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1. Introduction. Let $R$ be an n-sheeted covering surface of $|z|<\infty$ and
$M(R)$ the field of meromorphic functions on $R$ . Then, according to Selberg [2],

the deficiency relation for $w\in M(R)$ (In all what follows, we assume that $w$ is
not constant.) is

$\sum_{a}\delta(a, w)\leqq 2+\xi$ ,

where $\xi=\lim\sup N(r, R)/T(r, w)$ . However, it is difficult for us to calculate $\xi$

for each $w\in IV(R)$ . In this respect, when $w\in M(R)$ is proper on $R$ (that is,
$R$ is the proper existence surface of $w$), Ullrich [4] showed by the branch
point theorem that

$\xi\leqq 2n-2$ .
Therefore, combining these two inequalities, we obtain an explicit uPper bound
for the deficiency sum in case that $w\in M(R)$ is proper on $R$ ;

$(*)$
$\sum_{a}\delta(a, w)\leqq 2n$ .

On the other hand, the value distribution of algebroid functions has been
studied through the systems of their coefficients which are entire functions on
$|z|<\infty$ . Along this line, Cartan [1] and Toda [3] have given another form of
the deficiency relation

$\sum_{a}\delta(a, w)\leqq n+1+\lambda(n-\lambda)$ ,

where $\lambda$ is the maximum number of C-independent linear relations among these
coefficients.

In this paper, we shall give some extentions of these studies. In 2, we
shall show the deficiency relation for $w\in M(R)$ which is not proper on $R$ .
In 3, we shall extend the Nevanlinna theory of systems in the case of algebroid
functions. In 4 and 5, we shall consider the case where $R$ is also an m-sheeted
covering surface of another covering surface $S$ which is k-sheeted over $|z|<\infty$ ,

and show that, on such a surface $R$ , the deficiency sum for $w\in M(R)$ being
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proper cn $R$ is estimated somewhat better. For instance, if lim $supN(r, S)/$

$N(r, R)=0$ (that is, the ramification of $S$ is negligible compared with that of
$R)$ , then,

$\sum_{a}\delta(a, w)\leqq m+1+\lambda(m-\lambda)$ ,

or
$\sum_{a}\delta(a, w)\leqq 2m$ ,

and if the sheet number $k$ of $S$ is prime and $\lim\sup N(r, R_{s})/N(r, R)=0$ (that

is, the ramification of $R$ over $S$ is negligible compared with that of $R$ ), then,

$\sum_{a}\delta(a, w)\leqq 2n-2m+2$ .
In 6, we shall give an example which illustrates these two consequences.

We shall use the standard symbols of the Nevanlinna theory of algebroid
functions except when the remark should be necessary (see Selberg [2]).

The author wishes to express his deep gratitude to professors K. Matsumoto
and N. Toda for their valuable advices and encouragements.

2. First we summarize some theorems that are necessary for later use.
THEOREM A (Selberg [2]). Let $R$ and $M(R)$ be as in 1. Then, for

$w\in M(R)$ , we have

1 $m(r, w^{\prime}/w)=O(\log rT(r, w))$ ,

where “
$\Vert$

” means that this relation holds for $ r\rightarrow\infty$ except for the intervals of
finite linear measure.

THEOREM B (Selberg [2]). For $w\in M(R)$ and arbitrary $a_{1},$ $\cdots,$ $a_{q}\in C$,
we have

$\Vert(q-2)T(r, w)\leqq\sum_{j=1}^{q}N(r, a_{j}, w)+N(r, R)+O(\log rT(r, w))$ .

THEOREM C (Ullrich [4]). Let $w\in M(R)$ be proper on R. Then, for
$N(r, R)$ , we have

$N(r, R)\leqq(2n-2)T(r, w)+O(1)$ .

THEOREM D (Valiron [5]). As for the derivative $w^{\prime}$ of $w\in M(R)$ , we have

1 $T(r, w^{\prime})\leqq 2T(r, w)+N(r, R)+O(\log rT(r, w))$ .
Now, we give the following proposition.

PROPOSITION 1. Let $R$ and $M(R)$ be as above and $f\in M(R)$ be not proper
on R. We denote by $S$ the proper existence surface of $f$. Then, $R$ is a covering
surface of $S$ and $f$ is the lift of the meromorphic function on S. Here, if $S$ is



Deficiencies of algebroid functions 31

k-sheeted over $|z|<\infty$ , then, $k$ is a divisor of $n$ and $R$ is $m(=n/k)$-sheeted
over $S$ .

According to Proposition 1, Theorems $B$ and $C$ , we obtain the following
theorem.

THEOREM 1. Let $f\in M(R)$ be not Proper on R. Then, the deficiency relation
for $f$ becomes

$\sum_{a}\delta(a, f)\leqq 2k$ ,

where $k$ is the sheet number of $S$ over $|z|<\infty$ .

3. Let $S$ be a k-sheeted covering surface of $|z|<\infty$ . We call

$f=(f_{0} , f_{m})$

a system on $S$ if $f_{0}$ , $f_{m}$ are holomorphic functions on $S$ without common
zeros. We define the characteristic function of $f$ by

$T(r, f)=\frac{1}{2\pi k}\int_{\Gamma(r)}$ log $ u(y)d\theta$ ,

where $y=re^{i\theta}\in S,$
$u(y)=\max_{0\leq j\leqq m}|f_{j}(y)|$ and $\Gamma(r)$ is the part of $S$ over $|z|=r$ .

Let
$X=$ { $F|F=a_{0}f_{0}+$ $+a_{m}f_{m}$ , a $j\in C$ }

be the family of homogeneous linear combinations of $f_{0}$ , $f_{m}$ with constant
coefficients whose arbitrary $m+1$ coefficient vectors $\{(a_{0}, \cdots, a_{m})\}$ are linearly
independent. We denote by $\lambda$ the maximum number of $C$-independent linear
relations among $f_{0}$ , $f_{m}$ (see Cartan [1]).

We shall denote by $\tilde{m}(r, g),\tilde{N}(r, g)$ and $T(r, g)$ , respectively, tbe prox-
imity, counting and characteristic functions of $g\in M(S)$ .

As in the case of systems on $|z|<\infty$ , we obtain the following propositions.

PROPOSITION 2. For $F_{1},$ $F_{2}\in X$, we have

ff $(r, F_{2}/F_{1})\leqq T(r, f)+O(1)$ .
In proving Proposition2, we use Florack’s theorem when $F_{1}$ and $F_{2}$ have

common zeros.
PROPOSITION 3. From $f_{0}$ , $f_{m}$ , we can choose $ m+1-\lambda$ functions $f_{a_{1}},$ $\cdots$ ,

$f_{a_{m+1-\lambda}}$ which satisfy the following conditions:

(1) $f_{a_{1}}$ , $f_{a_{m+1-\lambda}}$ are linearly independent over $C$.
(2) Each $F\in X$ can be represented as a C-linear combination of $f_{a_{1}},$ $\cdots$ ,

$f_{a_{m+1-\lambda}}$ .



32 Y. HASHIMOTO

We call $f_{a_{1}}$ , $f_{a_{m+1-\lambda}}$ a basis of $f_{0}$ , $f_{m}$ .
PROPOSITION 4. For $F_{1}$ , $F_{q}(q\geqq m+1)$ and a fixed $y\in S$, we define $F_{b_{j}}$ as

$|F_{b_{1}}(y)|\leqq\ldots\leqq|F_{b_{q}}(y)|$ . Then, there exists a constant $K$ which is independent

of $y$ and satisfies
$u(y)\leqq K|F_{b_{j}}(y)|$

for $j=m+1,$ $\cdots,$ $q$ .
Propositions 3 and 4 are consequences of linear algebra.

PROPOSITION 5. Setting $\Delta=\Vert F_{1}$ , $F_{p}\Vert/F_{1}\cdots F_{p}$ for $F_{1}$ , $F_{p}\in X$, we have

$\Vert m(r, \Delta)=O(\log rT(r, f))$ ,

where $\Vert F_{1}$ , $ F_{p}\Vert$ is the Wronskian of $F_{1},$
$\cdots,$

$F_{p}$ .
PROOF. Let $\varphi_{j}=F_{j+1}/F_{j}(j=1, \cdots, p-1)$ . Then,

$\tilde{m}(r, \Delta)\leqq\sum_{j=1}^{p- 1}\sum_{h=1}^{p- 1}K_{h}\tilde{m}(r, \varphi_{j}^{(h)}/\varphi_{j}^{(h-1)})+O(1)$ ,

where $K_{h}$ are constants. Here, by Theorem $A$ , we have

$\Vert m(r, \varphi_{j}^{(h)}/)=O(lr, \varphi_{j}^{(h-1)}))$ ,

and bv Proposition 1, Theorems $D$ and $C$ ,

$\Vert T(r, \varphi_{j}^{\prime})\leqq 2T(r, \varphi_{j})+N(r, S_{j})+O(\log rT(r, \varphi_{j}))$

$=O(\tilde{T}(r, \varphi_{j}))$ ,

where $S_{j}$ is the proper existence surface of $\varphi_{j}$ Further, by Proposition2,
we have

$T(r, \varphi_{j})\leqq T(r, f)+O(1)$ .
Combining these inequalities, we obtain the proposition. Q. E. D.

Now, we shall show the following theorem. The proof will be given along
the same line as in Cartan [1] and Toda [3].

THEOREM 2. Let $f,$ $X$ a $ nd\lambda$ be as above. Then, for arbitrary $F_{1}$ , $ F_{q}\in$

$X$, we have

$\Vert(q-m-1-\lambda(m-\lambda))T(r, f)$

$\leqq\sum_{j=1}^{q}\tilde{N}(r, 0, F_{j})+(\lambda+1)(m-\lambda)(m+1-\lambda)N(r, S)+O(\log rT(r, f))$ .

PROOF. By Proposition 3, we choose a basis $f_{a_{1}}$ , $f_{a_{m+1-\lambda}}$ of $f_{0}$ , $f_{m}$

and set

$H(y)=F_{1}\cdots F_{q}/\Vert f_{a_{1}}$ , $f_{a_{m+1-\lambda}}\Vert^{2+1}$ .
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Then, according to the first main theorem of Selberg [2], we have

$\frac{1}{2\pi k}\int_{\Gamma(r)}$ log $|H(y)|d\theta\leqq\tilde{N}(r, 0, H)+O(1)$ .

So, we may estimate these two terms. To estimate the first, according to
Proposition 3, we rewrite $H(y)$ as

$K\frac{F_{b_{1}}\cdots F_{b}}{\Vert F_{b_{1}},\cdots,F_{b_{m+1-j}}\Vert\prod_{oj=m+\sim-\lambda}^{m+1}||F}qb_{j}\overline,$

$F_{b_{2}},$
$\cdots,$

$ F_{b_{m+1-\lambda}}\Vert$

$=K\frac{F_{b_{m}}}{\frac{\Vert F_{b_{1}}\cdot..\cdot.\cdot,F_{b_{m+1-\lambda}}\Vert}{F_{b_{1}}’ F_{b_{m+1-\lambda}}}\prod_{j=m+2-\lambda}^{m+1}\underline{||F_{b_{j}}}F}.\frac{+2,,F_{b_{2}},.\cdot.\cdot\cdot\overline{F_{b_{m+1-\lambda}}\Vert}’ F_{b_{q}}}{b_{J}b_{2}b_{m+1-\lambda}}[F_{b_{2}}\cdots F_{b_{m+1-\lambda}}]^{\lambda}$

where $K$ is a constant. Therefore, by using Propositions4 and 5 and the
definition of $T(r, f)$ , we have

$\Vert(q-n\iota-1-\lambda(m-\lambda))T(r, f)$

$\leqq\frac{1}{2\pi k}\int_{\Gamma(r)}$ log $|H(y)|d\theta+O(\log rT(r, f))$ ,

(see [1] and [3]). To estimate the second, we rewrite $H(y)$ as

$K\frac{F_{b_{m+2}}\cdots F}{\frac{\Vert F_{b}}{F}1\frac{F_{b_{m+1-\lambda}}\Vert}{1m+1-\lambda F_{b}}\prod_{jb=m+2-\lambda}^{m+1}\underline{\Vert F}}b_{q}-b_{j}\underline,$

$F_{b_{2_{\frac{}{F_{b_{j}}},,\cdots,F_{b_{m+1-\lambda}}\Vert}}}$

and count the multiplicities of the poles of the denominator. Now, let $y\in S$ be
an ordinary point, then, the estimate is as usual. Let $y\in S$ be a branch point
of order $k^{\prime}-1$ , then, $F_{f}^{(h)}/F_{j}$ may have a pole of order $h\cdot k^{\prime}$ at $y$ , so that the
multiplicity of the pole of the denominator is at most (1/2) $(\lambda+1)(m-\lambda)$ .
$(m+1-\lambda)k^{\prime}$ . Therefore, taking $(1/2)k^{\prime}\leqq k^{\prime}-1$ into account, we have

$\tilde{N}(r, 0, H)\leqq\sum_{j=1}^{q}N(r, 0, F_{j})+(\lambda+1)(m-\lambda)(m+1-\lambda)N(r, S)$ .

Combining these inequalities, we obtain the theorem. Q. E. D.

4. Let $R$ be an n-sheeted covering surface of $|z|<\infty$ . We consider the
case where $R$ is also an m-sheeted covering surface of another covering
surface $S$ which is k-sheeted over $|z|<\infty$ . Now, let $w\in M(R)$ be prcper on $R$ .
Then, $w$ satisfies an irreducible equation of degree $m$ whose coefficients are
holomorphic functions on $S$ without common zeros;
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$P(w, y)=f_{0}(y)w^{m}+\cdots+f_{m}(y)=0$, $y\in S$ .
Let $f=(f_{0} , f_{m})$ be the system on $S$ given by these coefficients.

Under these circumstances, we obtain the following proposition using the
same method as in Valiron [5].

PROPOSITION 6. $T(r, w)=(1/m)T(r, f)+O(1)$ .
According to this proposition combined with Theorem 2 and Theorem $C$ ,

we obtain the following theorem.
THEOREM 3. Let $R$ and $S$ be as above and $\lim\sup N(r, S)/N(r, R)=0$ .

Then, the deficiency relation for $w\in M(R)$ being proper on $R$ is

$\sum_{a}\delta(a, w)\leqq m+1+\lambda(m-\lambda)$ .

5. Let $R,$ $S$ and $w$ be as in 4. We define the following counting function

$N(r, R_{s})=\frac{1}{n}[\int_{0}^{r}\frac{n(t,R_{s})-n(0,R_{s})}{f}dt+n(0, R_{s})\log r]$ ,

where $n(r, R_{s})$ is the sum of the orders of the branch points of $R$ over the
part of $S$ over $|z|\leqq r$ . Then, we obtain the following two propositions.

PROPOSITION 7. $N(r, R)=N(r, R_{s})+N(r, S)$ .
PROOF. Here, we look upon the ordinary point as the branch point of

order $0$ . Now, let $y\in S$ be a branch point of order $k^{\prime}-1$ and assume that there
exist $p$ branch points $x_{1},$ $\cdots,$ $x_{p}$ over $y$ of order $m_{1}-1,$ $\cdots,$ $m_{p}-1$ with respect
to $S(m_{1}+\cdots+m_{p}=m)$ . Then, we can easily see that

$n(r, R)=\sum_{y}(\S(k^{\prime}m_{j}-1))=\sum_{y}(k^{\prime}m-p)$ ,

$n(r, R_{s})=\sum_{y}(\S(m_{j}-1))=\sum_{y}(m-p)$ ,

$n(r, S)=\sum_{y}(k^{\prime}-1)$ ,

where the sum $\sum_{y}$ extends over all $y\in S$ over $|z|\leqq r$ . Thus, we obtain the
equality

$n(r, R)=n(r, R_{s})+m\cdot n(r, S)$ .

Dividing this equality by $n\cdot r$ and integrating it for $r$, we obtain the pro-
position. Q. E. D.
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PROPOSITION 8. $N(r, R_{s})\leqq(2m-2)T(r, w)+O(1)$ .
Proposition 8 is proved by using the same method as in Ullrich [4].

Now, we shall show the following theorems.

THEOREM 4. Let $\lim_{\sim}\sup_{\infty}N(r, S)/N(r, R)=u$ . If $u<1$ , then the deficiency
relation for $w$ is

$\sum_{a}\delta(a, w)\leqq 2+(2m-2)/(1-u)$ .

PROOF. By Proposition 7, we have

$\lim_{r\infty}\inf N(r, R_{s})/N(r, R)=1-u$ .

Therefore, combining this equality with Theorem $B$ , we have for arbitrary
small $\epsilon$

$\Vert(q-2)T(r, w)$

$\leqq\sum_{j=1}^{q}N$ ( $r$ , a $j,$
$w$ ) $+N(r, R_{s})/(1-u-\epsilon)+O(\log rT(r, w))$ .

Here, by using Proposition 8, we obtain the theorem. Q. E. D.
THEOREM 5. Let the sheet number $k$ of $S$ be prime and $\lim\sup N(r, R_{s})/$

$N(r, R)=v$ . If $v<1$ , then, the deficiency relation for $w$ is

$\sum_{a}\delta(a, w)\leqq 2+(2n-2m)/(1-v)$ .

PROOF. As in the proof of Theorem 4, by Proposition 7 and Theorem $B$ ,
we have for arbitrary small $\epsilon$

$\Vert(q-2)T(r, w)$

$\leqq\sum_{j=1}^{q}N(r, a_{j}, w)+N(r, S)/(1-v-\epsilon)+O(\log rT(r, w))$ .

Let
$P(w, y)=f_{0}(y)w^{m}+\cdots+f_{m}(y)=0$, $y\in S$

be an irreducible defining equation of $w$ . Then, by Proposition 1, since $k$ is
prime, there exists at least one ratio $f_{j}/f_{0}$ that is proper on $S$ . According to
Theorem $C$ , we have

$N(r, S)\leqq(2k-2)T(r, f_{j}/f_{0})+O(1)$ ,

and by Propositions 2 and 6,



36 Y. HASHIMOTO

$T(r, f_{j}/f_{0})\leqq m\cdot T(r, w)+O(1)$ .
Combining these inequalities, we obtain the theorem. Q. E. D.

We remark that in Theorems 4 and 5, these estimates are better than the
usual ones when $u<n(k-1)/k(n-1)$ and $v<(m-1)/(n-1)$ . The case $u=$

$n(k-1)/k(n-1)$ and $v=(m-1)/(n-1)$ can occur, for example, when $R$ is
regularly branched.

6. Example. Let $S_{1}$ be a 2-sheeted covering surface of $|z|<\infty$ whose
branch points are above $z=n\cdot i(n=0, \pm 1, \cdots)$ and let $R$ be a 2-sheeted cover-
ing surface of $S_{1}$ whose branch points are above the points of $S_{1}$ above $z=\sqrt{n}$

$(n=1, 2, )$ . Then, $N(r, S_{1})\sim r$ and $N(r, R)\sim r^{2}/4$ , so that the condition of
Theorem 3 ” lim $supN(r, S_{1})/N(r, R)=0$ ” is satisfied. Now, let $w\in M(R)$ be

proper on $R$ , then, according to Theorem 3,

$\sum_{a}\delta(a, w)\leqq 2+1+\lambda(2-\lambda)$ .

Here, since $\lambda=0$ or 1, the deficiency relation for $w$ is

$\sum_{a}\delta(a, w)\leqq 4$ .

This result can also be obtained by using Theorem 4.
On the other hand, from another point of view, $R$ is a 2-sheeted covering

surface of $S_{2}$ which is a 2-sheeted covering surface of $|z|<\infty$ whose branch
points are above $z=\sqrt{n}(n=1, 2, )$ . Then, $N(r, R_{s_{2}})\sim r$ , and the conditions
of Theorem 5 ”

$k$ is prime and $\lim\sup N(r, R_{s_{2}})/N(r, R)=0$
” are satisfied.

So, let $w\in M(R)$ be proper on $R$ , then, according to Theorem 5, the deficiency
relation for $w$ is

$\sum_{a}\delta(a, w)\leqq 6$ .

In this case, the former estimate is better.
Now, let $f\in M(R)$ be not proper on $R$ . Then, the proper existence surface

of $f$ is reduced to a 2-sheeted covering surface of $|z|<\infty$ or $|z|<\infty$ itself.
According to Theorem 1, the deficiency relation for $f$ becomes

$\sum_{a}\delta(a, w)\leqq 4$ or 2.

Thus, for all $w\in M(R)$ , the deficiency sum for $w$ is at most equal to 4.
This result is better than the usual one obtained by $(*)$ .
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