0, T\ ]—Z,.

LEMMA 6.4. For each veD(@) there exists a sequence {v"} CL*0, T,; H)
such that v"eD(@,), v*—v in L*0, T,; H) as n—oco and

limsup @,("<0().
LEMMA 6.5. @(u)<Zliminf @,(u™)=M,.
PrOOF. We observe from Lemma 53 that
Mz 0,u™=X2e1¢" (u}) = Distet ¢t (ui)—erL,

=( grwr(ndt—eiLs,

where
0 if tel?,
ACE TN
@ti-1(+) if tel? for 2= j=mu,
and
0 if t=I?,
w™(t)=
Uy if tel? for 2=j7=n.

Using then for each t<[0, T,]—Z, we have

B*(u(t) Sliminf $h(w™(t)).

Hence by Fatou’s lemma we have the lemma. g.e.d,
LEMMA 6.6.
(6.3) (D(v)—@(u)gSTl(f—iu—, v—u)dt, for any v D(D).
0 dt
PrOOF. We observe from that
(6.4) Pa(w(t))— gr(u™()Z(f™(t)—=V" u™1), w(t)—u™(t))

for a.e. t=]0, T.[,

for all weD(®,), where f™(t)=;% for tel% (1=j<n). Using Lemma 64 for
sach veD(@) we can find a sequence {v"} such that »*=D(®@,), v"—v in
L*0, T,; H) as n—co and limsup,..@,v™)=<@(). Taking v for w in (6.4
and integrating the both sides of over [0, T,], we get

@n(v")—@n(un)ggfl(fn_Vnun, 'l}n—un)dt .
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Let n—oo in this inequality. Then noting Lemmas 6.3, and the fact that
f*—f in L*0, T,; H), we obtain (6.3). g.e. d.
LEMMA 6.7. Let u, and u, be two strong solutions of (E). Then

[y (8)—uo(£)] = Jus(s)—uy(s)]
holds for 0=s<t=T.

PROOF. See e.g. Watanabe [8, Lemma 4.17.

LEMMA 6.8. u is a unique strong solution of (E) on [0, T,] with the initial
data u,=D(¢°) such that u(t)e D(@Y) for t<[0, T,]—Z.

Proor. By we have f—u’co®@(u). Use then
f)—u'(t)sog*(u(t)) a.e. t=]10, T,[. The fact u(0)=u, follows from Lemma
6.2 (a). The uniqueness is given by The last part follows from
the next lemma. g.e.d.

LEMMA 6.9. Set L,=L,+L,+K. Then for any t<[0, T,]—Z,

65  FEZFt Lt Vin+ 1210 de+ | Firde+ o pol?}

. PrOOF. Let ¢t be any point in [0, 7,1—Z and take a sequence {3} C
[0, T,]—Z, such that ¢t2 1t as n—oo. Then clearly, u’}-iu(t) as n—oo, SO
that by Remark 4.1

¢‘(u(t))§linninf ¢ 5 (u)+(Li+K)Vih.

From this together with [Corollary 5.2, we infer the required inequality.
q.e.d.

LEMMA 6.10. u has the following properties: For any s, te[0, T,]—Z
with s<t,

66) g —g NS Lt—st+Vin+{ g 1%ae+{ | firdrt fue—pol?}

where L, is a positive constant depending only on | fllreco.r; s |Uol and ¢°(u,).
PROOF. By we have u(t)eD(¢") for t<[0, T,]—Z. Let s be
any point in 10, T,]—Z. Then it is easy to see that the restriction of u to
[s, T1] is a unique strong solution of (E) on [s, T,]. Furthermore, by Lemmas
and b.3,
P*(u(sN=L,+(L,+K)VTh.

Therefore, taking s as the initial time and u(s) as the initial data and
repeating the same argument as in §5 and §6, we obtain from Lemma 69
that for each t<[s, T,]—Z,

F )¢ uNS L t—s+ Vih+{ 1/ Pde+( 11120+ 1u—pol7},

where fg———Ls(HfHLz(O,T; s 1 u(s)], ¢*(u(s)) is a positive constant and, as was
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noticed in Remark 5.1, L;=L,+L,+K can be chosen as to be bounded on
each bounded set of three variables. Hence, if we put L,=sup{L(|lfllz2c.7: m>»
lu(s)|, ¢*(u(s))); s€]0, T,]—Z}, then (6.6) holds for L,. g.e. d.

du |2
_— <<
e ’ dt<L,,

. T
LEMMA 6.11. (i) So
«/?‘L“lzdngz,

(i) So dt
(iii) t@*(u(N=M,, for te[0, T]—2Z,.

Proor. (i) follows from Lemmas b.3, 6.0, and (6.2). We can show (ii)
with a slight modification of the proof of Kenmochi [5, Lemma 5.8]. (iii)
follows from Lemmas 4.2, 54 and 6.2 (b). g.e.d.

§7. Global existence of strong solutions.

In this section we give the proof of [Theoreml Let feL¥0, T ; H), u,=

D(¢°). Under the assumption (A), ¢* may not be defined at t=7T, so we need
a slight device.

I. First we shall prove the theorem when u,< D(¢").

Let S be any point in ]0, T[—Z,. We construct a strong solution of (E)
on [0, S]. Let & be the same number as in and choose a parti-
tion {0=T,<T,<--<T,=S} of [0, S] such that {T,},~C[0, T]—Z, and
max{|T,—T,_:] ;1=k<m}<d. Then by virtue of we can find
H-valued functions u, on [T,., T:], k=1, ---, m, such that each u, is a
strong solution of (E) on [T,-;, T,], with the initial data u,-,(T,-;), where
ug(0)=u,. Putting u(t)=u,(t) for t€[Ts-, T:], k=1, 2, -+, m, we clearly
see that u is a strong solution of (E) on [0, S].

We shall show some estimates on [0, ST for u and ¢*(u). Repeat the
proof of taking u(t) instead of a(¢). Then there exist positive

constants §, 7 and M which have the following properties: for each

te[0, T]—Z, there exists a strongly absolutely continuous function #, on
[t, min{t+d, T}]=I, ; such that

lﬁt<$)]§7 for SEIt,g,
25D —2ls)| SOT+ K| "1 g e

s1

fOI‘ S1, SZE[LE With Slé.S'g,
#*@,(s) =M for sel,;—Z.

Taking 7,(-) instead of v.(-) and repeating the same arguments in §5 and §6,
we obtain the following inequalities from Lemmas and 6.11.
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@ - D= Lft—s+Vin+{ g 12de+ (' 1712ac}
for s, t<[0, S]—Z with s<t,

@.2) {12 [ae=Ls,

@3) []vesx

(7.4) t¢t(u(t))§M3 for t€[0, S1-Z,,

where L; is a positive constant depending only on | flz2, |u,| and ¢°(u,), and
M; is a positive constant depending only on |u,| and | fll.2¢, 7, >. Further-
more L; and M, are independent on S.

Now, we construct the strong solution of (E) on [0, T7J]. Denote by
u(- ; S) the strong solution of (E) on [0, S] with the initial data u(0; S)=u,.
Define #=C([0, T[ ; H) such that

a(t)=u(t; S) for t=S<T.

This is well-defined by the uniqueness of the strong solution, and we have
di
dt

by [7.2). Therefore & can be extended to a strongly absolutely continuous

function #, on [0, T7] by defining

()= u0+S 9 1o for tef0, T1.

eL*0, T; H)

Denote #, by u again. Then u is a strong solution of (E) on [0, T]. By
(7.4) and we have

5) [r %~’2dt§L5,

76) [7|ve Sl ar=m,

7.7) t (u(t)=M,, for t<[0, T1—-Z,,

(78) [‘sn=ar=m,.

From (7.1)

79) P () =g W= Loft—s+ Vit g PPde+{ | f1%d},

for s, te[0, T]—Z with s<t. Using and Lemma 3.1, we can show the
property (i)’. (ii)’ follows from
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II. We can show when u,€D(@") with a slight modification of
the argument in Yamada [10, p. 506], noting the estimates and
(7.8)
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