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Abstract.

A differential-algebraic definition for an algebraic differential equation of the
first order to be free from parametric singularities will be given. From this
standpoint we shall prove three theorems which are essentially due to Briot and
Bouquet, Fuchs, and Poincar\’e respectively.

\S 0. Introduction.

Let $k$ be an algebraically closed differential field of characteristic $0$, and $K$

be a one-dimensional algebraic function field over $k$ . We shall suppose that $K$

is a differential extension of $k$ . Let $P$ be a prime divisor of $K$, and $K_{P}$ be the
completion of $K$ with respect to $P$. Then, $K_{P}$ is a differential extension of $K$,

and the differentiation gives a continuous mapping from $K_{P}$ to itself (cf. [8]).

We shall say that $K$ is a differential algebraic function field over $k$ if there
exists an element $y$ of $K$ such that $K=k(y, y^{\prime})$ . Suppose that $K$ is a differential
algebraic function field over $k$ . Then, $y$ and $y^{\prime}$ satisfy an irreducible algebraic
equation $F(y, y^{\prime})=0$ over $k$ . We shall say that $K$ is associated with $F$ in $y$ .

Conversely, let $k\{y\}$ be the differential polynomial algebra in a single indeter-
minate $y$ over $k$ . We shall take and fix a universal extension $\Omega$ of $k$ , the ex-
istence of which was proved by Kolchin [3, p. 771]. Let $F$ be an algebraically
irreducible element of $k\{y\}$ of the first order, and $\eta$ be a generic point of the
general solution of $F$ in $\Omega$ over $k$ . Then, $k(\eta, \eta^{\prime})$ is a differential algebraic
function field over $k$ associated with $F$ in $\eta$ .

Throughout this note $K$ will denote a differential algebraic function field
over $k$.

Let $\nu_{P}$ be the normalized valuation in $K$ belonging to a prime divisor $P$ of
$K$. If $\nu_{P}(\tau^{\prime})\geqq 0$ for a prime element $\tau$ in $P$, then $\nu_{P}(\sigma^{\prime})\geqq 0$ for any prime ele-
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ment $\sigma$ in $P$.
DEFINITION. $K$ will be said to be free from parametric singularities if we

have $\nu_{P}(\tau^{\prime})\geqq 0$ for any prime divisor $P$ of $K$, where $\tau$ is a prime element in $P$.
Comparing it with Fuchs’ criterion [2] for an algebraic differential equation

of the first order to be free from parametric singularities, we shall see that our
definition is a reasonable one (Theorem 1 in \S 1).

It will be said that $K$ is a differential elliptic function field over $k$ if there
exists an element $z$ of $K$ such that $K=k(z, z^{\prime})$ and

$(z^{\prime})^{2}=\lambda z(z^{2}-1)(z-\delta)$ ; $\lambda\neq 0$ ; $\delta^{2}\neq 0,1$ ;

here, $\lambda,$ $\delta\in k$ , and $\delta$ is a constant.
Suppose that $Ki_{\backslash }q$ free from parametric singularities. Then, the following

three theorems are essentially due to Briot and Bouquet, Fuchs, and Poincar\’e
respectively (cf. Forsyth [1, Chap. $s9,10]$ , Picard [6, Chap. 4]):

THEOREM BB. SuppOse that any element of $k$ is a constant. Then, the genus
of $K$ is $0$ or $1$ .

THEOREM F. Suppose that the genus of $K$ is $0$ . Then, there exists an ele-
ment $t$ of $K$ such that $K=k(t)$ and

$t^{\prime}=a+bt+ct^{2}$ ; $a,$ $b,$ $c\in k$ .

THEOREM P. $Suppose$ that the genus of $K$ is 1. Then, $K$ is a differential
elliptic function field over $k$ .

In the last two theorems we do not assume that $k$ consists of constants.
From our standpoint we shall reproduce Fuchs’ proof [2] of Theorems BB, $F$,
and Poincare’s one [7] of Theorem P. They discussed the problems in the case
where $k$ is the algebraic closure of a field of functions meromorphic throughout
a domain in the plane of the complex variable. Three Theorems BB, $F,$ $P$ will
be proved respectively in \S 2, \S 1, \S 3.

REMARK 1. Poincare’s proof [7] of Theorem $P$ is purely algebraic. Un-
fortunately, however, careful consideration of transcendental constants over the
coefficient field lacks in it (cf. [1, Chap. 9], [4], [5], [6, Chap. 4]).

REMARK 2. In \S 4 we shall give an example of $K$ in Theorem $P$ such that
there exists a transcendental constant of $K$ over $k$ .

REMARK 3. Poincar\’e [7] stated the following theorem: Suppose that an
algebraic differential equation of the first order is free from parametric sin-
gularities, and that the genus is greater than 1. Then, its general solution can
be obtained through an algebraic process (cf. Forsyth [1, Chap. 9], Painlev\’e [4],

[5], and Picard [6, Chap. 4]).

ACKNOWLEDGEMENTS. This work was motivated by Kolchin’s theorem on
Weierstrassian elements $[3, P\cdot 809]$ . He discussed the problem of finding a
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criterion for $K$ to be a differential elliptic function field from the standpoint of
Galois theory of differential fields (cf. [3, pp. 808-823]).

\S 1. Fuchs’ criterion.

Let $K$ be a differential algebraic function field over $k$ associated with $F$ in
$y$ . Let $P$ be a prime divisor of $K$ satisfying $\nu_{P}(y)\geqq 0$ . Suppose that $\nu_{P}(y^{\prime})\geqq 0$ .
Then, in $K_{P}$ we have

$y=\eta+\tau^{\alpha}$ $(\eta\in k)$ ,

$ y^{\prime}=\zeta+g_{0}\tau^{\kappa}+g_{1}\tau^{\kappa+1}+\cdots$ $(\zeta, g_{0}, g_{1}, \cdots\in k, g_{0}\neq 0)$ ,

where $\tau$ is a prime element in $P$, and $\alpha,$ $\kappa$ are positive integers. Let $P$ be a
prime divisor of $K$ satisfying $\nu_{P}(y)<0$ . Then, in $K_{P}$ we have

$y=\tau^{-\alpha}$ $(\alpha>0)$ ,

$ y^{\prime}=g_{0}\tau^{\kappa}+g_{1}\tau^{\kappa+1}+\cdots$ $(g_{0}, g_{1}, \cdots\in k, g_{0}\neq 0)$ ,

where $\tau$ is a prime element in $P$, and $\alpha,$ $\kappa$ are integers. Fuchs’ condition neces-
sary and sufficient for $F=0$ to be free from parametric singularities is as fol-
lows (cf. Forsyth [1, pp. 277-285]):

Fuchs’ criterion. For any $P$ satisfying $\nu_{P}(y)\geqq 0$, we have $\nu_{P}(y^{\prime})\geqq 0$ . Suppose
that $\nu_{P}(y)\geqq 0$ and $\alpha>1$ . Then, $\eta^{\prime}=\zeta$ and $\kappa\geqq\alpha-1$ . Suppose that $\nu_{P}(y)<0$ . Then,
$\kappa\geqq-\alpha-1$ .

THEOREM 1. $K$ is free from parametric singularities in the sense of our
Definition if and only if Fuchs’ criterion is satisfied by $K$.

PROOF. First we shall suppose that $\nu_{P}(y)\geqq 0$ . Then, in $K_{P}$ we have $y^{\prime}=$

$\eta^{\prime}+\alpha\tau^{\alpha-1}\tau^{\prime}$ by $y=\eta+\tau^{\alpha}$ . Hence, $\nu_{P}(\tau^{\prime})\geqq 0$ if and only if $\nu_{P}(y^{\prime}-\eta^{\prime})\geqq\alpha-1$ .
Secondly we shall suppose that $\nu_{P}(y)<0$ . Then, in $K_{P}$ we have $y^{\prime}=-\alpha\tau^{-\alpha-1}\tau^{\prime}$

by $y=\tau^{-\alpha}$ . Hence, $\nu_{P}(\tau^{\prime})\geqq 0$ if and only if $\nu_{P}(y^{\prime})\geqq-\alpha-1$ .
The following theorem is due to Fuchs [2]:

THEOREM 2. Suppose that $K$ is free from parametric singularities. Let
$F(X_{1}, X_{2})$ take the form
(1) $A_{0}X_{2}^{m}+A_{1}X_{2}^{m-1}+\cdots+A_{m}$ ,

where $A_{0},$ $A_{1},$ $\cdots$ , $A_{m}\in k[X_{1}]$ , and $A_{0}\neq 0$ . Then, for each $j(0\leqq j\leqq m)$ we have
deg $A_{j}\leqq 2j$ unless $A_{j}=0$ .

PROOF. For any prime divisor $P$ satisfying $\nu_{P}(y)\geqq 0$, we have $\nu_{P}(y^{\prime})\geqq 0$ by
Theorem 1. Hence, $A_{0}\in k$ . Let $w$ denote $1/y$ . Then, $w^{\prime}=-y^{\prime}/y^{2}$ . We shall
define $G(X_{1}, X_{2})$ by

$G=X_{1}^{l}F(1/X_{1}, -X_{2}/X_{1}^{2})$ ,
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where

(2) $l=\max\{\deg A_{j}+2(m-j);A_{j}\neq 0,0\leqq j\leqq m\}$ .
Then, $K$ is associated with $G$ in $w$ . The leading coefficient of $G$ is $A_{0}(-1)^{m}X_{1}^{l-2m}$ .
Hence, $l=2m$ .

PROOF OF THEOREM F. Since the genus of $K$ is $0$, there exists an element
$t$ of $K$ such that $K=k(t)$ . We have $t^{\prime}=A/B$, where $A,$ $B\in k[t]$ , and $(A, B)=1$ .
Let us define $G$ by

$G(X_{1}, X_{2})=A(X_{1})-X_{2}B(X_{1})$ .

Then, $K$ is associated with $G$ in $t$.
unless $A=0$ .

\S 2. Briot-Bouquet’s Theorem.

By Theorem 2, deg $B=0$, and deg $A\leqq 2$

Suppose that $K$ is associated with $F$ in $y$, and that $F$ takes the form (1).
Then, we have

$2(g-1)=\sum_{P}(e_{P}-1)-2m$ (Riemann’s formula),

where $g$ is the genus of $K$, and $e_{P}$ is the ramification exponent of $P$ with re-
spect to $k(y)$ .

There exists an element $\xi$ of $k$ such that $e_{p}=1$ for any $P$ satisfying $\nu_{P}(y-\xi)$

$>0$ . Let $z$ denote $1/(y-\xi)$, and $H$ be the polynomial defined by

$H(X_{1}, X_{2})=X_{1}^{l}F(\xi+1/X_{1}, \xi^{\prime}-X_{2}/X’’)$ ,

where $l$ is the number dePned by (2). Then, $K$ is associated with $H$ in $z$. For
any $P$ satisfying $\nu_{P}(z)<0$, we have $e_{P}=1$ .

PROOF OF THEOREM BB. Let us assume that $e_{P}=1$ for any $P$ satisfying
$\nu_{P}(y)<0$ . We do not lose the generality by this assumption. If $y^{\prime}=0$ , then $K=$

$k(y)$ . We shall assume that $y^{\prime}\neq 0$ . Then, $A_{m}\neq 0$ . Suppose that $e_{P}>1$ for a
prime divisor $P$ of $K$. Then, there exists an element $\eta$ of $k$ such that $0<$

$\nu_{P}(y-\eta)$ . By Theorem 1, we have $\nu_{P}(y^{\prime})\geqq 0$ , and there exists an element $\zeta$ of
$k$ such that $\nu_{P}(y^{\prime}-\zeta)>0$ . Since $e_{P}>1$ , we have $\zeta=\eta^{\prime}$ by Theorem 1. Hence,
$\zeta=\eta^{\prime}=0$, because $k$ is a constant field by our assumption. We have $F(\eta, 0)=0$,
and $\eta$ is a root of $A_{m}$ . Let $\rho$ be the multiplicity of $\eta$ in $A_{m}$ , and $\{P_{1}, \cdots , P_{r}\}$

be the totality of prime divisors of $K$ for which $e_{p}>1$ and $\nu_{P}(y-\eta)>0$ . Then,

$\rho\geqq z_{=1}^{r}\nu_{P_{i}}(y^{\prime})$ .
By Theorem 1, we have
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$\nu_{P_{i}}(y^{\prime})\geqq e_{P_{i}}-1$

for each $i(1\leqq i\leqq r)$ . Let $P$ run through all prime divisors of $K$. Then, we have

deg $A_{m}\geqq\sum_{P}(e_{P}-1)$ .
By Theorem 2, deg $A_{m}\leqq 2m$ . Hence,

$2m\geqq\deg A_{m}\geqq\sum_{P}(e_{p}-1)$ .

By Riemann’s formula, we have $g-1\leqq 0$ .

\S 3. Poincar\’e’s Theorem.

PROOF OF THEOREM P. Since the genus of $K$ is 1, there exists an element
$u$ of $K$ such that $K=k(u, v)$ and

$v^{2}=R(u)=u(u^{2}-1)(u-\delta)$ ; $\delta\in k$ ; $\delta^{2}\neq 0,1$ .

First let us assume that $u$ is not a constant. Then, $u^{\prime}\not\in k(u)$ . In fact, to
the contrary suppose that $u^{\prime}\in k(u)$ . Then, we have $u^{\prime}=A/B\neq 0$, where $A,$ $ B\in$

$k[u]$ , and $(A, B)=1$ . Suppose that deg $B>0$ . Then, there exists a root $\xi$ of $B$

in $k$ . Take a prime divisor $P$ of $K$ such that $\nu_{P}(u-\xi)>0’$ . Then, $u=\xi+\tau^{\alpha}$ in
$K_{P}$, where $\tau$ is a prime element in $P$. Hence, $u^{\prime}=\xi^{\prime}+\alpha\tau^{\alpha-1}\tau^{\prime}$ . Since $\nu_{P}(\tau^{\prime})\geqq 0$,
we have $\nu_{P}(u^{\prime})\geqq 0$ . This is a contradiction, because $A(\xi)\neq 0$ . Hence, $u^{\prime}=C\in k[u]$ .
Take a prime divisor $P$ such that $\nu_{P}(u)<0$ . In $K_{P},$ $u=\tau^{-\alpha}$, where $\tau$ is a prime
element in $P$. Hence, $u^{\prime}=-\alpha\tau^{-a- 1}\tau^{\prime}$ . Since $\nu_{P}(\tau^{\prime})\geqq 0$ , we have

a(l–deg $C$ ) $+1\geqq 0$ .
Hence, deg $C\leqq 2$ . Let $\eta$ be a root of $R$ , and $P(\eta)$ denote the prime divisor deter-
mined by the condition that $\nu_{P}(u-\eta)>0$ . Then, $u=\eta+\tau(\eta)^{2}$ in $K_{P(\eta)}$ , where
$\tau(\eta)$ is a prime element in $P(\eta)$ . Set $\eta=0,$ $\pm 1$ . Then, $u^{\prime}=2\tau\tau^{\prime}$ , where $\tau=\tau(\eta)$ .
By $\nu_{P(r)}(\tau^{\prime})\geqq 0$, we have $C(\eta)=0$ . This is a contradiction, because deg $C\leqq 2$ .
Hence, $u^{\prime}\not\in k(u)$ , and $K=k(u, u^{\prime})$ . Let $G(u, u^{\prime})=0$ be an irreducible algebraic
equation over $k$ satisfied by $u$ and $u^{\prime}$ . Then, $K$ is associated with $G$ in $u$ . By
Theorem 2, we have

$G(X_{1}, X_{2})=(X_{2}-E)^{2}-D$ $(D, E\in k[X_{1}])$ ,
where deg $D\leqq 4$ , and deg $E\leqq 2$ if $E\neq 0$ . Unless an element $\xi$ of $k$ is a root of
$D$, we have $\nu_{P}(u-\xi)=1$ for each $P$ satisfying $\nu_{P}(u-\xi)>0$ . Hence, every root $\eta$

of $R$ satisfies $D(\eta)=0$ . Since $\deg D\leqq 4$, we have $D=\lambda R$ , where $\lambda\in k$ . For each
root $\eta$ of $R,$

$\nu_{P(}\eta$ ) $(u-\eta)=2$ . Hence, by Theorem 1, $E(\eta)=\eta^{\prime}$ . Set $\eta=0,$ $\pm 1$ .
Then, $E(\eta)=\eta^{\prime}=0$ . We have $E=0$, because deg $E\leqq 2$ if $E\neq 0$ . Set $\eta=\delta$ . Then,
$0=E(\delta)=\delta^{\prime}$ .
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Secondly, assume that $u$ is a constant. Then, $\delta^{\prime}=0$ . In fact, there exists a
prime divisor $P$ of $K$ such that $\nu_{P}(n-\delta)=2$, where $\nu_{P}$ is the normalized valua-
tion belonging to $P$. We have $u-\delta=\tau^{2}$ with a prime element $\tau$ in $P$, and $-\delta^{\prime}$

$=2\tau\tau^{\prime}$ . Since $K$ is free from parametric singularities, $\nu_{P}(\tau^{\prime})\geqq 0$ . Hence, $\delta^{\prime}=0$ .
There exists an element of $k$ which is not a constant. For, to the contrary,
suppose that any element of $k$ is a constant. Then, every element of $K$ is a
constant, because the constant $u$ is transcendental over $k$ . Hence, $y^{\prime}=0$ , and
$K=k(y)$ . This contradicts the assumption that the genus of $K$ is one. Take an
element $\xi$ of $k$ which is not a constant. Let us define an element $\lambda$ of $k$ by

$\lambda=(\xi^{\prime})^{2}/R(\xi)$ ,

and a new differentiation signed by the dot in $K$ by

$\dot{x}=\mu x^{\prime}$ , $\mu^{2}=\lambda^{-1}(2/\delta)$ .

With respect to this differentiation, $\xi$ is a nonsingular solution of

$\delta(\xi)^{2}=2R(\xi)$ ,

and $u$ remains to be a constant. We shall define two transcendental constants
$a,$

$b$ over $k$ and an element $w$ of $k$ by

$a=2u/(1+u)$ , $b=\epsilon v/(1+u)^{2}$ ,

$\epsilon^{2}=2/\delta$ , $w=2\xi/(1+\xi)$ .

Then, $w$ is a nonsingular solution of

$(\dot{w})^{2}/4=S(w)=w(1-w)(1-\kappa^{2}w)$ , $\kappa^{2}=(1+\delta)/(2\delta)$ ,

and $b^{2}=S(a)$ . We have $w=2S_{w}$ . Let us define an element $z$ of $K$ by the fol-
lowing formula (cf. Remark 4 at the end of this section):

(3) $z=\{a(1-w)(1-\kappa^{2}w)+b\dot{w}+w(1-a)(1-\kappa^{2}a)\}/(1-\kappa^{2}aw)^{2}$ .
Then,

(4) $(1-\kappa^{2}wz)^{2}a^{2}-2\{z(1-w)(1-\kappa^{2}w)+w(1-z)(1-\kappa^{2}z)\}a+(z-w)^{2}=0$ .

Because of $\dot{w}\neq 0,$ $K=k(a, b)=k(a, z)$ by (3). Hence, $z$ is transcendental over $k$ .
We have

(5) $[K:k(z)]=2$

from (4). Let us prove that $z$ is a solution of $(\dot{z})^{2}=4S(z)$ . Set

$A=1-\kappa^{2}aw$ , $B=w(1-a)(1-\kappa^{2}a)+a(1-w)(1-\kappa^{2}w)$ .
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Then, $z=(B+b\dot{w})/A^{2}$, and

$A^{3}\dot{z}=(AB_{w}-2A_{w}B)\dot{w}+\{Aw-2A_{w}(\dot{w})^{2}\}b$ .
We have

$AB_{w}-2A_{w}B=\kappa^{2}aB-A^{2}+2S(a)/a$ .
Let $C(a, w)$ denote the right hand member. Then,

$A\ddot{w}-2A_{w}(l\dot{v})^{2}=2C(w, a)=2\{\kappa^{2}wB-A^{2}+2S(w)/w\}$ .
Hence,

$A^{6}(z)^{2}=4\{S(w)C(a, w)^{2}+S(a)C(w, a)^{2}+C(a, w)C(w, a)bw\}$ .

On the other hand,

$A^{6}S(z)=D(a, w)+b\dot{w}E(a, w)$ ,

$D=B(B-A^{2})(\kappa^{2}B-A^{2})+4\{3\kappa^{2}B-(1+\kappa^{2})A^{2}\}S(a)S(w)$ ,

$E=3\kappa^{2}B^{2}-2(1+\kappa^{2})BA^{2}+A^{4}+4\kappa^{2}S(a)S(w)$ .

We obtain the two identities:

$S(w)C(a, w)^{2}+S(a)C(w, a)^{2}=D(a, w)$ ;

$C(a, w)C(w, a)=E(a, w)$ .

Hence, $(\dot{z})^{2}=4S(z)$ . Because of (5), $K=k(z,\dot{z})$ . Let $Z$ denote $z/(2-z)$ . Then,
$K=k(Z, Z^{\prime})$ and $(Z^{\prime})^{2}=\lambda R(Z)$ .

REMARK 4. For Jacobi’s elliptic functions with modulus $\kappa$ we have the fol-
lowing addition formula (cf. [10, p. 50]):

(6) $sn(\alpha+\beta)=$ ($sn\alpha$ cn $\beta$ dn $\beta+sn\beta$ cn $\alpha$ dn $\alpha$ ) $/(1-\kappa^{2}sn^{2}\alpha sn^{2}\beta)$ .
Let us set

$ a=sn^{2}\alpha$ , $ b=sn\alpha$ cn $\alpha$ dn $\alpha$ , $ w=sn^{2}\beta$ , $z=sn^{2}(\alpha+\beta)$ ,

and suppose that $\dot{x}=dx/d\beta$ . Then, squaring the members of (6) on both sides,

we have the formula (3).

\S 4. Transcendental constants.

Let $\lambda$ be an element of $k$ different from $0$, and $\delta$ be a constant of $k$ differ-
ent from $0,$ $\pm 1$ . Then, we have the following:

PROPOSITION. Assume that any nonsingular solution of $(y^{\prime})^{2}=\lambda R(y)$ is trans-
cendental over $k$, and that $K=k(z, z^{\prime})$ with $(z^{\prime})^{2}=\lambda R(z)$ . Then, any transcendental
element of $K$ over $k$ is not a constant.
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PROOF. Without losing the generality we may assume that $\lambda=1$ . Let us
prove that $\nu_{P}(\tau^{\prime})=0$ for each prime divisor $P$ of $K$, where $\tau$ is a prime element
in $P$. If we suppose that $z=\tau^{-1}$ , then

$z^{\prime}=\pm\tau^{-2}(1-\delta\tau/2+ )=-\tau^{-2}\tau^{\prime}$ .
If we suppose that $z=\tau^{2}+d$ with a root $d$ of $R$ , then

$z^{\prime}=h\tau\{1+R^{\prime}(d)\tau^{2}/(4h^{2})+ \}=2\tau\tau^{\prime}$ , $h^{2}=R^{\prime}(d)$ .
If we suppose that $ z=\tau+\rho$ with an element $\rho$ of $k$ which is not a root of $R$ ,
then

$z^{\prime}=\pm\zeta\{1+R^{\prime}(\rho)\tau/(2\zeta^{2})+ \}=\tau^{\prime}+\rho^{\prime}$ , $\zeta^{2}=R(\rho)$ .
By our assumption, $(\rho^{\prime})^{2}\neq\zeta^{2}$ . Hence, $\nu_{P}(\tau^{\prime})=0$ for every prime divisor $P$ of $K$.
Take a transcendental element $u$ of $K$ over $k$ . Then, we have $u=\tau^{e},$ $e\neq 0$ with
a prime element $\tau$ in some prime divisor $P$ of $K$. Suppose that $u$ is a constant.
Then, $e\tau^{e-1}\tau^{\prime}=0$ , and $\nu_{P}(\tau^{\prime})>0$ . This is a contradiction. Hence, any transcen-
dental element of $K$ over $k$ is not a constant.

EXAMPLE. For $k$ take the algebraic closure of the one-dimensional rational
function Peld $k_{0}(X)$ over an algebraically closed field $k_{0}$ of characteristic zero.
We set $X^{\prime}=1$ , and $c^{\prime}=0$ for all elements $c$ of $k_{0}$ . Suppose that

$F(y, y^{\prime})=(y^{\prime})^{2}-R(y-Xy^{\prime})$ ; $\delta^{2}\neq 0,1$ ; $\delta\in k_{0}$ .
Let $\eta$ be a generic point of the general solution of $F$ over $k$ , and $u$ denote
$\eta-X\eta^{\prime}$ . Since the degree of $F$ in $y^{\prime}$ is 4, $u$ is not contained in $k$ . We have
$K=k(\eta, \eta^{\prime})=k(u, \eta^{\prime})$ , and the genus of $K$ is one. Since $\eta$ is a nonsingular solu-
tion of $F=0,2\eta^{\prime}+XR_{u}(u)\neq 0$ . Because of $u^{\prime}=X\eta^{\prime},$ $\eta^{\prime}=0$ and $u^{\prime}=0$ . Hence, $K$

is free from parametric singularities. Suppose that $\theta$ and $\gamma$ are constants of $k$,

and that $\theta\neq 0,$ $\gamma^{2}\neq 0,1$ . Then, any nonsingular solution of

$(w^{\prime})^{2}=\theta R(w;\gamma)=\theta w(w^{2}-1)(w-\gamma)$

is not an element of $k$ (cf. [9]). From our Theorem $P$ it follows that we have
$K=k(z, z^{\prime})$ and $(z^{\prime})^{2}=\lambda R(z;\gamma)$ for some $\gamma$ with a certain multiplier $\lambda$ . By Pro-
position, the multiplier $\lambda$ can not be a constant for any $z$, because the constant
$u$ is transcendental over $k$ .
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