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§1. Introduction and Theorem.

In G. Webb established the existence and uniqueness of a global
solution of the integral equation

U(t)x = T(0x— | :T(t~s)Bu(s)de .

associated with the non-linear evolution equation
du/dt+Au(t)+ Bu(t) =0

in some Banach space X. Here A is a closed, densely defined, linear m-
accretive operator from X to itself, T(f) is the semigroup generated by —A,
and B is a continuous, everywhere defined, non-linear accretive operator
from X to itself. This result was extended by K. Maruo and N. Yamada [2]
to the case where A and B are both dependent on {. In the present paper
it is shown that a similar result remains valid if B is a not necessarily
everywhere defined operator depending on ¢ provided that —A is the infinite-
simal generator of an analytic semigroup.

Throughout this paper X will denote a Banach space with norm || |. We
impose the following conditions on the operator A and B(#), 01T < +co:

(I) A is a closed, densely defined, linear m-accretive operator from X to
itself. 7(t) which is the semigroup generated by —A is an analytic semi-
group.

In what follows we assume that the origin belongs to the resolvent set
of A without loss of generality.

(I) For each t<[0, T] B(t) is an accretive, nonlinear operator from X
to itself.

(Ill) There exist numbers @, @’ with a>0, a’=0, a+a’<1 and a positive
non-decreasing function [(x) defined on [0, o0) such that

(i) DAY D(B®)) for 05t T;

(ii)) for any €>0 and ¢t [0, T] there exists a positive number ¢ depend-
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ing only on ¢ and ¢ such that
[ B({tyu—B(s)v| < el (|| A"ull+]|A%v[)

for any u, ve D(A%), |lu—v|| <0 and |[t—s|<d;
(iii) there is a positive constant K; depending on L >0 such that

[A=* B(tyul < Kp(1+ [ Au])

for any u € D(A*) with |u| < L.
REMARK 1. It follows from the well known inequality

IATu]| < ClA®u|[luf*- if 0<y<a

that when |A%| and |A“v| are both bounded ||A7(u—v)|| can be made arbi-
trarily small by letting |u—v| be sufficiently small. Thus the continuity
assumption (ii) of (III) is weaker than the case 0=a <fB<1 of that of
Theorem 8 of T. Kato [3].

REMARK 2. It follows from Heine-Borel’s theorem that the constant ¢ in
the assumption (ii) of (II) can be taken independently also of f.

We use the usual notations C([0, T1; X), LY [0, TJ, X) etc., to denote
various spaces of functions with values in X. By [D(A%)] we denote the
subspace D(A®) equipped with the graph norm of A“.

THEOREM. Suppose that the assumptions stated above are satisfied. Then
for any xe X there exists a function u(t,x) belonging to C(0,T1]1, X)n
C((0, T1; LD(A")]) satisfying

u(t, )= T(t)x— :T(t—s)B(s)u(s, Xds, 0<t=T. 1)

Furthermore the solution of (1.1) having this property is unique.
The author wishes to thank the referee for helpful advices.

§2. Existence of the local solution.

LEMMA 2.1. For any x € D(A®) there exists a positive number T, and a
Sunction u < C([0, Tol, [D(A%)]) which satisfies (1.1) in [0, T,].
PROOF. We follow the method of G. Webb [1]. Let

V={ye DA")/IIA*(x=y)| < i} .

If 6, and T, are sufficiently small positive numbers, then in view of the
continuity of B(#) there exists a constant M such that sup s;upTHB(t)yll =M.
YSV 0SSt 1

We put v=T()x+w. Then we can choose 7, >0 so small that v belongs to
V for any 0=(=T; if we D(A*) and |[A%| =C,T5*M(1—a)™*, where C, is
a constant such that [A*T()| =Cut™®. Set To=min(T,, T,). Let n be a
positive integer. Let (=0 and u,({)=x. Inductively for each positive
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integer ¢ we shall define #?. Assume that ¢? have been defined for any
7=0,1,2,---,k—1. For 3., <t<T, we put

un(t)= T3~ 2 [ F Tt—9)Bltt-Du(ti-)ds

— [ TU=9) Bt Juati)ds. (21)

Then it is easy to see that u,({)eV. Now we take #? such that
%z =min {min (¢: | B()u,(t)—B{{_Du,(ti-)| =1/n), T} .

Evidently A*u,(f) is continuous. Next we shall show that there exists some
positive integer N such that % =T, Assume that 2<T, for all i. Let
T3=ilim 2. Since we find |(T(H)—Dy| ZCt %A%y for any ye D(A%),

| B{t2 Du,(t2 ) < M and we see that A%u,(f) is Hoelder continuous of
order & where A=max (a,1—a). Hence lini} u()=2, and lin; A%u,(H)=p
1—Ty t—T,

exist and A%z,=pg¢ and z,€V. Then we take a integer % such that
| B(tg Yun(t2)—B(Ts)z || = 1/2n..

We find that this is a contradiction to the definition of #?,,. Hence % =T for
some N,

Using the method of the proof of the proposition [3.1) of G. Webb [1],
we can show that the sequence {u,(f)} is uniformly convergent. Next we
will show that {A%u,(t)} is a Cauchy sequence in C([0, T,], X). We put
{try I A{tp} = {7} and

wr(O)=TWx—3 [ T(t—s)Bltymyun(tym)ds
j=1 Jj—1

t
[ o TU=9) BURmua(13:3)ds (2:2)

for tppst<tpm™ If (o, =1tpT<iPpm o <P =17 then for 0=p <41
| Bt un(tiy) — Bt - Dun((35-Dl = 1/n

from the definition of u,(¢) and #. Hence, with the aid of the condition we
get

3 [} n,m
fo A= Bt Juntidds— 3 [ 158 ATT(=9) BUty-dun(t35-n)ds “

J+p-1

<1/n| t‘" Calt—=s)ds. (2.3)

Similarly replacing u#, by %, in we define uX. It follows from [(2.3) that
A" {uf () —u(O} = Cal—a) ' T*"%/n (2.4)

and analogously we get
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A {uh () —un(} | = Ca(l—a) T /m . (2.5)

On the other hand we know the inequality

A" (= DN S 35 [ 2 Cultms) | B un523)— B3R un(13:5) s

o+ f Gt )| BURT (1) — B () s

for ppispm.

Since {u,} is a Cauchy sequence in C([0, T,1: X) and {A%u,(f)} is uniformly
bounded it follows noting Remark 2 that

lim A" {wf ()—un(D}H =0 (2.6)

n, M—00

uniformly in 0=<t<7T, In view of [2.4), and we get
lim [|A*{u,(t)—un(O} | =0

n, M—o0

uniformly in 0=<¢<T,. It follows from the manner of defining ?7, 67, u,(t%;)

that
| B(Huy(t)— B Dun(tt-))| =1/n for ., =t=1.

Hence if we note Remark 2 we can easily show that w(#)=1lim u,(f) is the

desired solution. -

LEMMA 2.2. Let x,y< D(A%). If u(t, x) and v(t, x) are solutions of (1.1)
such that A%u(t, x) and A*v(t, y) are continuous on [0, T,] and [0, T,] respec-
tively, then

| u(t, x)—v(t, I = |x—y|
for 0<t<T=min (T, T,). Consequently the solution (1.1) is unique and
u(t+t', x)=u(t, u(t', x))
Jor t>0, >0, 0< '+t T,

PROOF. Let {{7}%, be a partition of [0, T] such that the mesh of {#?}

goes to zero with n. We put, for 2, <t <%,

Uty 1) = T()x—3 [ & Tt—3) Bl utiy, )ds
=1 i—1

[y TU=9) Bl un(tg-ds,

and
k

-1 7'1
0alt, )= TWy=3 § i TA=5)BU )t y)ds

)

~f T8 Bt-)u(tis, 3)ds
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Then u,(Z, x) and A%u,(t, x) converge to u(t, x) and A%u(t, x), respectively, as
n—oo and similarly for v,(t, ¥) and A%, (¢, ¥).

Using the method of the proof of Proposition (3.6) of G. Webb [1], we
complete the proof of the lemma.

§3. Proof of the Theorem.

LEMMA 3.1. For any x € D(A%) there exists a global solution of (1.1) such
that A%u(t, x) is continuous on [0, T.

PROOF. Let u(t, x) be a solution of on [0, Ty). Using the method of
the proof of proposition (3) of K. Maruo and N. Yamada [2], we find

T
lutt, 1 < Ixl+ " IB$)0)ds = M; < +oo.
On the other hand from our assumption (iii) of (III) it follows that

Ja%u(t, D]l  [Ax)+ | A T(E=9) A% A~ Bs)uts, D)lds

= C{1+f (k=9 amuts, 0)lds}

where C is a constant depending only on M,, |A%x| and T,. Hence for some
constant M, we have

[ A%u(t, )| < M, (3.1)
for any 0<t<T,. Combining and (iii) of (III) we get
sup [|A™* B(u(t, )| < +oo.
0=t<Ty

Using the method of the proof of Proposition (3) of [2], we find that
lim A%u(t, x) and lim u(¢, x) exist. Thus the proof of is complete.

tHTO t-—'TO
We fix any point x € X. We denote by {x,};-eC D(A%) a sequence con-

verging to x. Let u,(¢, x,), 0=<¢t<T, be the solution of with x replaced
by x, whose existence was established in Lemma 3.
In view of our assumption (iii) of (III) we find

A% (8, 2] = K{1 1t )5 57 Ay (5, 2, ds} (32)

It follows from that there is a constant K; dependent only on x| and

T such that
HAaun(ty xn)” é KTt-a . (3.3)

On the other hand in view of Lemma 2
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un(t, xn)—un(t, xp)|| < 2= x5 . (34)
Combining [(3.3), and noting Remark 2 we get
lim || B(Hu,(t, x5)—B(Dun(t, xx)Il =0

n, M—00

uniformly in the wider sence on 0<¢<7. Thus we find that A%u,(t, x,) is

uniformly convergent in any compact set of (0, 7] as n—co to complete the
proof of the [Theoreml

§4. Application.

Let £ be a bounded domain in R™ with smooth boundary 6£2. We put
X=L,£2). We consider the initial boundary value problem

du/dt+(—d)™u+a(x, )| u|*u=0
u(0)=xec L,(2)
u=(0/0v)u= ++ =(0/0v)"'u=0 on 0982,
where [ is some positive integer, a(x, t) is a positive continuous function in
£2x[0, T] and d/dv denotes the outer normal derivative. We assume
nl/2m<1. 4.1)
It is known that the operator A defined by

D(A) = Hyu( D N H(2),

(4.2)
Au=(—4)™u for ue D(A)

satisfies the assumption (I).
If we put

B)u=a(x, t)|u|%u,
D(B(t))={ue L,(2)/B(thu e L(2)}.

We know that from [(4.1), (4.2) and Sobolev Lemma, the operator B(f)
satisfies the assumption (II) and (III) with nl/2m < a <1, @’ =0 and [(x) =x+1.
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