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In the present paper we study certain properties of the complex cohomo-
logy and homology K-theories $K^{*}$ and $K_{*}$ defined on the category of based
CW-complexes (or of the same homotopy type).

There exists a universal coefficient sequence
$0\rightarrow Ext(\tilde{K}_{n}(X), Z)\rightarrow\tilde{K}^{n+1}(X)\rightarrow Hom(\tilde{K}_{n+1}(X), Z)\rightarrow 0$

between $\tilde{K}^{*}$ and $\tilde{K}_{*}$ [9]. So we can define a duality homomorphism
$D:\chi(\tilde{K}_{n}(X))\rightarrow\tilde{K}^{n+1}(X)$ by the composition

$\chi(\tilde{K}_{n}(X))\rightarrow Ext(\tilde{K}_{n}(X), Z)\rightarrow\tilde{K}^{n+1}(X)$

where $\chi(\tilde{K}_{n}(X))$ is the character group of the discrete abelian group $\tilde{K}_{n}(X)$ .
We give .a necessary and sufficient condition that the duality homomorphism
$D$ is an isomorphism (Theorem 1). This theorem contains Vick’s result [7]

as a corollary.
Anderson-Hodgkin [1] computed the $K^{*}$-groups of the Eilenberg-MacLane

spaces $K(\pi, n)$ for certain countable abelian groups $\pi$ . The purpose of the
present paper is to remove the countability restriction. First we dualize
Anderson-Hodgkin’s Theorem for a countable abelian group using the above
universal coefficient sequence, and extend the dualized result to an arbitrary
abelian group (Theorem 2). Then, dualizing it again we show the result of
Anderson-Hodgkin without the assumption on the cardinality of an abelian
group (Theorem 3).

The author is much indebted to the referee for several useful suggestions.

\S 1. A duality homomorphism.

1.1. Let $\tilde{K}^{*}$ and $\tilde{K}_{*}$ be the $Z_{2}$ -graded reduced complex cohomology and
homology K-theories represented by the unitary spectrum, which are defined
on the category of based CW-complexes (or of the same homotopy type).
We notice that $\tilde{K}^{*}$ and $\tilde{K}_{*}$ are additive and of finite type. $\tilde{K}^{*}$ and $\tilde{K}_{*}$ are
related by the following universal coefficient sequence [9]: There exists a
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natural exact sequence

(1.1) $0\rightarrow Ext(K_{n- 1}(X), Z)\rightarrow\tilde{K}^{n}(X)\rightarrow Hom(\tilde{K}_{n}(X), Z)\rightarrow 0$

for any based $CW$-complex $X$ where $n$ is regarded as an element of $Z_{2}$ .
Let $M_{q}$ , $\check{M}$ and $S_{l}$ be the co-Moore spaces of type $(Z_{q}, 2)$ , $(\hat{Z}, 2)$ and $(\hat{Z}/Z, 2)$

respectively given in [8]. We note that $M_{q},\check{M}$ and $S_{l}$ are Moore spaces of
type $(Z_{q}, 1),$ $(Q/Z, 1)$ and $(Q, 1)$ respectively. We use these based CW-complexes
to define complex cohomology K-theories with coefficients $Z_{q},\hat{Z}$ and $\hat{Z}/Z$ and
complex homology K-theories with coefficients $Z_{q},$ $Q/Z$ and $Q$ as follows:

$\tilde{K}^{n}($ ; $Z_{q})=\tilde{K}^{n+2}( \wedge M_{q})$ , $\tilde{K}_{n}($ ; $Z_{q})=\tilde{K}_{n+1}( \wedge M_{q})$ ,

(1.2) $\tilde{K}^{n}($ ; $\hat{Z})=\tilde{K}^{n+2}( \wedge\check{M})$ , $\tilde{K}_{n}( ; Q/Z)=\tilde{K}_{n+1}( \wedge\check{M})$ ,

$\tilde{K}^{n}( ; \hat{Z}/Z)=\tilde{K}^{n+2}( \wedge S_{l})$ and $\tilde{K}_{n}($ ; $Q)=\tilde{K}_{n+1}$ ( A $S_{l}$)

for each degree $n\in Z_{2}$ .
New cohomology and homology theories are additive, too. By [8, Pro-

position 81 and [2, Theorem 3] we have natural isomorphisms

$\tilde{K}^{n}(X;\hat{Z})\cong\lim_{q}\tilde{K}^{n}(X;Z_{q})\leftarrow$ ’ $\tilde{K}_{n}(X;Q/Z)\cong\rightarrow\lim_{q}\tilde{K}_{n}(X;Z_{q})$

(1.3)
and $\tilde{K}_{n}(X Q)\cong\tilde{K}_{n}(X)\otimes Q$

for a based CW-complex $X$. The coPbration sequence $S^{1}\rightarrow S_{l}\rightarrow\check{M}\rightarrow S^{2}([8$ ,
Lemma 1]) induces the following exact sequences

$\rightarrow\tilde{K}^{n}(X)\rightarrow^{\iota}\tilde{K}^{n}(X;\hat{Z})\rightarrow^{\kappa}\tilde{K}^{n}(X;\hat{Z}/Z)\rightarrow\tilde{K}^{n+1}(X)\rightarrow$

$\delta$

(1.4) and
$\rightarrow\tilde{K}_{n}(X)\rightarrow^{i}\tilde{K}_{n}(X;Q)\rightarrow^{k}\tilde{K}_{n}(X;Q/Z)\rightarrow^{\partial}\tilde{K}_{n-1}(X)\rightarrow$

corresponding to the coefficient sequences

$0\rightarrow Z\rightarrow\hat{Z}\rightarrow\hat{Z}/Z\rightarrow 0$ and $0\rightarrow Z\rightarrow Q\rightarrow Q/Z\rightarrow 0$ .
From (1.1) and the definition (1.2) we obtain
LEMMA 1. There are natural isomorphisms

$\tilde{K}^{*}(X;Z_{q})\cong Ext(\tilde{K}_{*}(X;Z_{q}), Z)$ , $\tilde{K}^{*}(X;\hat{Z})\cong Ext(\tilde{K}_{*}(X;Q/Z), Z)$

and
$\tilde{K}^{*}(X;\hat{Z}/Z)\cong Ext(\tilde{K}_{*}(X;Q), Z)$

for any based $CW$-complex $X$ and $q>1$ .
Since $\tilde{K}_{*}(X;Z_{q})$ is a torsion abelian group, we can show by a parallel

discussion to [8, (5.4)] that

(1.5) $\tilde{K}_{*}(X;Z_{q})=0$ if and only if Ext $(\tilde{K}_{*}(X;Z_{q}), Z)=0$ .



Note on comPlex K-theory of infinite $CW\cdot comPlexes$ 291

By use of Lemma 1 and (1.5), we get
LEMMA 2. Let $X$ be a based $CW$-comPlex and $q>1$ . $\tilde{K}_{*}(X;Z_{q})=0$ if and

only if $\tilde{K}^{*}(X;Z_{q})=0$ .
1.2. Let $R$ be the field of real numbers. The injective resolution of $Z$

given by $0\rightarrow Z\rightarrow R\rightarrow R/Z\rightarrow 0$ induces an exact sequence

$0\rightarrow Hcm(\tilde{K}_{n}(X), Z)\rightarrow Hom(\tilde{K}_{n}(X), R-)$

$\rightarrow Hom(\tilde{K}_{n}(X), R/Z)\rightarrow Ext(\tilde{K}_{n}(X), Z)\rightarrow 0$

for any based CW-complex $X$. We recall that Hom $(\tilde{K}_{n}(X), R/Z)$ is the
character group of the discrete abelian group $\tilde{K}_{n}(X)$ . So Hom $(\tilde{K}_{n}(X), R/Z)$

is denoted by $\chi(\tilde{K}_{n}(X))$ .
On the other hand, by (1.1) there exists a natural exact sequence

$0\rightarrow Ext(\tilde{K}_{n-1}(X), Z)\rightarrow\tilde{K}^{n}(X)\rightarrow Hom(\tilde{K}_{n}(X), Z)\rightarrow 0$ .
Hence we define a duality homomorphism $D$ between $\chi(\tilde{K}_{n}(X))$ and. $\tilde{K}^{n+1}(X)$

to be the composition

(1.6) $D:x(\tilde{K}_{n}(X))\rightarrow Ext(\tilde{K}_{n}(X), Z)\rightarrow\tilde{K}^{n+1}(X)$ .
The duality $D$ is natural. Splicing the above two exact sequences together
we obtain a long exact sequence

$D$

(1.7) $\rightarrow\tilde{K}^{n}(X)\rightarrow Hom(\tilde{K}_{n}(X), R)\rightarrow\chi(\tilde{K}_{n}(X))\rightarrow\tilde{K}^{n+1}(X)\rightarrow$

involving the duality $D$ .
Let $X$ be a based CW-complex. A parallel discussion to [8, (5.4)] shows

that
Hom $(\tilde{K}_{n}(X), R)=0$ if and only if $\tilde{K}_{n}(X)\otimes Q=0$ .

$\tilde{K}_{*}($ ; $Q)$ becomes an additive $(Q)$ -homology theory by (1.3). So we apply
Dold’s theorem [3] (see also [8]) to get a natural isomorphism

(1.8) $\tilde{K}_{*}(X;Q)\cong\tilde{H}_{**}(X;Q)$

where $H_{**}=H_{ev}\oplus H_{od}$ and $H_{ev}$ (or $H_{od}$) denotes the direct sum of the even
(or odd) dimensional ordinary homology groups. Hence we see

(1.9) Hom $(K_{*}(X), R)=0$ if and only if $H_{*}(X)\otimes Q=0$ .
The following theorem follows immediately from (1.7) and (1.9).
THEOREM 1. Let $X$ be a based CW-comPlex. The duality homomorPhism

$D:x(K_{*}(X))\rightarrow K*+1(X)$ is an isomorphism if and only if $H_{*}(x)\otimes Q=0$ .
For any group $G$ we denote by $BG$ a classifying space for $G$ , taken as

a based CW-complex. As is well known, $\tilde{H}_{*}(BG)\otimes Q=0$ for any finite group
$G$ . We obtain Vick’s result [7] as a corollary of the above theorem.
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COROLLARY 3 (Vick). Let $G$ be a finite. group. $K^{n}(BG)$ is isomorphic to
the character group of the discrete abelian group $K_{n-1}(BG)$ for each degree
$n\in Z_{2}$ .

\S 2. Eilenberg-MacLane spaces $K(\pi, n)$ .
2.1. Let $\pi$ be an abelian group and $n$ a positive integer. First we recall

the Eilenberg-MacLane complex $JC(\pi, n)$ [4]. $JC(\pi, n)$ is a semi-simplicial
complex equipped with the following structure: q-cells are n-cocycle $\nu\in$

$Z^{n}(\Delta_{q} ; \pi)$ defined on the standard q-simplexes $\Delta_{q}$ and with coefficients in the
abelian group $\pi$ ; i-th face and degeneracy operators

$F_{i}$ : $Z^{n}(\Delta_{q} ; \pi)\rightarrow Z^{n}(\Delta_{q-1} ; \pi)$

and
$D_{i}$ : $Z^{n}(\Delta_{q} ; \pi)\rightarrow Z^{n}(\Delta_{q+1} ; \pi)$

are induced by the standard monotonic maps $\epsilon^{i}$ : $\Delta_{q-1}\rightarrow\Delta_{q}$ and $\eta^{i}$ : $\Delta_{q+1}\rightarrow\Delta_{q}$ .
A homomorphism $\phi:\pi\rightarrow\pi^{\prime}$ of abelian groups induces a semi-simplicial

map
$JC(\phi, n);JC(\pi, n)\rightarrow JC(\pi^{\prime}, n)$ .

In particular, $X(\pi, n)$ is a semi-simplicial subcomplex of $JC(\pi^{\prime}, n)$ if $\pi$ is a
subgroup of $\pi^{\prime}$ . Clearly $J(id, n)$ is the identity map and the composite of
$JC(\phi^{\prime}, n)$ and $cx(\phi, n)$ coincides with $J(\phi^{\prime}\cdot\phi, n)$ , where id: $\pi\rightarrow\pi$ is the identity
and $\phi:\pi\rightarrow\pi^{\prime}$ and $\phi^{\prime}$ : $\pi^{\prime}\rightarrow\pi^{\prime\prime}$ are homomorphisms of abelian groups.

Let .Jkr be a semi-simplicial complex. We denote by $|JC|$ the geometric
realization of .-IC. $|JC|$ has the following properties [6].

(2.1) i) $|JC|$ is a CW-complex having one q-cell corresp0nding to each non
degenerate q-simplex of $JC$ .

ii) A semi-simplicial map $\mu:cf\zeta\rightarrow JC^{\prime}$ induces a cellular map $|\mu|$ : $|JC|\rightarrow$

$|_{c}x^{\prime}|$ .
ii’) If $cX$ is a semi-simplicial subcomplex of $J^{\prime}$ , then $|_{c}x|$ is a subcomplex

of $|JC^{\prime}|$ .
iii) $|id|=id$ and $|\mu^{\prime}\cdot\mu|=|\mu^{\prime}$ $|\mu|$ where id: $JC\rightarrow JC$ is the identity map

and $\mu$ : $c\chi\rightarrow J^{\prime}$ and $\mu^{\prime}$ : $JC^{\prime}\rightarrow JC$ “ are semi-simplicial maps.
We shall write $K(\pi, n)$ for the geometric realization $|JC(\pi, n)|$ of the

Eilenberg-MacLane complex $JC(\pi, n)$ and $K(\phi, n)$ for $|JC(\phi, n)|$ .
Let $\pi$ and $\pi^{\prime}$ be abelian groups and $\phi$ : $\pi\rightarrow\pi^{\prime}$ a homomorphism. Take

connected based CW-complexes $X$ and $Y$ with homotopy groups $\pi_{n}(X)\cong\pi$ ,
$\pi_{n}(Y)\cong\pi^{\prime}$ and $\pi_{i}(X)=\pi_{i}(Y)=0$ for $i\neq n,$ $i$ . $e.$ , Eilenberg-MacLane spaces of
type $(\pi, n)$ and $(\pi^{\prime}, n)$ respectively. Then there exists a continuous map
$f:X\rightarrow Y$ such that
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(2.2) $f_{*}=\phi;\pi_{n}(X)\rightarrow\pi_{n}(Y)$ .
The map $f$ is uniquely determined up to homotopy.

By the aid of the above results we have
PROPOSITION 4. i) Let $\pi$ be an abelian group

$\cdot$ The geometric realization
$K(\pi, n)$ of the Eilenberg-MacLane complex $JC(\pi, n)$ is an Eilenberg-MacLane

sPace of $tyPe(\pi, n)$ , taken as a based $CW$-complex.
ii) A homomorphism $\phi:\pi\rightarrow\pi^{\prime}$ of abelian groups induces a cellular map

$K(\phi, n):K(\pi, n)\rightarrow K(\pi^{\prime}, n)$ such that $K(\phi, n)_{*}=\phi;\pi_{n}(K(\pi, n))\rightarrow\pi_{n}(K(\pi^{\prime}, n))$ .
ii’) If $\pi$ is a subgroup of $\pi^{\prime}$ , then $K(\pi, n)$ is a subcomplex of $K(\pi^{\prime}, n)$

with $\pi_{n}(K(\pi, n))\subset\pi_{n}(K(\pi^{\prime}, n))$ .
iii) $K(id, n)=id$ and $K(\phi^{\prime}, n)\cdot K(\phi, n)=K(\phi^{\prime}\cdot\phi, n)$ where id: $\pi\rightarrow\pi$ is the

identity homomorphism and $\phi:\pi\rightarrow\pi^{\prime}$ and $\phi^{\prime}$ : $\pi^{\prime}\rightarrow\pi^{\prime}$ are $homomo\gamma phisms$ of
abelian grouPs.

2.2. Let $\pi$ be an abelian group and $\mathfrak{U}_{\pi}=\{\pi^{\lambda}\}$ be the set of all finitely
generated subgroups of $\pi$ ordered by inclusions. Obviously $\mathfrak{U}_{\pi}$ is a directed
set and $\pi\cong\bigcup_{\lambda}\pi^{\lambda}$ . Proposition 4 implies that $C(\pi, n)=\{K(\pi^{\lambda}, n)\}$ forms a direct

system of based subcomplexes of $K(\pi, n)$ . The definition of $K(\pi, n)$ and Pro-
position 4 show that V $K(\pi^{\lambda}, n)$ becomes an Eilenberg-MacLane space of type
$(\pi, n)$ . Therefore,

(2.3) $\bigcup_{\lambda}K(\pi^{\lambda}, n)$ is homoiopy equivalent to $K(\pi, n)$ .

APplying [2, Theorem 3] to the direct system $C(\pi, n)$ we obtain
PROPOSITION 5. Let $h_{*}$ be an additive (reduced) homology theory defined

on the category of based $CW$-complexes and $\pi$ be an abelian grouP. For each
$n\geqq 1$ there is an isomorphism

$h_{*}(K(\pi, n))\cong\rightarrow\lim_{\lambda}h_{*}(K(\pi^{\lambda}, n))$

where $\pi^{\lambda}$ runs over all finitely generated subgrouPs of $\pi$ .
REMARK. Let $h^{*}$ be an additive (reduced) cohomology theory. As a dual

of the above proposition we have a spectral sequence $\{E_{r}\}$ associated with
$h^{*}(K(\pi, n))$ such that

$E_{2}^{p.qp}=h^{q}(K(\pi^{\lambda}, n))\frac{\lim}{\lambda}$

for each $n\geqq 1$ , by means of [2, Theorem 2].

2.3. Anderson-Hodgkin [1] computed the $K^{*}$-groups of certain Eilenberg-
MacLane spaces.

THEOREM (Anderson-Hodgkin). Let $\pi^{\prime}$ be a countable abelian group and
$q>1$ . Then

$\tilde{K}^{*}(K(\pi^{\prime}, n);Z_{q})=0$
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and the natural homomorPhism $\phi;\pi^{\prime}\rightarrow\pi^{\prime}\otimes Q$ induces the isomorphism

$K(\phi, n)^{*}:$ $\tilde{K}^{*}(K(\pi^{\prime}\otimes Q, n))\cong\tilde{K}^{*}(K(\pi^{\prime}, n))$

for $n\geqq 3$ , and also for $n=2$ in case $\pi^{\prime}$ being a torsion abelian group.
PROOF. The second result was obtained in [1]. Therefore it is sufficient

to show that
$\tilde{K}^{*}(K(\pi^{\prime}\otimes Q, n);Z_{q})=0$

for $n\geqq 1$ and $q>1$ , in order to get the first one. $\tilde{H}^{*}(K(\pi^{\prime}\otimes Q, n))$ is a Q-
module, $i$ . $e.,\tilde{H}^{*}(K(\pi^{\prime}\otimes Q, n);Z_{q})=0$ . In this case the Atiyah-Hirzebruch
spectral sequence of $\tilde{K}^{*}(K(\pi^{\prime}\otimes Q, n);Z_{q})$ collapses, and hence it is strongly
convergent by [2, Proposition 9]. So we get the required equalities immedi-
ately.

Let $\pi$ be an arbitrary abelian group and a positive integer $n$ fix. We
assume that $n\geqq 2$ if $\pi$ is a torsion abelian group, and that $n\geqq 3$ if not so.
The above theorem combined with Lemma 2 asserts that

$\tilde{K}_{*}(K(\pi^{\lambda}, n);Z_{q})=0$

where $\pi^{\lambda}$ is a finitely generated subgroup of $\pi$ . Applying Proposition 5 we
see
(2.4)

$\tilde{K}_{*}(K(\pi, n);Z_{q})\cong\rightarrow\lim_{\lambda}\tilde{K}_{*}(K(\pi^{\lambda}, n);Z_{q})=0$

and by (1.3)
$\tilde{K}_{*}(K(\pi, n)$ ; $Q/Z$ )

$\cong\rightarrow\lim_{q}\tilde{K}_{*}(K(\pi, n)$
; $Z_{q}$) $=0$ .

Using the long exact sequence (1.4) we have an isomorphism

$i$ : $\tilde{K}_{*}(K(\pi, n))\rightarrow\tilde{K}_{*}(K(\pi, n)$ ; $Q$).

Since $\tilde{K}_{*}(K(\pi, n);Q)\cong\tilde{H}_{**}(K(\pi, n);Q)$ by (1.8) there exists an isomorphism

(2.5) $\tilde{K}_{*}(K(\pi, n))\cong\tilde{H}_{**}(K(\pi, n))\otimes Q$ .
As a result we have
THEOREM 2. Let $\pi$ be an arbitrary abelian group and $q>1$ . Then

$\tilde{K}_{*}(K(\pi, n);Z_{q})=0$ and $\tilde{K}_{*}(K(\pi, n))\cong\tilde{H}_{**}(K(\pi, n))\otimes Q$

for $n\geqq 3$ , and also for $n=2$ in case $\pi$ being a torsion abelian group.
Finally we dualize results of Theorem 2 using the universal coefficient

sequence (1.1).

THEOREM 3. Let $\pi$ be an arbitrary abelian group and $q>1$ . Then

$K*(K(\pi, n);Z_{q})=0$ and $K*+1(K(\pi, n))\cong Ext(\tilde{H}_{**}(K(\pi, n))\otimes Q,$ $Z$ )

for $n\geqq 3$ , and also for $n=2$ in case $\pi$ being a torsion abelian group.
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