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Introduction.

This paper deals with the questions of the existence and asymptotics of
the bounded, periodic and almost periodic classical solutions for the equations

B) et B (~D@Dangl) Doulx, 1)+ g

lal, Blsm
+F(x,t, u)=0 on 2XR (or 2+ R%)
together with the boundary condition
(B) Deulsq=0  for |a|<m—1,

where v is a positive constant, £ is a bounded domain in n-dimensional Euclid-
ean space R™ and 0f2 its boundary. We use the following notations

a=ay  an), lal=Fladl,  Do= 11 (1),

i=1 axi
x=(xy, -+, Xz) etc.

The functions to be considered are all real valued and throughout the
paper we make the following assumptions :

H.. A= l 12,8; <_1)|Q|Da(aa,6(x> DPy)

=m

is formally selfadjoint and coercive on H,,, i.e., there exist some positive
constants ¢,, ¢; such that

Slully =<Au, wzdlul} — for ueH,

where we put



376 M. NAKAO
(Au, v>:] !%S Sgaag(x)Dﬁu(x)D“v(x)dx, u, vehofm

and
leli,=( 3 | 1D=uiraz)".

H,. F(x,t, u) is of the form

F(x, t, w=g(x, u)+f(x,
and g, f satisfy the conditions :
gECmax Tn/24L B (D R)
Py

and P

g(x, w)| <K, 3 JufmexTini=i0 (=0, 1, 2, 3)
i=1,2

where r; (1i=1, 2) are constants such that

0<1’1§7"2<OO if l§n§2m

and 0<r,=r,=< Zm if n>2m,
2m

and F(, HECH (R ; L N C*(R ; Ham N Hu)

where CUI; V) denotes the class of functions from I C R to V with uniformly
continuous derivatives of order <i. Moreover we assume

M= sup max(IDifDllze, [Af (-, Dlze, 1ADf (-5 Dllz2) <Aoo,

i=0,1,2,3

H,. Zmz[]zl]-l-l, mg[g_]’ 0 gy CEHIR/A L+ ()
and aQEC2m+[n/2]+1'

Recently, Clements and Biroli have proved the existence of gen-
eralized periodic solution to the problem (E)-(B) in the case F(x,t, u) is
monotonically increasing in . On the other hand the author has treated
a nonmonotonic case, proving the existence of bounded, periodic and almost

periodic solutions for the problem (E)-(B) with m=1 and with vAg}—u replaced

by nonlinear term p(x, %u) But the solutions obtained are also generalized
ones.
The object of this paper is to give existence theorems concerning bounded,

periodic and almost periodic classical solutions to the problem (E)-(B) and to
investigate some asymptotic properties of them.
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In this paper we employ a Galerkin’s method. In particular techniques
are related to those in Sather [20], Ebihara-Nakao-Nanbu [7], Amerio-Prouse
and Nakao [16]. For other treatments of classical periodic

solutions of the nonlinear wave equations with a dissipative term, see Rabino-
witz and Wahl [24], and for quasi-periodic solution see Yamaguchi [25].
The existence of a dissipative term is essential for our arguments. Indeed,
the problem of the existence and regularity of bounded, periodic and almost
periodic solutions for the nonlinear wave equations without dissipative term is
extremely difficult and there have been researches only for periodic solutions
of essentially one dimensional equations. For this special case see Vejvoda [23],

Rabinowitz [18], Torelli [22], Hall [8], Nakao and the references

cited there. .
Similar problem for nonlinear parabolic equations has heen treated by

Biroli [4], Nakao and Nakao-Nanbu where differential inequalities
concerning several norms of approximate solutions are used extensively, while

here we use ‘integral inequality’ for the estimations of approximate solutions.

§1. Preliminaries.

We employ the usual notations for function spaces and for norms associated
with them (see, e.g., Lions [9]). For ueH, we put |u|,={Au, ud¥? and
define several functionals on H,, as follows:

hw= it | {7 tx, 9dsdx,

Ji(w)=uli+ Sgg (x, u(x)) u(x)d x,

¥ 1 9 T I

Jo=5 lula—Ko 3 S0/t 2)- luld™
and

L= luli—K, 3 S luld™,

where S, is the sobolev constant such that

lul o, <Suls  for ucH,

with 0<¢= nf’gm if n>2m and 0<g<oo if 1=<n=2m.
Notice that J, (u)gj”o (u) and jl(u)gfl(u) for ue}}m. For convenience we

put, for x=0,
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1 -
(=75 x=K, 3 S5/ (rt2) amet

i=1,2 7T;t2

and

Ji(x)=x,—K, ;}25’1’*2. KTiF2

Ti+2

Let D,, D, and x, be positive numbers such that
D,= Iggox.ﬁ(x):il(xo) and Do=jo(xo)
Then it is easy to see that
1.1 Dy= max fo(x)< min (D,, maxfo(x)).
0sx=x0 Tz0
Now, let {¢;}7~, be the set of eigen functions of the operator A in L?
with the Dirichlet boundary condition:

A¢J:F‘J¢J in Q and Da¢J:0 on a.Q for |al§m“—'1.

As is well known, ¢,€Ct™*»/2+1(Q) and {¢,} is dense both ini L, and I}m (cf.
Agmon [1]).

§2. Approximate solutions.

We employ the Galerkin’s method for our purpose. Let {¢,} be the basis

of H, consisting of the eigen functions of A, and consider the system of
ordinary differential equations

(2 1) (u;l (t)) ¢])+(Au'r (t)y ¢])+”(u;‘(t), ¢])+(F(': t’ ur): ¢]):01
j:]-’ 2, 7,
with the initial condition

where u, ()= ]é)l A1) &

The equation (2.1) is equivalent to
2.1y uyl (O+Au, @)+vu,()+P, F(x, t, u,)=0,

where P, is the projection of the space L, onto the r-dimensional subspace
spanned by {¢;}7-:.
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Since F(x, t, u) is locally Lipschitz continuous in u, u.(f) exists uniquely
on some interval, say [0, 7,). In what follows, we shall estimate u,(t) in
various norms. First we show

LEMMA 2.1. There exists a positive constant M, such that if M<M,, then
u, (1) exist on [0, o0) and the estimates

2.3) luDNa= 2o (M)<xo and w2, = V2R (M) < v/2D,

hold for all r, where xo(M) and k(M) are certain constants tending to 0 as
M— 0.

PrOOF. Let k,(M) be a positive constant (<D, determined later, and
xo(M) (< x,) be the solution of the numerical equation in x:

(2. 4) Jo(x)=ko(M), x=0.

In order to prove the lemma it suffices to show

.5 S Ol H ot ) SoM) for VE<[O, T).

The proof of (2.5) can be carried out essentially in the same manner as
the proof of Lemma 2.1 in [14], and we give it briefly. Suppose that the
inequality (2.5) were false. There would then exist a time f<[0, T,) such
that

.6 SO+l )=k (M) for 1=
and
@D S ()> k() for some £,>F,

where £, can be chosen as close to f as wanted. For any ¢, t,[0, T,), we
obtain by (2.1)

ST e )4 | Ol

.9 = Sl T )= [0, w) at

Taking ¢{,=7 and {,=0 in the above we have

.9 O+ o )40 1Ol

<3 (N Ol (1Ol at,
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and hence

TN E WO
which implies >1 if we choose k,(M) satisfying
(2. 10) ko(M)> leMZ.

Under the assumption (2.10), we take t,=¢, and t,=t.—1 (<) in (2.8) to obtain

le
@.11) [ @1, ar=0my,

and hence there exist points fle[ts—l, ts—%] and fze[ts——%, ts] such that

(2.12) lur(E)ll, =207 M (=1, 2).

Therefore, multiplication (2.1) by Aj(f), summation over j and integration by
parts yield

[, Gur @) de = @i, w0 EIHIED, 1)
o+, U @I, w)l+I(F@), wr®l)dt

@.13) < (M) Ay et Mg+ 2M cal(szz lur(S)lads)
1
On the other hand we know [u,()|4=x, if {=t., and hence

2.14) [ @)dez {77 @) drza lu O lade,

where c,=1—k, 3 STi" 2471 >0,

2 5 Vrre o
From (2.13) and (2. 14) we obtain

(2.15) S: lu Olddt=ci {2 M) +8v~ ey ! Mx,+4M2 52 c5'}.

By (2.11) and (2.15) we see that there exists a point t*&[f,, f,] such that

(2.16) %(Hui(t*)llizwL lr () =k (M),
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where
Ba(M)=142¢3") (™ IM )2 +-4c*M Qutegtxo+Mcei? ch).

Therefore, by (2.8) with #,=¢. and #,=¢*, we obtain
1 1 1
2.17) 5 Ilui(ts)llifr]o(ur(te))é-2— s @NLy+Jo (ur (£%))+ EMZ

é k() (M) ’
where we define

Y i 2 1 Ti*2 01, (ri+2)/2
R =R (M) + 5 Mtk 33— ]2 (M) Y70

Then, (2.10) is automatically valid, and if we choose M, so that k,(M,)=D,,
the inequality (2.7) contradicts (2.17) for M<M,. Q.E.D.

REMARK. As is easily seen from the proof, Lemma 1.1 is valid in fact
. t+1 1/2
even if we replace M by sep(st Hf(s)]lizds) .

We proceed to further estimation of the approximate solutions. To do so
it is convenient to prepare an estimate of the approximate solutions {U,(¢)} of
the linear equation (E) with F(x, t, u)=F(x, 1).

LEMMA 2.2. Let {U, ()} be the solution of the equation (2.1)-(2.2) with
F(x, t, u,)=F(x, t). Then we have

@18  max U ()IB=e (1T O 1U, G+ DI +e NO?

for t€[0, o),
where

NoO=["1FC, 9ltds)” 1UIB=10@R,+1UOI,

c;=20 " {2v+54+4(4+v)2cy?t and c,=cyv'4+248cr

Proor. By (2.1) we have, for 01, <t,,

2.19) o101l ds= 30U EIE—10, 61

—(*FC, 9, O as,
1
and hence, taking t,=t+1, t,=¢,

@20 [TIUR,dss (U Ol 10 @+ DD+
=D (@)
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It follows that there exist two points tle[t, t—i—%] and tze[t—l——i—, t+l] such

that
1U @, =2D () (=1, 2),

and hence by (2.1) we have, as in (2. 13),
2.21) SZ? 1U-($IAds=D (#)°*+((4+4v) D)+ N) ¢! max 1U(s) 4.

From (2.20) and (2.21) we see that there exists a point *&[f, f,] such that

@2)  U@ESED @ H2(UAH) DO+N) &t max [1U,(s)las
Using the estimate (2.22) we have from (2.19) with t;=¢* (or t,=t*)

max U, (522 104913, ds

s€lt, t+1

U@ +2] IF @Il U (lzads

=2vD (t)*4+4D @)*+2((4+v) D )+ N) ¢3!

X max Uy (s)lz+2ND ()

sele, t+1

= B04+20+4(4+2)" 5% D () +(1+4¢") N*

—l—i maX] ]]UT(S)H%)

2 sele, t+1

which proves the lemma. Q.E. D.

We obtain further the following.
LEmMMA 2.3. Let U, () be as in Lemma 2.2. Then

(2.23) 1, @lk= max ( max U, (s)[%, csN?)

=10, O)ll%+c N,

where N= sup N@).

Proor. The former inequality in (2.23) is an immediate consequence of
(2.18). For t=[0, 1] we have
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t
0

10O 210, O+ | 1F )13, ds
1 -
<1U, O+ V%,

which gives (2. 23), because ¢,> 72%7. Q.E.D.

Now we return to the estimation of {u,(¢)}.

LEMMA 2.4. Let M{ be the positive number such that

cs(MD=1—4c, 3 K3STH xo (M1)2i=0.

i=1,2 Zri+2 0
Then for M<M,=min(M,, M}) we have
(2. 24) [D u-O ek (M)  for t€[0, ),

where by (M)=(142c)"*Mc, (M) V2.

PROOF. By with U,(t)=D,u,(t) and F(x, )=D,F(x, t, u,),
we have

(2.25) max IDeu, DIF=1D:ur (0)]z+c, max IDe{g (s urCey ))+7 (O 2,

1Defg () ur (e, )+ DO}z,

=M+ K 59(2 w176 Dy s (x, t)l)zdx)m

. - /
(2. 26) SMEVIE( 3 ST M) 1D, O,

‘and also
1D wr OIE=11D7 ur )2, +I1D; u, (0)1%
=[|—vu;(0)— Au, (0)+P. (g (-, u,(0))+7 O,
(2.27) =M-=
The inequalities (2. 25)-(2.27) yield (2. 24). Q.E.D.
LEMMA 2.5. Let M, be the number given in Lemma 2.4. Then if M<M,,
we have

(2.28) IDtu-Oll ek, (M) for te[0, o),
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where

4+2r;

k(M )= {(2v2+3)M2—|—4c4M2+8c4K2 2 Sy (M)Tik, <M>“} v

Xy (M) V2 (F,=max(r;—1, 0)).
PROOF.

”D%F(') f ur@))”%ﬁz

={, |07 0+ (e w ) Dt () g e )
X (Dsu.(x, 1))? de

<4M*+4K} 3 s”z“nu O D3 ur ()%

2r;+2

+8K3 St OIT 1D, ue O]y

=2 4+2T
SAMPHAKE 33 S, o (M) Diu, (1)

+8K3 2, St xo (M )Tk (M)

4+2T

Also we have
D% ur (-, Olz=l—vDtu, 0)—AD, u, (0)+P, D, F(-, t, u, (0))l|3%,
Hl—=vDeur (0)—Au, 0)+P, F(-, t, u, (0%
==y (=vDeu,(0)—Au, 0)+P, F (-, t, u,(0)))
+P D f (-, OIL,+ 1P (-, O)l%
=20 41 M*+M| AP, f(-, Ollz,
=@*+-3) M>.
Here we have used the fact that A and P, commute on H,, N I;fm. Thus by

with U,()=D?u,() and with F(x, )=D}F(x, t, u.(t)), we obtain
(2. 28). Q.E.D.

LEMMA 2.6. Let M<M,. Then
(2.29) 1D}u, Ollgsks (M)  for te[0, o),
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where

6+2?i
6+2F;

ks(M)= [{(vz—}—v+2)2+(y+1)2} M?+6¢,{M?*+2K3 i§ \ S xo (M)Tiky (M)®

+6K3 3 Sy (M) (MY B (M) | g0y

4+27'
(7;,=max (r;—2, 0).)

PRrROOF. Easy calculations give

IDFC, 1, 13,= 6(M*+2K3 3 S fur 011D, u, (1)1

G+2?‘

+18K3 3 s“”zn COITND, ur (D)%

X 1Dy (0]%)
+AKG 3 S, e (O 1 Diur (01

§6(M2+2K2 =, ST o (M)?i by (M)

6+27

+18K3 3 Syt o (M) ks (M)* ey (M)?)

4+27;

+4K; 3 S“”txo@w)mnau,<t)||31.

2+27;

Also we have
1Dt u O z=I{D: @D ur () + A O+Pr F (-, t, ur ()} 1=oll%
=lv{=vDu,O)—Au, )—P, F(-, t, u, )} =0
H{AD u, )+P, D F(-, t, ur ()} 1=ollm
=v*Di u, (O)+vP, f (-, O+ A{—vD; u,(t)— Au,(t)
—P,F(-, t, u,0))} o= +Pr DIf (-, )12,

+lvP, (-, O+P D, f(-, 0%
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= {—vD; u,(0)—Au,0)—P, F(-, 0, u,(0))}
+vP, f(-, 00— AP, f(0)+P.Di f(-, O,
P f (-, O+P Do f (-, Oz, IA@P, f(-, 00+P- D f(+, 0))llL,
S Hv+2) M2 4-(v+1)2 M2,
(Note that D,f& Hyp (M Hn.)
Thus, by the proof is completed. Q.E.D.

Now we have finished the estimation of the approximate solutions.

§ 3. Passage to the limit.

In this section we shall study the convergency properties of the approxi-
mate solutions u,(f) as r — oo, Always we assume M<M,. Then by the
estimates given in the previous section we see first that there exists a sub-
sequence of {u,()}, which will be denoted by the same notation for simplicity,
and a function u(x, ) such that

G.1)  Diu,(t) —> Diu(@® weakly* in L*(R*; Hy,), a.e. on 2X R*,
and uniformly in L, on each compact
set of R* (1=0, 1, 2, 3),

and

3.2 Diu,(t)—> Diu(d) weakly* in L”(R*; L,).

Moreover it is clear that the limit function u()=u{x,?) is in B2(R*; ﬁm) N
B3(R*; L,) and satisfies the estimates (2.3), (2.24), (2.28) and (2.29) for u,=u,
where we put, for a Banach space V and an interval ICR,

BI; V)={ueC'U; V)| sup D9, u @) |y <+ o0},

075t

Next, to show the uniformly continuity of Diu () in E, we shall prove the
uniformly equi-continuity of {D}u,(})} with respect to the norm |-|z. For
each teR*, u,(¢) is the solution of the elliptic equation

Au,(t)=—uy ) —vu,()+P,F(x, t, u,@))

=h.(x, D€B(R*; L,)
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and by the theory of elliptic boundary value problem (cf. Agmon-Douglis-
Nirenberg [2]) we have for >0

lu, (x, t+0)—u, (x, D|=Zconst.|u, (-, t4+0)—u, (-, Dl a,,
<const.|h, (-, t-+0)—h, (-, DL,

3.3) =¢:(0) —0 (as 6—0),

where ¢,(0) (i=1, 2, ---) denotes a function of ¢ independent of 7, ¢, tending to
0 as 0 — 0. Using the estimates (2.24), (2.28), (2.29), (3.3) and the hypothesis
that D}f is uniformly continuous in L,, we can show in a straight foward
manner

3. 4) ID{F (-, 140, u,(1+0)—DiF (-, t, u.())]7,=¢.(0)
and
3.5 [ Dt u, (0)—Diu, (O)E=¢s(0).

Therefore, applying we have

(3.6) max | Dfu, (t+0)—Diu, D3=¢:(0)+c.0:(0),
(S
which implies that {Dju,(f)} is uniformly equicontinuous in the norm |-,

and we can conclude by the resonance theorem

3.7 Diu@)eB°(R*; E).

Now, the limit functions Diu(t) (0=<i<2) satisfy the following elliptic
equations in a generalized sense

3.8 ADiu(=—DH uO)+vDiM u () +DiF(-, t, u(®)))

(a.e. teR").
Since D,u, D{u, F(-,t, u(t))eB°(R*; L,), the equation (3.8) with =0 implies
(3.9) uEB(R*; Hym M Hy) C CY(QX RY) N L=(2X R¥)

and hence

D.F(-, t, u®))eB(R*; L*(2)).
Therefore (3.8) with i=1 implies

(3.10) DzuEB°(R+;Hgmﬂf}m)cC“(QXR*)[\L‘”(QXR*).
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By (3.1), (3.7) and (3.10) it is easy to see that the right hand side of (3.8)
with =2 belongs to B°(R*; L,), and we have

3.11) ueB(RY; Hym N hofm) C C*(2X R*Y) N L*(2X R*).

Finally we note that g(-, u)€B°(R*; Hin/s+1) because u ()€ B (R*; Hym) C
B°(R*; Hipj01:1) (cf. Mizohata [Theorem 7.1; 10]). Thus by (3.10) and (3.11)
the right hand side of the equation (3.8) with =0 belongs to B°(R*; Hin/s141)
and by the theory of elliptic equation we have

(3.12) u ()€ B (R* ; Hymatnimes N Ha) C BS(R*; C™ (D)),

We summarize above results in the following

THEOREM 3.1. Suppose H,-H, and let M<M,. Then the initial-boundary
value problem (E)-(B) on QX R* with initial data u(x, 0)=u'(x, 0)=0 admits a
unique bounded classical solution u satisfying (2.3), (2.24), (2.28), (2.29) and

(3.13) I[u(t)HQEmm_c( Ia%)zm D=y (x, t)]+ ?i"b 1%;u(x, l)\)

z<ED

=k, M) for te[0, o),
where ky(M) is a certain constant tending to 0 as M — 0.

The proof of the uniqueness in is trivial and omitted. Also
it is easy from the procedure deriving the estimates (3.10)-(3.12) to see that
the estimate (3.13) holds.

§4. Bounded, periodic and almost periodic solution.

Let us make the assumptions as in [Theorem 3.1 Then the problem

az
81‘2 “ + (a\,%ém

(=D D*(a4,5(x) DPu (x, z‘))+u%u+F(x, t, u)=0

4.11) on O2X(—r, ), ul(x, —r)_:%u(x, —r)=0

and D%ulse=0 for |a|<m—1 (r=1,2,3, -)

admits a unique bounded solution wu,(x, t) satisfying (2.3), (2.24), (2.28), (2.29)
and (3.11)-(3.13) for t=-—r. Also it is easily seen from the proof of (3.13)
that for each 7>0 the family {u,(#)} (r=7T) is uniformly equicontinuous in
the norm |[-p on [—7, T]. Since the imbedding maps from Hyy,in/2141 and
H,. into C*™(2) and C(), respectively, are both compact, the vectorial
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Ascoli-Arzela’s Lemma implie» that u,(f) is convergent to a function u(x, ¢) on

2XR in the following sense; for each 7>0 and for r> T,

u(x, ) —>u(lx, in C*™(D) uniformly on [—T, T]
and
at 0° . = .
a5 Ur Froak in C(Q) uniformly on [—T, T]
(=1, 2).

Clearly u(x,t) is a classical solution of the equation (1) on QX R, satisfy-
ing the same bounded properties as u,(x, £). Thus we have

THEOREM 4.1. Under the same assumptions in Theorem 3.1 the problem
(E)-(B) admits a unique bounded classical solution u satisfying the estimates
(2.3), (2.24), (2.28), (2.29) and (3.13) for t<=R.

ProoF. It remains to show the uniqueness of bounded solution satisfying
such estimates. In fact this follows from the estimates (2.3) and (2.24) only.
Indeed, let ¥ and v be two bounded solutions satisfying (2.3) and (2.24) for
ieR. Then w=u—v is a bounded solution of the equation

4.2) w’+Aw+tvw'=g(, w)—g(, v).
Now, using the mean value theorem, we can show easily

lg (o w—gC, ILZ2KE 3 Sy x (M) wi,

ZT,':+2

and hence by

Jax Jw@)lz=c(lwhle—[w+Dlz)

+20,K3 3 ST (M) w1

or+2”0
Thus, recalling the way of choice of the number M,, we have

max [|w(s)|z=cscs (M) (lwOlz—w ¢+DID)

sErt, t+11

for tR, which together with the boundedness of ||w (f)||z implies easily w (¥)=0

(see [14]. Q.E.D.

The following is an immediate consequence of the above theorem.

COROLLARY 4.1. In addition to the assumption of Theorem 4.1, suppose
that f(-, t) is w-periodic in t. Then the bounded solution u(x, t) in Theorem 4.1
1s also w-periodic.
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Now we shall study the almost periodicity of the bounded solution.

THEOREM 4. 2. In addition to the assumption of Theorem 4.1, suppose that
f(, t) is almost periodic as a function from R to C(Q). Then the bounded
solution u(x, t) is almost periodic with respect to the norm |-ll,.

Proor. Let {t,}72; be any real sequence. By Bochner’s criterion (see
it suffices to show that {u(¢+t,)} contains a subsequence which is convergent
in the norm |[-||o uniformly on R. Suppose that this were false. Then there
would exist a positive constant e,, two subsequences {t.} (i=1, 2) of {t,} and
a real sequences s, such that

4.3) N (sybtr)—u (5,1, 6.

Consider the sequences of functions {u(t+¢,,+s,)} (i=1,2). They satisfy
the estimate (2.3), (2.24), (2.28), (2.29) for t=R, and by the same reason in
the proof of we may assume u(t+t,,+s,)— U;(#) in |-]o uni-
formly on each compact set in R as r—oco. U;(¥) (i=1,2) have, of course,
the same boundedness properties as u (x, f). Now, since f({) is almost periodic
in C(2), we may assume f(t-+t,,+s,) converge to a function F(x,f) in the
norm C(2) uniformly on R, and hence U;(#) (i=1, 2) are both bounded classical
solutions of the problem (E)-(B) with f(x,?) replaced by F(x, t). Therefore
the local uniqueness concerning bounded solution implies U, ({)=U, (/). However
by (4.3) we have

10, (0)— U, (0) g=,>0

which is a contradiction. Q.E.D.

§5. Asymptotic properties of bounded solutions.

In this section we shall investigate some asymptotic properties of the
bounded solutions of the problem (E)-(B). For this purpose we let u,(t)
(i=1,2) be solutions on 2X(—r, ) of the equation (1) with f=f; (i=1,2),
respectively.  Let us suppose that wu;(¢f) fulfill the following boundedness
conditions :

6.1 lusOla=ao (<xo(MD),  Nui)lz,=bo (<ko(M)))
D% uiOllz=a; (<k;(My))  for j=1,2,3, t€[—r,, )

with positive constants a,, by, a;.
From (5.1), we note, the same arguments as in the proof of give

(5.2) lus@Wle=a, for j=1,2, t&[—r, )

with some positive constant a,.
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Assume that 7, (1), i=1,2, satisfy H, and we put

8,0={"" 1D/, (9= 2 (B, ds)
(7=0,1,2,3).

Then similar arguments as in the proofs of Lemmas £.2-2.6 yield the
following inequalities

(6.3 max [w(lz=csci(an)™ (lw Ollz—lw E+DIz)

serL, t+11

+2cici(ag)r0,(1)?,

G.4) _max |Diw(9)]3=escs(@) (1D, w Ol3—1Ds w41

+c,ci(a)(2K3 B Siimtal aflw Ola+0,(0)°)

4+27‘i

and

(5.5) Jnax 1D w (s)|l%
=cscs(a) UIDFw Wz— 1D w ¢-+DI3)

+ac,cia) ok 2 [Sihial atiw 0l

e 6+27i

+ Sl Ut D, wli+adlw 1 |+, 007}

4+2r,

where w (#)=u,{)—u, () and

ci(a)=1—4c.K3 3 ST (>0).

2Ti+2 0

Here we make an additional assumption ;
H,'. g(x,u) is 4-times continuously differentiable in u.
Then we can easily show

[, 1Dt (x, w0)=Dig (v, us )+ D fi—F)l2d x

2T.L-+2 0

< co(a)( 2 IDiw Ol3+0,00)+4K3 3 Soital IDiw (0l

with a constant ¢,(a,) depending on a,, and hence we have by Lemma 2.2
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(5.6) Jnax [ Diw ()= cscs(a0)™ (I1Dfw O)z—1Dtw ¢+1)]5)

+26,¢3(a0) (e (8, 0"+ 2 IDFw @13).

The following elementary lemma is useful.
LEMMA 5.1. Let ¢(t) be a bounded nonnegative function on [—r,, o)
satisfying

max ¢ (s)<c;(p (O—d (t+1))+k (D)

sE[L, t+1]

with ¢,>0 and k(H<cge 70 (¢, 6>0).
Then we have
¢(t)§cee—ﬁu-ro) (t=ry)
where ¢, and 7 are positive constants depending on ¢,, cs, and 6.

The above lemma is a special case of in and the proof is

omitted (see also [15].
Combining with the estimates (5.3), (5.4), (5.5) and (5.6) we
obtain that if §; ()< Ke ?¢ ™ (j=0,1,2,3) with >0, then

6.7) S IDLw OIS Ke7 7 for 27,

with some positive constants K’, »>0.

Thus combining (5.7) and the standard theory of elliptic equations as was
used in the proof of [Theorem 3.1 we can conclude

THEOREM 5.1. Suppose H,, H,, H,/, H; and let

20+ 1A= Olnds)  SKie e 030

Then for any solutions u;(f) (i=1, 2) on [—r,, o) of the problem (E)-(B) with
f(@®) replaced by fi(t), which satisfy (5.1), we have

(5.8 lur—u Ol e=K,e 77 for t=r,
with some positive constants K,, 7.

The following is immediate from above.
COROLLARY 5.1. The bounded solution in Theorem 4.1 is exponentially stable
with respect to the norm |-|q in the class of solutions satisfying (5.1). And also

if _zs)oIlezf(t>1|L2+”f(t)“HZm decays exponentially as t— oo, then the bounded
=

solution decays exponentially in the norm |-|q.
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The former part of the Corollary can be regarded as an extension in part
of the result of Sattinger [21], where the existence of global classical solution
and the asymptotic stability of the stationary solution have been investigated
for the equation

' 0 . 0
w3 gy, (0 g n (w0 H2au=P @), a>0,

with linear homogeneous boundary condition Bu=0 on 02, when n=1, 2, 3.
In [21], the method of developing the solutions in power series is employed
and quitely different from ours. Quite recently, A. Matsumura has ex-
tended the result of to the more general nonlinear equations of second
order. The method of [26], however, is also different from ours.
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