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Introduction.

Let M be a complete Riemannian n-manifold isometrically imbedded into
a complete Riemannian (z-+1)-manifold W. Throughout this paper manifolds
are always assumed to be connected and smooth. Furthermore we assume
nz 2, although some of our results are valid even for n=1. For each xeM
there exists, up to parametrization, a unique geodesic 7, of W which cuts M
orthogonally at x. M is called a transnormal hypersurface of W if, for each
pair x, y = M, the relation z,>y implies that z,=7,, i.e. if each geodesic of
W which cuts M orthogonally at some point cuts M orthogonally at all points
of intersection. As is well-known, every surface of constant width in the
ordinary Euclidean space has this property ([6]), and it is a model of a
transnormal hypersurface.

The order of a transnormal hypersurface, by which the hypersurface is
globally characterized, is introduced in the following way. Define an equi-
valence relation ~ on M by writing x~y to mean y=rz,. With respect to
this relation, take the quotient space M= M/~ and endow M with the quo-
tient topology. We call M an r-transnormal hypersurface if the natural
projection ¢ of M onto M is an r-fold (topological) covering map. The num-
ber 7 is called the order of transnormality of M. It should be remarked that
¢ is not always a covering map. However, if W is simply connected and of
constant curvature, then ¢ is a covering map ([5)).

In [5], we have obtained the following results which determine topological
structures of transnormal hypersurfaces.

THEOREM A. Let M be an n-dimensional transnormal hypersurface of W.
Suppose that there exists a point p of M whose cut locus C(p) in W does not
intersect M: C(p))\M=0. Then the following hold.

(1) If M 1s 1-transnormal, then M is homeomorphic to a Euclidean n-
space E".

*) This paper was written while the author was at Tokyo Metropolitan University.
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(ii) If M is compact and 2-transnormal, then M 1is homeomorphic to a
Euclidean n-sphere S™.

(iii) If M is compact and r(< +oo)-transnormal, then the Euler charac-
teristic X(M) of M is either zero or r.

The main purpose of this paper is to study differential geometric struc-
tures of a compact 2-transnormal hypersurface of a simply connected com-
plete Riemannian manifold of constant curvature (in contrast to Theorem A
(ii) which is of topological nature). In fact, we prove the following theorems.

THEOREM B. Let M be a compact 2-transnormal hypersurface of a Eucli-
dean (n41)-space E™,

(i) Then, at each point of M, with respect to the inward unit normal, every
principal curvature of M is greater than 1/I, where | is the diameter of M as
a subset of E™*!,

(i) Let k be a positive constant. In (i), if every principal curvature A of
M satisfies

A=k (resp. 1/I<A=Zk)
at each point of M, then
k=<2/1 (resp. k=2/1).

(ii) In (i), if every principal curvature 2 of M satisfies
A=2/1 (or 1/I<A<52/1)

at each point of M, then M is totally umbilical and hence isometric to a Eucli-
dean n-sphere S™ of radius 1/2.

THEOREM C. Let M be a 2-transnormal hypersur face of a Euclidean (n+1)-
sphere S™* of radius 1. Suppose the diameter | of M as a subset of S™*
satisfies 0 <l <.

(1) Then, at each point of M, with respect to the inward unit normal vector
(cf. 81 for definition), every principal curvature of M is greater than cot L.

(ii) Let k be a constant. In (i), if every principal curvature 2 of M satisfies

A=k (resp. cot < AZ k)
at each point of M, then
E=<(14cos!)/sinl (resp. k=(1+cos!l)/sinl).
(iii) In (i), if every principal curvature 2 of M satisfies
A=(1+cosl)/sinl (or cotl<A=(14cosl)/sinl)

at each point of M, then M is totally umbilical and hence isometric to a Eucli-
dean n-sphere S™ of radius sin (1/2).

THEOREM D. Let M be a compact 2-transnormal hypersurface of a hyper-
bolic (n+1)-space H™?' of constant curvature —1.
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(i) Then, at each point of M, with respect to the inward unit normal vec-
tor, every principal curvature of M is greater than cothl, where | is the dia-
meter of M as a subset of H™**,

(ii) Let k be a positive constant. In (i), if every principal curvature A of
M satisfies

A=k (resp. coth [< AZ k)

at each point of M, then

k< (14cosh!)/sinh [ (resp. k= (1+cosh!)/sinh ).
(iii) In (1), if every principal curvature A of M satisfies

A= (14cosh !)/sinh [ (or cothl<A=(1+cosh!)/sinh )

at each point of M, then M is totally umbilical and isometric to a Euclidean
n-sphere S™ of radius sinh ({/2).

The proofs of these theorems will be given separately in §§2, 3 and 4.
I would like to express my hearty thanks to Professor M. Obata for his
constant encouragement during the preparation of this paper.

§1. Preliminaries.

This section is devoted to a brief survey of the concepts and formulas
used throughout the paper. Let W be a complete Riemannian (n+41)-manifold
with n=2. We denote by T,W the tangent space of W at x and by {,) the
inner product on the tangent space. Let M and P be Riemannian submani-
folds of W and ¢ a geodesic segment perpendicular to M and P at its end
points 7(0) and z(b). Denote the Riemannian curvature tensor of W and the
second fundamental form of the submanifold under consideration by R and
S respectively. Then the second variation of the arc length {(z) of 7 is given
by the formula

(RY ()= [ (CV", V=RV, wms, VydutCes, TV

=— [V RV, vz, Vy(wdu

+{Seury VIO)+ V7(b), V(0))—<{Sruey V(0)+V7(0), V(0),

where V is the associated variation vector field along = whose values are
everywhere orthogonal to the tangent vector 7z« of 7, and V’ denotes the
covariant derivative with respect to 74 (cf. [1]).

A smooth vector field Y(¢) along 7 is called a Jacobi field if it satisfies
the Jacobi equation
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Y7+ R(Y, 7)rx=0.

A Jacobi field arises from the variation of ¢ whose longitudinal curves are
always geodesics. A Jacobi field Y along ¢ which is perpendicular to 7 is
said to be an (M, z(0))-Jacobi field when it satisfies the boundary conditions

(1.2) Y(0) e TepyM and Sey YO +Y(0) e Ty M+,

where 1 means orthogonal complement in T, W. Geometrically, an (M, z(0))-
Jacobi field is precisely the associated vector field of the variation of 7 all
of whose longitudinal curves are geodesics starting orthogonally from M and
parametrized by arc length ([TIJ).

Let ¢ be the restriction of the exponential map of W to the normal
bundle (TM)* of M in W. Then a focal point of M at x is, by definition, a
point y €T, M* at which the differential map of e is singular, and e(y) is
called a focal point of M along the geodesic e(tn), t>0. For a given geodesic
7 starting orthogonally from M, z(b) is known to be a focal point of M along
= if and only if there exists an (M, 7(0))-Jacobi field which vanishes at b.
In particular, if W is a Euclidean (n+1)-space E™*!, then for a unit normal
vector & of M at x the point e(t&)=x+1t£ is a focal point of M at x if and
only if ¢ is a principal radius of curvature of M at x with respect to & ([4]).

Suppose M is an 7(< +4oo)-transnormal hypersurface of W and peM
satisfies the condition C(p) "M =0, where C(p) denotes the cut locus of p in
W (for the definition of C(p), if necessary, see [3]). In the following, unless
otherwise mentioned, we always assume that there exists at least one such
a point p for each transnormal M. By the distance function A, of M we
mean the real valued smooth function on M defined by

Apy(x)=d(p, x)*, xeM,

where d(,) denotes the distance in W. Note that d(p, x)* is nothing but the
square of the length of the unique minimizing geodesic segment z(p, x) of W
joining p with x. Furthermore, a point x< M is a critical point of 4, if and
only if z(p, x) is perpendicular to M at x and then at p due to the trans-
normality of M. It is known that A, is a Morse function and the number of
its critical points coincides with the order r of transnormality of M ([5).
Theorem A is an implication of this property together with elementary parts
of the Morse theory.

If, in particular, M is compact and 2-transnormal, and W is a simply
connected complete Riemannian manifold of constant curvature, then for each
x€ M there exists exactly one point ¥ M such that the length of the mini-
mizing geodesic segment ¢(x, ¥) joining x with ¥ equals the diameter of M
as a subset of W (cf. [3)). In this case, ¢(x, X) is perpendicular to M at both
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of its end points. We call ¥ M the antipodal point of x M and the initial
vector 74(0) of z(x, ¥) the inward unit normal vector at x.

In general, a hypersurface M of W is said to be convex at x& M if the
second fundamental form S of M is (positive or negative) definite at x, or
equivalently if, in a neighborhood of x, x is the only one point of M that
lies on the hypersurface of W which is tangent to M at x and is totally
geodesic in the neighborhood. M is called a convex hypersurface of W if it
is convex at every point.

§2. Compact 2-transnormal hypersurfaces in a Euclidean space.

First we deal with a compact 2-transnormal hypersurface M of a Eucli-
dean (n+1)-space E™**,

Let p= M and consider the distance function 4,(x)=d(p, x)> on M. Note
that the cut locus C(p) of p is empty and then C(p)\M=0. At a critical
point x of 4, the Hessian H of 4, which is a symmetric bilinear form on
T.M, is given by

HX, V)=2((I—IS)X, V>, X YeT,M,

where [ denotes the identity transformation and £ is the unit vector defined
by p=x+I1g, >0 ([4]). It should be remarked that & is normal to M and
thus [ coincides with the diameter of M as a subset of E™*,

The clue to the proof of Theorem B is the following

LEMMA 1. If 2 is a non-zero principal curvature of M at x with respect
to the inward unit normal &, then

A=2/(2l—1)
1S a principal curvature of M at ¥ with respect to —&, where % is the antipodal
point of x, and [ is the diameter of M as a subset of E™,

PROOF. Since A is a non-zero principal curvature of M at x with respect
to &, the point x+A17'¢ is a focal point of M at x. It is easily seen that each
focal point of M at x is also a focal point of M at X, because M is a trans-
normal hypersurface. In fact, we have only to note that each (M, x)-Jacobi
field is also an (M, %)-Jacobi field. Thus x+17'¢ is a focal point of M at %
as well. So there exists a principal curvature 4 of M at % such that

F—1e=x42¢.
From this equation, we obtain
(2.1) =1

since the length of the vector ¥—x attains the diameter [ of M. Rewriting
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(2.1), we get the lemma. Here we note that

Al—=1>0,

‘which is shown in the proof of Theorem B (i). Q.E.D.

PROOF OF THEOREM B. (i) Choose a point x= M arbitrarily, and let %
be the antipodal point of x. Remark that ¥=x+4I[& where £ is the inward
unit normal of M at x. Then the Hessian H of the distance function 4; at
x is given by

2.2) HX, YV)=2X(U—1S)X,Y>, X YeT.M.

Since M is compact and 2-transnormal, 4; takes its maximum at x, which
is a nondegenerate critical point of 4; ([6]). Hence H is negative definite
at x, i.e. every eigenvalue of S¢ is greater than 1/1.

(ii) Let A be a principal curvature of M at x in (i), and consider the
case A=k. By Lemma 1, A=21/(A—1) is a principal curvature of M at %.
Thus from the assumption we have

A
(2.3) =1 =k
noticing the choice of unit normals in (i). Assume that (ii) is false, i.e.
k>2/l. Then A>2/l, and (2.3) asserts

A 2
=171
“This is, however, a contradiction, because the last inequality reduces to

A<2/L1.
The proof for the case 1//< A=k is accomplished in a similar way.
(iii) We prove here only the case 1=2/l. The assumption A=2/! leads to

1
for the same reason as in the proof of (ii). From these inequalities, we get

A=2/1,

which shows that M is totally umbilical, and this completes the proof (cf.
3D. Q.E.D.

As a corollary of Theorem B (i), we obtain

PROPOSITION 1. Let M be a compact 2-transmormal hypersurface of a
Euclidean (n+1)-space E™**. Then the following hold.

(i) M 1is a convex hypersurface of E™", and then M has positive sectional
curvature everywhere,

(ii) M is diffeomorphic to a Euclidean n-sphere S™.
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(iii) The total curvature of M is 2.
PRrROOF. (i) is a direct consequence of Theorem B (i). From (i) we have
(i) as well as (iii). See, for example, [3].

§3. 2-transnormal hypersurfaces in a sphere.

In this section we investigate the case where M is a 2-transnormal
hypersurface of a Euclidean (n+1)-sphere S™' of radius 1. Note that such
M must be closed in S™"' and in consequence compact ([5]). Suppose that
the diameter [ of M as a subset of S™* is less than m, then the cut locus
C(p) of peM in S™* does not intersect M : C(p) "M =0. Unless otherwise
stated, this assumption on the diameter is always made throughout the rest
of this section.

Fix a point p= M arbitrarily and consider the distance function /,(x)
=d(p, x)> on M. Let xe M be a critical point of 4, and z(p, x) the minimiz-
ing geodesic segment in S™ joining p with x. Recall that z(p, x) is perpen-
dicular to M at x as well as at p, and then the length of z(p, x) equals the
diameter [/ of M. The Hessian H of A, at x is given by

(3.1) H(X, Y)=2I{(cot I- I=S_,u) X, Y, X,YeT, M.

This formula can be derived from the second variation formula (1.1). In fact,
the calculation of the Hessian of A, corresponds to the second variation of
the square of the length of z(p, x) all of whose longitudinal curves are
minimizing geodesics. On the other hand, it is well-known that on a unit
sphere S™*! every Jacobi field Y(¢) along a geodesic z(¢) parametrized by arc
length is written as

(3.2) Y(t)= A(t) sint+B(t) cos £,

where A(f) and B(f) are parallel vector fields along z(f). In our case, the
Jacobi field under consideration may be expressed in a more simplified form

Y(#)=A(t)sint,

where A(t) is a parallel vector field along z(p, x) satisfying the condition
A(l)e T, M, since p, one of the end points, is fixed under the variation of
z(p, x). From these facts, after a simple computation, we get the formula
(3.1

The bulk of the proof of Theorem C lies in the following

LEMMA 2. Let xeM and % be the antipodal point of x. Let v be the
mintmizing geodesic in S™* joining x with X. Suppose that A is a principal
curvature of M at x with respect to 74(0). Then

A=(sin [+ 2 cos 1)/(Asin [—cos I)
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is a principal curvature of M at ¥ with respect to —zt4(l), where | is the dia-
meter of M as a subset of S™*,

ProoOF. Let Y(¢)=A(?)sint+B(t) cost be an (M, x)-Jacobi field along (%),
0=t?=/ such that the parallel vector fields A(t) and B(?) satisfy the follow-
ing conditions :

A0)eT M, Al)yeT:M; B0)eT,M, B(l)eT;M ; and
B(0) is a principal vector corresponding to 4, i.e.
Sev0yB(0) = 2B(0) .
The existence of such Y(¢) is obvious. From the very definition of an (M, x)-

Jacobi field, Y(¢) satisfies the boundary condition

Sn(o) Y(O)—FY’(O) S T.er .
This means that
Sty BOF+AOY e T MNT M= {0} .

Therefore A(0)=—2B(0), because B(0) is a principal vector corresponding to
A. Consequently, we have

Y(t)=(cos t—2Asint)B(t).

Since M is a transnormal hypersurface, every (M, x)-Jacobi field is also
an (M, %)-Jacobi field. Thus, the above Y(¢) must satisfy the following bound-
ary condition as well:

Sey YIO)+Y'(D)eT:M*.

From this it follows that
S_.p(Asin l—cos [)B(l)=(sin [+Acos [)B(l) .
As is shown in the proof of Theorem C (i),
Asinl—cos[>0,

and thus the lemma is proved. Q.E.D.
Now, we turn to
ProOF OoF THEOREM C. (i) Choose a point x= M arbitrarily, and let ¥
be the antipodal point of x. Let z be the minimizing geodesic joining x with
Z. Then the Hessian H of the distance function Az at x is given by

HX, Y)=2(cot - I=Se.)X, Y>, X, YeT,M.

By the same argument as in the proof of Theorem B (i), we can conclude
that every eigenvalue of S., is greater than cot /.

(ii) Let 2 be a principal curvature of M at x in (i). We need only to
consider the case A=k, because the other case can be proved in parallel



Compact two-transnormal hypersurfaces in a space of constant curvature 633

with this one.
By together with the assumption, we have

sinl+2cos!
~Asinl—cos =k,

noticing the choice of unit normal vectors in (i). Suppose that (ii) is not
valid, i.e. > (14-cos!)/sinl. Then we get

1+cos !

and sin [+A cos ! 1-+cos!
sin [

> “Asinl—cos! sin [

However these inequalities contradict each other, because the last one reduces
to

A< (1+cos)/sin!.
(iii) We have only to see that the assumption consequently yields
A=(1+cosl)/sinl,

but it is straightforward. This equality completes the proof. Q.E.D.

As a corollary of Theorem C (i), we get

PROPOSITION 2. Let M be a 2-transnormal hypersurface of a FEuclidean
(n+1)-sphere S™* of radius 1. Suppose the diameter | of M as a subset of
S+l is less than 7/2P. Then

(i) M 1is a convex hypersurface of S™, and hence every sectional curva-
ture of M is greater than 1, and

(ii) M is diffeomorphic to a Euclidean n-sphere S™.

PrOOF. By Theorem 1.1 of [2], (i) implies (ii), whereas (i) is obtained
from Theorem C (i) because [<x/2.

§4. Compact 2-transnormal hypersurfaces in a hyperbolic space.

Finally we study a compact 2-transnormal hypersurface M of a hyper-
bolic (n+1)-space H"*! of constant curvature —1. But, as one may immediately
realize, the proof of Theorem D is quite similar to that of Theorem C as
well as [Theorem B. So, we describe here only the matters which are worth
mentioning.

Let peM be a fixed point and consider the distance function 4,(x)=
d(p, x)®> on M. The cut locus C(p) is empty due to the non-positiveness of
the sectional curvature of H"*'. At a critical point x, the Hessian H of 4,
is given by

H(X, Y)=2K(coth - I-S_. )X, Y)>, X YeT,M,

1) As to the case I>n/2, see §5, 2°.
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where 7 is the minimizing geodesic joining p with x, and / denotes the dia-
meter of M as a subset of H™'. This formula can be obtained from the
second variation formula (1.1) and the fact that, in H**' of constant curva-
ture —1, every Jacobi field Y(¢) along a geodesic z(f) parametrized by arc
length is written as

Y(t)= A(t) sinh t+ B(t) cosh ¢,

where A(t) and B(t) are parallel vector fields along z(%).

The role played by is replaced with the following

LEMMA 3. Let x&€M and % be the antipodal point of x. Let t be the
minimizing geodesic in H™*' joining x with ¥. Suppose that A is a principal
curvature of M at x with respect to 4(0). Then

A=(A cosh [—sinh [)/(4A sinh [—cosh {)

is a principal curvature of M at X with respect to —rz«(l), where [ is the dia-
meter of M as a subset of H™*,

We can prove this lemma by the same method as that of Lemma 2 with
a slight modification. In the light of the proof of Theorem D is
now straightforward, and so we omit it. The following proposition is ob-
tained as a corollary of Theorem D (i).

PROPOSITION 3. Let M be a compact 2-transmormal hypersurface of a
hyperbolic (n+1)-space H"*' of constant curvature —1.

(i) Then, M is a convex hypersurface of H™, and moreover has positive
sectional curvature everywhere, and

(ii) M is diffeomorphic to a Euclidean n-sphere S™.

Here we remark that (ii) is an implication of (i). See, for example, [2].

Q.E.D.

§5. Concluding remarks.

1°. As for the order of transnormality, we have proved in [5] the fol-
lowing theorem which states that 1- and 2-transnormal hypersurfaces cover
a rather wide class of transnormal hypersurfaces.

THEOREM E. Let M be an r(< +oo0)-transnormal hypersurface of W. Sup-
pose W is simply connected and has non-positive sectional curvature everywhere.
Then r is either 1 or 2.

2°. With regard to 2-transnormal hypersurfaces in a unit sphere S™*,
it can be observed without difficulty that there exists an example which is
not convex and has a diameter [> /2. But, for a diameter /<x/2, we have
Proposition 2| which assures the convexity of M.
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