Integral equation associated with some non-linear evolution equation

By Kenji MARUO

(Received March 23, 1973) (Revised July 26, 1973)

§ 1. Introduction and Theorem.

In [1] G. Webb established the existence and uniqueness of a global solution of the integral equation

$$U(t)x = T(t)x - \int_0^t T(t-s)Bu(s)x \, ds.$$

associated with the non-linear evolution equation

$$du/dt + Au(t) + Bu(t) = 0$$

in some Banach space X. Here A is a closed, densely defined, linear m-accretive operator from X to itself, T(t) is the semigroup generated by -A, and B is a continuous, everywhere defined, non-linear accretive operator from X to itself. This result was extended by K. Maruo and K. Yamada [2] to the case where A and B are both dependent on t. In the present paper it is shown that a similar result remains valid if B is a not necessarily everywhere defined operator depending on t provided that -A is the infinite-simal generator of an analytic semigroup.

Throughout this paper X will denote a Banach space with norm $\| \|$. We impose the following conditions on the operator A and B(t), $0 \le t \le T < +\infty$:

(I) A is a closed, densely defined, linear m-accretive operator from X to itself. T(t) which is the semigroup generated by -A is an analytic semigroup.

In what follows we assume that the origin belongs to the resolvent set of A without loss of generality.

- (II) For each $t \in [0, T]$ B(t) is an accretive, nonlinear operator from X to itself.
- (III) There exist numbers α , α' with $\alpha > 0$, $\alpha' \ge 0$, $\alpha + \alpha' < 1$ and a positive non-decreasing function l(x) defined on $[0, \infty)$ such that
 - (i) $D(A^{\alpha}) \subset D(B(t))$ for $0 \le t \le T$;
 - (ii) for any $\varepsilon > 0$ and $t \in [0, T]$ there exists a positive number δ depend-

434 K. Maruo

ing only on ε and t such that

$$||B(t)u - B(s)v|| \le \varepsilon l(||A^{\alpha}u|| + ||A^{\alpha}v||)$$

for any $u, v \in D(A^{\alpha})$, $||u-v|| < \delta$ and $|t-s| < \delta$;

(iii) there is a positive constant K_L depending on L>0 such that

$$||A^{-\alpha'}B(t)u|| \le K_L(1+||A^{\alpha}u||)$$

for any $u \in D(A^{\alpha})$ with $||u|| \leq L$.

REMARK 1. It follows from the well known inequality

$$||A^{\gamma}u|| \le C||A^{\alpha}u||^{\gamma/\alpha}||u||^{1-\gamma/\alpha}$$
 if $0 < \gamma < \alpha$

that when $||A^{\alpha}u||$ and $||A^{\alpha}v||$ are both bounded $||A^{\gamma}(u-v)||$ can be made arbitrarily small by letting ||u-v|| be sufficiently small. Thus the continuity assumption (ii) of (III) is weaker than the case $0 \le \alpha < \beta < 1$ of that of Theorem 8 of T. Kato [3].

REMARK 2. It follows from Heine-Borel's theorem that the constant δ in the assumption (ii) of (II) can be taken independently also of t.

We use the usual notations C([0, T]; X), $L^1([0, T], X)$ etc., to denote various spaces of functions with values in X. By $[D(A^{\alpha})]$ we denote the subspace $D(A^{\alpha})$ equipped with the graph norm of A^{α} .

THEOREM. Suppose that the assumptions stated above are satisfied. Then for any $x \in X$ there exists a function u(t, x) belonging to $C([0, T], X) \cap C((0, T]; [D(A^{\alpha})])$ satisfying

$$u(t, x) = T(t)x - \int_{0}^{t} T(t-s)B(s)u(s, x)ds, \quad 0 \le t \le T.$$
 (1.1)

Furthermore the solution of (1.1) having this property is unique.

The author wishes to thank the referee for helpful advices.

§ 2. Existence of the local solution.

LEMMA 2.1. For any $x \in D(A^{\alpha})$ there exists a positive number T_0 and a function $u \in C([0, T_0], [D(A^{\alpha})])$ which satisfies (1.1) in $[0, T_0]$.

PROOF. We follow the method of G. Webb [1]. Let

$$V = \{ y \in D(A^{\alpha}) / ||A^{\alpha}(x-y)|| < \delta_0 \}$$
.

If δ_0 and T_1 are sufficiently small positive numbers, then in view of the continuity of B(t) there exists a constant M such that $\sup_{y \in V} \sup_{0 \le t \le T_1} \|B(t)y\| \le M$. We put $v = T(t)x + \omega$. Then we can choose $T_2 > 0$ so small that v belongs to V for any $0 \le t \le T_2$ if $\omega \in D(A^{\alpha})$ and $\|A^{\alpha}\omega\| \le C_{\alpha}T_2^{1-\alpha}M(1-\alpha)^{-1}$, where C_{α} is a constant such that $\|A^{\alpha}T(t)\| \le C_{\alpha}t^{-\alpha}$. Set $T_0 = \min(T_2, T_1)$. Let n be a positive integer. Let $t_0^n = 0$ and $u_n(t_0^n) = x$. Inductively for each positive

integer i we shall define t_i^n . Assume that t_j^n have been defined for any $j=0,1,2,\cdots$, k-1. For $t_{k-1}^n \le t \le T_0$ we put

$$u_{n}(t) = T(t)x - \sum_{i=1}^{k-1} \int_{t_{i-1}^{n}}^{t_{i}^{n}} T(t-s)B(t_{i-1}^{n})u_{n}(t_{i-1}^{n})ds - \int_{t_{k-1}^{n}}^{t} T(t-s)B(t_{k-1}^{n})u_{n}(t_{k-1}^{n})ds.$$
(2.1)

Then it is easy to see that $u_n(t) \in V$. Now we take t_k^n such that

$$t_k^n = \min \left\{ \min \left(t : \|B(t)u_n(t) - B(t_{k-1}^n)u_n(t_{k-1}^n)\| \ge 1/n \right), T_0 \right\}.$$

Evidently $A^{\alpha}u_n(t)$ is continuous. Next we shall show that there exists some positive integer N such that $t_N^n=T_0$. Assume that $t_i^n< T_0$ for all i. Let $T_3=\lim_{t\to\infty}t_i^n$. Since we find $\|(T(t)-I)y\|\leq C_{\alpha}t^{1-\alpha}\|A^{\alpha}y\|$ for any $y\in D(A^{\alpha})$, $\|B(t_{i-1}^n)u_n(t_{i-1}^n)\|\leq M$ and (2.1) we see that $A^{\alpha}u_n(t)$ is Hoelder continuous of order h where $h=\max{(\alpha,1-\alpha)}$. Hence $\lim_{t\to T_3}u_n(t)=z_0$ and $\lim_{t\to T_3}A^{\alpha}u_n(t)=\mu$ exist and $A^{\alpha}z_0=\mu$ and $z_0\in V$. Then we take a integer k such that

$$||B(t_k^n)u_n(t_k^n)-B(T_3)z_0|| \le 1/2n$$
.

We find that this is a contradiction to the definition of t_{k+1}^n . Hence $t_N^n = T$ for some N.

Using the method of the proof of the proposition (3.1) of G. Webb [1], we can show that the sequence $\{u_n(t)\}$ is uniformly convergent. Next we will show that $\{A^{\alpha}u_n(t)\}$ is a Cauchy sequence in $C([0, T_0], X)$. We put $\{t_i^n\} \cup \{t_i^m\} = \{t_i^{n,m}\}$ and

$$u_{n}^{*}(t) = T(t)x - \sum_{j=1}^{k-1} \int_{t_{j-1}^{n,m}}^{t_{j}^{n,m}} T(t-s)B(t_{j-1}^{n,m})u_{n}(t_{j-1}^{n,m})ds$$

$$- \int_{t_{k-1}^{n,m}}^{t} T(t-s)B(t_{k-1}^{n,m})u_{n}(t_{k-1}^{n,m})ds \qquad (2.2)$$

for $t_{k-1}^{n,m} \le t < t_k^{n,m}$. If $t_{i-1}^n = t_{j-1}^{n,m} < t_j^{n,m} < \dots < t_{j+1}^{n,m} = t_i^n$ then for $0 \le p < l+1$

$$||B(t_{i-1}^n)u_n(t_{i-1}^n) - B(t_{i+p-1}^{n,m})u_n(t_{i+p-1}^{n,m})|| \le 1/n$$

from the definition of $u_n(t)$ and t_i^n . Hence, with the aid of the condition we get

$$\left\| \int_{t_{i-1}^n}^{t_i^n} A^{\alpha} T(t-s) B(t_{i-1}^n) u_n(t_{i-1}^n) ds - \sum_{p=0}^l \int_{t_{j+p-1}^n}^{t_{j+p}^n} A^{\alpha} T(t-s) B(t_{j+p-1}^{n,m}) u_n(t_{j+p-1}^{n,m}) ds \right\| \\
\leq 1/n \int_{t_{i-1}^n}^{t_i^n} C_{\alpha} (t-s)^{-\alpha} ds . \tag{2.3}$$

Similarly replacing u_n by u_m in (2.2) we define u_m^* . It follows from (2.3) that

$$||A^{\alpha}\{u_{n}^{*}(t)-u_{n}(t)\}|| \leq C_{\alpha}(1-\alpha)^{-1}T^{1-\alpha}/n$$
(2.4)

and analogously we get

436 K. Maruo

$$||A^{\alpha}\{u_{m}^{*}(t)-u_{m}(t)\}|| \leq C_{\alpha}(1-\alpha)^{-1}T^{1-\alpha}/m$$
. (2.5)

On the other hand we know the inequality

$$||A^{\alpha}\{u_{n}^{*}(t)-u_{m}^{*}(t)\}|| \leq \sum_{j=1}^{k-1} \int_{t_{j-1}^{n,m}}^{t_{j}^{n,m}} C_{\alpha}(t-s)^{-\alpha} ||B(t_{j-1}^{n,m})u_{n}(t_{j-1}^{n,m})-B(t_{j-1}^{n,m})u_{m}(t_{j-1}^{n,m})|| ds$$

$$+ \int_{t_{k-1}^{n,m}}^{t} C_{\alpha}(t-s)^{-\alpha} ||B(t_{k-1}^{n,m})u_{n}(t_{k-1}^{n,m})-B(t_{k-1}^{n,m})u_{m}(t_{k-1}^{n,m})|| ds$$
for $t_{k-1}^{n,m} \leq t \leq t_{k}^{n,m}$.

Since $\{u_n\}$ is a Cauchy sequence in $C([0, T_0]: X)$ and $\{A^{\alpha}u_n(t)\}$ is uniformly bounded it follows noting Remark 2 that

$$\lim_{n, m \to \infty} ||A^{\alpha} \{ u_n^*(t) - u_n^*(t) \}|| = 0$$
 (2.6)

uniformly in $0 \le t \le T_0$. In view of (2.4), (2.5) and (2.6) we get

$$\lim_{n, m \to \infty} \|A^{\alpha} \{u_n(t) - u_m(t)\}\| = 0$$

uniformly in $0 \le t \le T_0$. It follows from the manner of defining t_i^n , δ_i^n , $u_n(t_{i-1}^n)$ that

$$||B(t)u_n(t)-B(t_{i-1}^n)u_n(t_{i-1}^n)|| \le 1/n$$
 for $t_{i-1}^n \le t \le t_i^n$.

Hence if we note Remark 2 we can easily show that $u(t) = \lim_{n \to \infty} u_n(t)$ is the desired solution.

LEMMA 2.2. Let $x, y \in D(A^{\alpha})$. If u(t, x) and v(t, x) are solutions of (1.1) such that $A^{\alpha}u(t, x)$ and $A^{\alpha}v(t, y)$ are continuous on $[0, T_1]$ and $[0, T_2]$ respectively, then

$$||u(t, x) - v(t, y)|| \le ||x - y||$$

for $0 \le t \le T = \min(T_1, T_2)$. Consequently the solution (1.1) is unique and

$$u(t+t^1, x) = u(t, u(t^1, x))$$

for t > 0, $t^1 > 0$, $0 < t^1 + t \le T_1$.

PROOF. Let $\{t_i^n\}_{i=0}^n$ be a partition of [0, T] such that the mesh of $\{t_i^n\}$ goes to zero with n. We put, for $t_{k-1}^n < t < t_k^n$,

$$u_n(t, x) = T(t)x - \sum_{i=1}^{k-1} \int_{t_{i-1}^n}^{t_i^n} T(t-s)B(t_{i-1}^n)u(t_{i-1}^n, x)ds$$
$$-\int_{t_{k-1}^n}^t T(t-s)B(t_{k-1}^n)u_n(t_{k-1}^n)ds,$$

and

$$\begin{aligned} v_n(t, y) &= T(t) y - \sum_{i=1}^{k-1} \int_{t_{i-1}^n}^{t_i^n} T(t-s) B(t_{i-1}^n) v(t_{i-1}^n, y) ds \\ &- \int_{t_{k-1}^n}^{t} T(t-s) B(t_{k-1}^n) v(t_{k-1}^n, y) ds \,. \end{aligned}$$

Then $u_n(t, x)$ and $A^{\alpha}u_n(t, x)$ converge to u(t, x) and $A^{\alpha}u(t, x)$, respectively, as $n \to \infty$ and similarly for $v_n(t, y)$ and $A^{\alpha}v_n(t, y)$.

Using the method of the proof of Proposition (3.6) of G. Webb [1], we complete the proof of the lemma.

§ 3. Proof of the Theorem.

LEMMA 3.1. For any $x \in D(A^{\alpha})$ there exists a global solution of (1.1) such that $A^{\alpha}u(t, x)$ is continuous on [0, T].

PROOF. Let u(t, x) be a solution of (1.1) on $[0, T_0)$. Using the method of the proof of proposition (3) of K. Maruo and N. Yamada [2], we find

$$||u(t, x)|| \le ||x|| + \int_0^{T_0} ||B(s)0|| ds = M_1 < +\infty.$$

On the other hand from our assumption (iii) of (III) it follows that

$$||A^{\alpha}u(t, x)|| \leq ||A^{\alpha}x|| + \int_{0}^{t} ||A^{\alpha}T(t-s)A^{\alpha'}A^{-\alpha'}B(s)u(s, x)|| ds$$

$$\leq C \left\{ 1 + \int_{0}^{t} (t-s)^{-(\alpha+\alpha')} ||A^{\alpha}u(s, x)|| ds \right\}$$

where C is a constant depending only on M_1 , $||A^{\alpha}x||$ and T_0 . Hence for some constant M_2 we have

$$||A^{\alpha}u(t, x)|| < M_2 \tag{3.1}$$

for any $0 \le t < T_0$. Combining (3.1) and (iii) of (III) we get

$$\sup_{0 \le t < T_0} \|A^{-\alpha'}B(t)u(t, x)\| < +\infty.$$

Using the method of the proof of Proposition (3) of [2], we find that $\lim_{t\to T_0} A^{\alpha}u(t, x)$ and $\lim_{t\to T_0} u(t, x)$ exist. Thus the proof of Lemma 3.1 is complete.

We fix any point $x \in X$. We denote by $\{x_n\}_{n=0}^{\infty} \subset D(A^{\alpha})$ a sequence converging to x. Let $u_n(t, x_n)$, $0 \le t \le T$, be the solution of (1.1) with x replaced by x_n whose existence was established in Lemma 3.1.

In view of our assumption (iii) of (III) we find

$$t^{\alpha} \|A^{\alpha} u_n(t, x_n)\| \le K \left\{ 1 + \int_0^t t^{\alpha} (t-s)^{-(\alpha+\alpha')} s^{-\alpha} \cdot s^{\alpha} \|A^{\alpha} u_n(s, x_n)\| \, ds \right\}. \tag{3.2}$$

It follows from (3.2) that there is a constant K_T dependent only on $\|x\|$ and T such that

$$||A^{\alpha}u_n(t,x_n)|| \le K_T t^{-\alpha}. \tag{3.3}$$

On the other hand in view of Lemma 2

438 K. Maruo

$$||u_n(t, x_n) - u_m(t, x_m)|| \le ||x_n - x_m||.$$
 (3.4)

Combining (3.3), (3.4) and noting Remark 2 we get

$$\lim_{n,m\to\infty} \|B(t)u_n(t, x_n) - B(t)u_m(t, x_m)\| = 0$$

uniformly in the wider sence on $0 < t \le T$. Thus we find that $A^{\alpha}u_n(t, x_n)$ is uniformly convergent in any compact set of (0, T] as $n \to \infty$ to complete the proof of the Theorem.

§ 4. Application.

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary $\partial \Omega$. We put $X = L_2(\Omega)$. We consider the initial boundary value problem

$$\begin{cases} du/dt + (-\varDelta)^m u + a(x, t) |u|^{2l} u = 0 \\ u(0) = x \in L_2(\Omega) \\ u = (\partial/\partial \nu) u = \cdots = (\partial/\partial \nu)^{m-1} u = 0 & \text{on} \quad \partial \Omega \text{,} \end{cases}$$

where l is some positive integer, a(x, t) is a positive continuous function in $\Omega \times [0, T]$ and $\partial/\partial \nu$ denotes the outer normal derivative. We assume

$$nl/2m < 1. (4.1)$$

It is known that the operator A defined by

$$D(A) = H_{2m}(\Omega) \cap \mathring{H}_m(\Omega),$$

$$Au = (-\Delta)^m u \quad \text{for} \quad u \in D(A)$$

$$(4.2)$$

satisfies the assumption (I).

If we put

$$B(t)u = a(x, t)|u|^{2l}u$$
,
$$D(B(t)) = \{u \in L_2(\Omega)/B(t)u \in L_2(\Omega)\}.$$

We know that from (4.1), (4.2) and Sobolev Lemma, the operator B(t) satisfies the assumption (II) and (III) with $nl/2m < \alpha < 1$, $\alpha' = 0$ and l(x) = x+1.

Bibliography

- [1] G. Webb, Continuous non-linear perturbations of accretive operators in Banach spaces, J. Fun. Anal., 10 (1972), 191-203.
- [2] K. Maruo and N. Yamada, A Remark on integral equation in a Banach space,

Proc. Japan Acad., 49 (1973), 13-16.

[3] T. Kato, Nonlinear evolution equations in Banach spaces, Proc. Sym. Appl. Math., 17 (1965), 50-67.

Kenji MARUO
Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka
Japan