Quasi-permutation modules over finite groups

By Shizuo ENDO and Takehiko MIYATA

(Received March 27, 1972)

Let Π be a finite group. A finitely generated Z-free Π -module is briefly called a Π -module. A Π -module is called a permutation Π -module if it is expressible as a direct sum of some $\{Z\Pi/\Pi_i\}$ where each Π_i is a subgroup of Π . Further a Π -module M is called a quasi-permutation Π -module if there exists an exact sequence: $0 \to M \to S \to S' \to 0$ where S and S' are permutation Π -modules.

In [2] we have studied the properties of quasi-permutation modules in relation with a problem in invariant theory. In this paper we will give some basic results on quasi-permutation modules as a continuation to [2].

First we will consider projective quasi-permutation Π -modules.

Let R be a Dedekind domain and K be the quotient field of R. Let Σ be a separable K-algebra and Λ be an R-order in Σ . Denote by $P(\Lambda)$ the set of all isomorphism types of finitely generated projective (left) Λ -modules and put $P_0(\Lambda) = \{ [P] \in P(\Lambda) | P \text{ is locally free} \}$. Let $P_0(\Lambda)$ be the Grothendieck group of $P_0(\Lambda)$. We define an epimorphism $\mu_{\Lambda} \colon P_0(\Lambda) \to Z$ by $\mu_{\Lambda}([P_1] - [P_2]) = \operatorname{rank}_{\Sigma}^{\kappa} K P_1 - \operatorname{rank}_{\Sigma} K P_2$. Now we put $C(\Lambda) = \operatorname{Ker} \mu_{\Lambda}$ and call this the (reduced) projective class group of Λ (cf. [5], [11]). Especially, if Λ is commutative, then $C(\Lambda)$ is isomorphic to the Picard group of Λ . Further let Ω be a maximal R-order in Σ which contains Λ . We define a homomorphism: $\nu_{\Omega/\Lambda} \colon C(\Lambda) \to C(\Omega)$ by $\nu_{\Omega/\Lambda}([P_1] - [P_2]) = [\Omega \bigotimes_{\Lambda} P_1] - [\Omega \bigotimes_{\Lambda} P_2]$. Then it is known that $\nu_{\Omega/\Lambda}$ is an epimorphism but not always a monomorphism. Hence putting $\widetilde{C}(\Lambda) = \operatorname{Ker} \nu_{\Omega/\Lambda}$, we have an exact sequence:

$$0 \longrightarrow \widetilde{C}(\varLambda) \longrightarrow C(\varLambda) \longrightarrow C(\varOmega) \longrightarrow 0 \, .$$

Especially let $\Lambda = Z\Pi$ and let Ω_{Π} be a maximal order in $Q\Pi$ which contains $Z\Pi$. Then, by the Swan's theorem ([11]), we have $P_0(Z\Pi) = P(Z\Pi)$ and $\tilde{C}(Z\Pi) = \{ [\mathfrak{a}] - [Z\Pi] \in C(Z\Pi) \mid \mathfrak{a} \text{ is a projective (left) ideal of } Z\Pi \text{ such that } \Omega_{\Pi}\mathfrak{a} \oplus \Omega_{\Pi} \cong \Omega_{\Pi} \oplus \Omega_{\Pi} \text{ as } \Omega_{\Pi}\text{-modules} \}$. It is noted that $\tilde{C}(Z\Pi)$ does not depend on the choice of Ω_{Π} (cf. [3]). On the other hand, we put $C^q(Z\Pi) = \{ [\mathfrak{a}] - [Z\Pi] \in C(Z\Pi) \mid \mathfrak{a} \text{ is a quasi-permutation projective (left) ideal of } Z\Pi \}$. Then it is easily seen that $C^q(Z\Pi)$ is also a subgroup of $C(Z\Pi)$.

Let Π be a cyclic group of order n and σ be a generator of Π . We

denote by $\Phi_m(T)$ the m-th cyclotomic polynomial and by ζ_m a primitive m-th root of unity. Let M be a Π -module and put $M^{\mathfrak{o}_m} = \{u \in M \mid \Phi_m(\sigma)u = 0\}$ for any $m \mid n$. Then $Z\Pi/(\Phi_m(\sigma)) \cong Z[\zeta_m]$ and $M^{\mathfrak{o}_m}$ can be regarded as a $Z[\zeta_m]$ -module for any $m \mid n$. In [2], (1.11) we have proved that a projective Π -module P is a quasi-permutation Π -module if and only if, for any $m \mid n$, $P^{\mathfrak{o}_m}$ is $Z[\zeta_m]$ -free. This is clearly equivalent to the assertion that $\widetilde{C}(Z\Pi) = C^q(Z\Pi)$.

In this paper we will first give, as a generalization of this result,

[I] For any finite abelian group Π , $\widetilde{C}(Z\Pi) = C^q(Z\Pi)$.

It seems natural to ask whether $C^q(Z\Pi)$ coincides with $\widetilde{C}(Z\Pi)$ for any finite group Π or not. In fact, we will prove

- [II] Let Π be one of the following groups:
- (i) p-groups where p is an odd prime;
- (ii) dihedral groups, D_{pl} , where p is a prime and l is a positive integer;
- (iii) the quaternion group H_2 , the alternating group A_4 and the symmetric group S_4 .

Then $\widetilde{C}(Z\Pi) = C^q(Z\Pi)$.

To prove [II] we use the Jacobinski-Roiter's results in [3] and [6]. Furthermore using them, we can show the following refinement of [I].

[III] Let Π be a finite abelian group and let $\mathfrak a$ be a projective (left) ideal of $Z\Pi$. Then $\mathfrak a$ is a quasi-permutation Π -module if and only if $\mathfrak a \bigoplus_{\Pi' \in \mathfrak S} \bigoplus Z\Pi/\Pi'$ $\cong Z\Pi \bigoplus_{\Pi' \in \mathfrak S} \bigoplus Z\Pi/\Pi'$, where $\mathfrak S$ denotes the set of all subgroups, Π' ($\neq 1$), of Π such that Π/Π' is cyclic.

It is much more difficult to examine the properties of non projective quasi-permutation modules. Here we will consider only the case where H_{c}^{s} is a cyclic group.

[IV] Let Π be a cyclic p-group of order p^l .

- (i) A Π -module M is a quasi-permutation module if and only if, for any $0 \le m \le l$, $M^{\mathfrak{o}_{p^m}}$ is a free $Z[\zeta_{p^m}]$ -module.
- (ii) If M is a quasi-permutation Π -module, then the dual module $M^* = \operatorname{Hom}_Z(M,Z)$ of M is also a quasi-permutation Π -module.
- (iii) Let $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ be an exact sequence of Π -modules. If two of M', M and M'' are quasi-permutation Π -modules, then the rest of them is a quasi-permutation Π -module.

Let Π be a finite group and K/k be a Galois extension with group $\cong \Pi$. Let M be a Π -module with a Z-free basis $\{u_1, u_2, \cdots, u_n\}$. Denote by $K(X_1, X_2, \cdots, X_n)$ the rational function field with n-variables X_1, X_2, \cdots, X_n over K and define the action of Π on $K(X_1, X_2, \cdots, X_n)$, as an extension of the action of Π on K, by putting

$$\sigma(X_i) = \prod_{j=1}^n X_j^{m_{ij}}$$
 when $\sigma \cdot u_i = \sum_{j=1}^n m_{ij} u_j$, $m_{ij} \in Z$

for any $\sigma \in \Pi$ and $1 \le i \le n$. We denote $K(X_1, X_2, \dots, X_n)$ with this action of Π by K(M).

[V] Let Π be a cyclic p-group and K/k be a Galois extension with group $\cong \Pi$. In case of $p \neq 2$, assume that k is infinite. If M is a quasi-permutation Π -module, then K(M)''/k is rational.

$\S 1$. We give, as a slight generalization of [2], (1.1),

PROPOSITION 1.1. Let K/k be a Galois extension with group Π and $K(X_1, X_2, \cdots, X_n)$ be the rational function field with n variables X_1, X_2, \cdots, X_n over K. Further suppose that Π acts on $K(X_1, X_2, \cdots, X_n)$ as follows:

$$\sigma(X_i) = \sum_{i=1}^n \alpha_{ij}(\sigma) X_j + \beta_i(\sigma) , \qquad \alpha_{ij}(\sigma) , \quad \beta_i(\sigma) \in K.$$

Then $K(X_1, X_2, \dots, X_n)^{\pi}$ is rational over k.

PROOF. We denote by Aff(n, K) the affine transformation group of the n-dimensional affine space over K. Then we have an exact sequence of Π -groups:

$$1 \longrightarrow K^{(n)} \longrightarrow Aff(n, K) \longrightarrow GL(n, K) \longrightarrow 1$$
.

From this we get an exact sequence:

$$H^1(\Pi, K)^{(n)} \longrightarrow H^1(\Pi, Aff(n, K)) \longrightarrow H^1(\Pi, GL(n, K))$$
.

By the Hilbert's theorem 90 $H^1(\Pi, K)^{(n)} = H^1(\Pi, GL(n, K)) = 1$, and so $H^1(\Pi, Aff(n, K)) = 1$. The proposition is clearly a restatement of the fact that $H^1(\Pi, Aff(n, K)) = 1$ (cf. [2]).

Let E, F be extensions of a field k. We define a relation $E_{(r)_k} F$ if there exist variables X_1, X_2, \cdots, X_s and Y_1, Y_2, \cdots, Y_t such that $E(X_1, X_2, \cdots, X_s)$ is k-isomorphic to $F(Y_1, Y_2, \cdots, Y_t)$. An extension E/k is said to be quasirational if $E_{(r)_k} k$.

Let Π be a finite group and denote by $C_{Z\Pi}$ the class of all Π -modules. Let $M, N \in C_{Z\Pi}$. We define an equivalence relation $M_{\overline{(r)}} N$ if, for any Galois extension K/k with group $\cong \Pi$, $K(M)^{\Pi}_{\overline{(r)}_k} K(N)^{\Pi}$. If $M_1_{\overline{(r)}} N_1$ and $M_2_{\overline{(r)}} N_2$, then $M_1 \oplus M_2_{\overline{(r)}} N_1 \oplus N_2$. Let $T(\Pi)$ be the set of all equivalence classes in $C_{Z\Pi}$. We define an addition in $T(\Pi)$ by $[M]+[N]=[M \oplus N]$. Then this makes $T(\Pi)$ an abelian semigroup.

Further let $M, N \in C_{Z^{\pi}}$. We write M = N if, for any Galois extension K/k with group $\cong \Pi$, $K(M)^{\pi}$ is k-isomorphic to $K(N)^{\pi}$.

The following fundamental theorem is essentially due to R.G. Swan (cf. [13], [14]. Also see [2], (1.6).)

THEOREM 1.2. Let Π be a finite group and let M be a Π -module. Then the following conditions are equivalent:

(1) M is a quasi-permutation Π -module.

- (2) For a fixed Galois extension K/k with group $\cong \Pi$, $K(M)^{\pi}/k$ is quasirational.
- (3) For any Galois extension K/k with group $\cong \Pi$, $K(M)^{\pi}/k$ is quasi-rational, i. e., $M = \frac{1}{(r)} = 0$.

COROLLARY 1.3. Let Π be a finite group. Let

$$0 \longrightarrow M \longrightarrow N \longrightarrow S \longrightarrow 0$$

be an exact sequence where M, N are Π -modules and S is a permutation Π -module. Then $N = \overline{P} \cap M \oplus S$ and $N = \overline{P} \cap M$. Especially N is a quasi-permutation Π -module if and only if M is a quasi-permutation Π -module.

PROPOSITION 1.4. Let Π be a finite group. Let M be a Π -module and L be a quasi-permutation Π -module. If $M \oplus L$ is a quasi-permutation Π -module, then M is also a quasi-permutation Π -module.

PROOF. By (1.2) we have $L_{\frac{(r)}{(r)}} = 0$ and $M \oplus L_{\frac{(r)}{(r)}} = 0$. Therefore $M_{\frac{(r)}{(r)}} = M$ $\oplus L_{\frac{(r)}{(r)}} = 0$. Again by (1.2) we can conclude that M is a quasi-permutation Π -module.

LEMMA 1.5. Let Π be a finite group. Let M be a Π -module and let Π'_1, \dots, Π'_s be subgroups of Π . Then the following conditions are equivalent:

- (1) $H^1(\Pi_i', M) = 0$ for any $1 \le i \le s$.
- (2) Every exact sequence $0 \to M \to N \to \sum_{i=1}^{s} \bigoplus (Z\Pi/\Pi'_i)^{(t_i)} \to 0$, where t_1, \dots, t_s are non-negative integers, splits.

PROOF. For any Π -module L and any subgroup Π' of Π there exists a natural isomorphism $H^1(\Pi',L)\cong \operatorname{Ext}^1_{Z\Pi}(Z\Pi/\Pi',L)$. From this the lemma follows immediately.

PROPOSITION 1.6. Let Π be a finite group. For any Π -module M the following conditions are equivalent:

- (1) M is a quasi-permutation Π -module and $H^1(\Pi', M) = 0$ for any subgroup Π' of Π .
- (2) There exist permutation Π -modules S, S' such that $M \oplus S' \cong S$. Especially a projective Π -module P is a quasi-permutation Π -module if and only if there exist permutation Π -modules S, S' such that $P \oplus S' \cong S$.

PROOF. Assume (1). Then there is an exact sequence $0 \to M \to S \to S' \to 0$ where S and S' are permutation Π -modules. By (1.5) this sequence splits, and hence $M \oplus S' \cong S$. This proves $(1) \Rightarrow (2)$. Conversely assume (2). Then it is clear by the definition that M is a quasi-permutation Π -module. Further we see that $H^1(\Pi',S)=H^1(\Pi',S')=0$ for any subgroup Π' of Π . Therefore $H^1(\Pi',M)=0$ for any subgroup Π' of Π . Thus $(2) \Rightarrow (1)$. The second part of the proposition follows from the first part.

It should be noted that the second part of (1.6) can be directly proved by dualizing the exact sequence $0 \to P \to S \to S' \to 0$ where S, S' are permutation Π -modules.

PROPOSITION 1.7. For any finite group Π , $C^q(Z\Pi)$ is a subgroup of $C(Z\Pi)$. PROOF. Let \mathfrak{a} be a quasi-permutation, projective ideal of $Z\Pi$. Then there exists a projective ideal \mathfrak{b} of $Z\Pi$ such that $\mathfrak{a} \oplus \mathfrak{b} \cong Z\Pi \oplus Z\Pi$. By (1.6) (or by (1.4)) \mathfrak{b} is a quasi-permutation Π -module and we have $-([\mathfrak{a}]-[Z\Pi])=[\mathfrak{b}]-[Z\Pi]$.

§ 2. Let Π be a cyclic group of order n and σ be a generator of Π . Let Z[T] be the polynomial ring with a variable T over Z and Φ , Ψ be monic polynomials of Z[T] such that $\Phi \cdot \Psi = T^n - 1$. If M is a Π -module, there are three ways to construct a $Z\Pi/(\Phi(\sigma))$ -module from M, i. e., putting $\Psi M = \Psi(\sigma)M$, $M_{\bullet} = M/\Phi(\sigma)M$ and $M^{\bullet} = \{u \in M \mid \Phi(\sigma)u = 0\} \cong \operatorname{Hom}_{Z\Pi}(Z\Pi/(\Phi(\sigma)), M)$, ΨM , M_{\bullet} and M^{\bullet} can be regarded as $Z\Pi/(\Phi(\sigma))$ -modules. Then $\Psi M \subseteq M^{\bullet}$. We define an epimorphism $\theta_M : M_{\bullet} \to \Psi M$ by $\theta_M(\bar{u}) = \Psi(\sigma)u$. Especially, if we take the m-th cyclotomic polynomial $\Phi_m(T)$ ($m \mid n$) as $\Phi(T)$, we have $Z\Pi/(\Phi_m(\sigma)) \cong Z[\zeta_m]$ where ζ_m denotes the primitive m-th root of unity. We can easily prove the following two lemmas (cf. [13]).

LEMMA 2.1. Let Π be a cyclic group of order n and σ be a generator of Π . For any positive integers m, l dividing n, we have

$$(ZII/[\sigma^l])^{oldsymbol{\sigma}_m}\cong \left\{egin{array}{ll} Z[\zeta_m] & when & m\mid l \ & & when & m+l \ . \end{array}
ight.$$

If S is a permutation Π -module, then S^{\bullet_m} is a free $Z[\zeta_m]$ -module.

LEMMA 2.2. Let Π be a cyclic group of order n and $\Phi(T)$, $\Psi(T)$ be monic polynomials such that $\Phi(T)\Psi(T)=T^n-1$. Let P be a projective Π -module. Then $\Psi P=P^{\bullet}$ and $\theta_P:P_{\bullet}\to \Psi P$ is an isomorphism.

The following proposition has been proved essentially in [2], (1.11).

PROPOSITION 2.3. Let Π be a finite abelian group. Then the maximal order Ω_{Π} of $Q\Pi$ which contains $Z\Pi$ is a quasi-permutation Π -module.

PROOF. We can express $\Omega_{I\!\!I}$ as a direct sum of $Z[\zeta]$'s where each ζ is the root of unity. Therefore it suffices to prove that each $Z[\zeta]$ is a quasi-permutation $I\!\!I$ -module. Let us denote by $I\!\!I'$ the kernel of the natural projection of $I\!\!I$ on $[\zeta]$. Then $I\!\!I/I\!\!I'$ is cyclic and $Z[\zeta]$ can be regarded as a $I\!\!I/I\!\!I'$ -module. Hence we may suppose that $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ with a generator $I\!\!I$ and $I\!\!I$ is a cyclic group of $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ and $I\!\!I$ is a cyclic group of order $I\!\!I$ and $I\!\!I$ and $I\!\!I$ is a cyclic group of $I\!\!I$ is a cyclic group of $I\!\!I$ and $I\!\!I$ is a cyclic group of $I\!\!I$ and I

$$0 \longrightarrow M_{t-1} \longrightarrow M_t \longrightarrow Z\Pi/\Pi_{t-1} \longrightarrow 0$$
$$0 \longrightarrow Z\Pi/(\Phi_n(\sigma)) \longrightarrow M_t \longrightarrow Z\Pi/\Pi_t \longrightarrow 0.$$

where Π_0, \dots, Π_t are subgroups of Π . Applying (1.3) to these exact sequences repeatedly, we see that $Z\Pi/(\Phi_n(\sigma))$ is a quasi-permutation Π -module.

LEMMA 2.4. Let Π be a finite group and $\mathfrak a$ be a projective (left) ideal of $Z\Pi$. Let Λ be an order in $Q\Pi$ which contains $Z\Pi$. Then $\mathfrak a \oplus \Lambda \cong Z\Pi \oplus \Lambda \mathfrak a$ as Π -modules.

PROOF. Let n be the order of Π . Then we know $n\Lambda \subseteq Z\Pi$ and there exists an ideal \mathfrak{a}_0 of $Z\Pi$ such that $\mathfrak{a}_0 \cong \mathfrak{a}$ and $(\mathrm{Ann}_Z \Lambda/\mathfrak{a}_0, n) = 1$ ([11]). Hence we may assume that $(\mathrm{Ann}_Z \Lambda/\mathfrak{a}, n) = 1$. Now we can make the commutative diagram with exact rows:

$$0 \longrightarrow \mathfrak{a} \xrightarrow{\beta_1} \Lambda \mathfrak{a} \xrightarrow{\gamma_1} \Lambda \mathfrak{a} / \mathfrak{a} \longrightarrow 0$$

$$\downarrow \alpha_1 \atop \beta_2 \downarrow \alpha_2 \atop \gamma_2 \downarrow \delta$$

$$0 \longrightarrow Z\Pi \xrightarrow{\beta_2} \Lambda \xrightarrow{\gamma_2} \Lambda / Z\Pi \longrightarrow 0$$

Since \mathfrak{a} , $Z\Pi$ are Π -projective and L, $\Lambda\mathfrak{a}$, Λ are torsion-free, the second row and the second column are Π -split. Therefore $Z\Pi \oplus \Lambda\mathfrak{a} \cong L \cong \mathfrak{a} \oplus \Lambda$, which completes the proof.

Now we prove

THEOREM 2.5. Let Π be a finite abelian group. Then

$$\widetilde{C}(Z\Pi) = C^q(Z\Pi)$$
.

PROOF. Let \mathfrak{a} be a projective ideal of $Z\Pi$ and let Ω_{Π} be the maximal order in $Q\Pi$ which contains $Z\Pi$. By the definitions of $\widetilde{C}(Z\Pi)$ and $C^q(Z\Pi)$, it suffices to prove that \mathfrak{a} is a quasi-permutation Π -module if and only if $\Omega_{\Pi}\mathfrak{a} \cong \Omega_{\Pi}$ as Ω_{Π} -modules.

Suppose that \mathfrak{a} is a quasi-permutation Π -module. Then there exist permutation Π -modules S, S' such that $\mathfrak{a} \oplus S' \cong S$ by (1.6). Since Π is abelian, Ω_{Π} is expressible as the direct sum of $Z[\zeta_m]$'s where each ζ_m is a primitive m-th root of unity. To show $\Omega_{\Pi}\mathfrak{a} \cong \Omega_{\Pi}$, it suffices to show $Z[\zeta_m]\mathfrak{a} \cong Z[\zeta_m]$ for every component $Z[\zeta_m]$ of Ω_{Π} . We denote by Π' the kernel of the natural projection of Π on $[\zeta_m]$. Then Π/Π' is cyclic and $Z[\zeta_m]$ can be regarded as a Π/Π' -module. $Z\Pi/\Pi' \underset{Z\Pi}{\otimes} \mathfrak{a}$ is a quasi-permutation Π/Π' -module and $Z[\zeta_m]\mathfrak{a} \cong Z[\zeta_m] \cdot (Z\Pi/\Pi' \underset{Z\Pi}{\otimes} \mathfrak{a})$. Hence we may assume that Π is cyclic. In this case we have $\mathfrak{a}^{\mathfrak{o}_m} \oplus S'^{\mathfrak{o}_m} \cong S^{\mathfrak{o}_m}$, and therefore $Z[\zeta_m] \cong \mathfrak{a}^{\mathfrak{o}_m} \cong \mathfrak{a}_{\mathfrak{o}_m} \cong Z[\zeta_m]\mathfrak{a}$ by (2.1) and (2.2). This proves the only if part.

Conversely suppose that $\Omega_{\pi}\mathfrak{a}\cong\Omega_{\pi}$ as Ω_{π} -modules. Then, by virtue of (2.4), $\mathfrak{a}\oplus\Omega_{\pi}\cong Z\Pi\oplus\Omega_{\pi}$. Further, by (2.3), Ω_{π} is a quasi-permutation Π -module. Therefore applying (1.4), we can conclude that \mathfrak{a} is a quasi-permutation Π -module. Thus the proof of the theorem is completed.

COROLLARY 2.6. Let Π be a finite abelian group and let $\Omega_{\Pi} = \sum_{i=1}^{s} \bigoplus \Omega_{i}$ be the decomposition of Ω_{Π} into Dedekind domains. Then a Z-free Ω_{Π} -module M is a quasi-permutation Π -module if and only if $M \cong \sum_{i=1}^{s} \bigoplus \Omega_{i}^{(t_{i})}$ for $t_{i} \geq 0$.

PROOF. The if part of the corollary follows immediately from (2.3). Suppose that M is a quasi-permutation Π -module. Since each Ω_i is a Dedekind domain and a quasi-permutation Π -module ((2.3)), we may suppose that $M \cong \sum_{i=1}^s \bigoplus \mathfrak{a}_i$ where each \mathfrak{a}_i is a non-zero ideal of Ω_i . The natural homomorphism $C(Z\Pi) \to C(\Omega_{\Pi})$ is an epimorphism. Therefore there exists a projective ideal \mathfrak{a} of $Z\Pi$ such that $\Omega_{\Pi}\mathfrak{a} \cong M$. According to (2.4), we have $\mathfrak{a} \oplus \Omega_{\Pi}$ $\cong Z\Pi \oplus M$, and it follows from (2.3) that $\mathfrak{a}_{\overline{(r)}} = M_{\overline{(r)}} = 0$. Hence \mathfrak{a} is a quasi-permutation Π -module. By virtue of (2.5) we can conclude that $M \cong \Omega_{\Pi}\mathfrak{a} \cong \Omega_{\Pi}$, which completes the proof of the only if part.

REMARK 2.7. Let Π be a finite abelian group and let $\Omega_{\Pi} = \sum_{i=1}^{s} \bigoplus \Omega_{i}$ be the decomposition of Ω_{Π} into Dedekind domains. Let P be a projective Π -module. Then we have $P \xrightarrow{(r)} \sum_{i=1}^{s} \bigoplus \Omega_{i} P$. Especially, if Π is cyclic, we have

$$P = \sum_{i=1}^{s} \bigoplus \Omega_i P$$
.

PROOF. The first part follows directly from (2.3) and (2.4), and the second part can be proved along the same line as in the proof of [2], (1.11).

§ 3. We sketch the Jacobinski-Roiter's results on orders which will be used in §§ 3 and 4.

Let K be an algebraic number field and R be the ring of all algebraic integers in K. Let Σ be a semi-simple K-algebra and Λ be an R-order in Σ . A Λ -module is called a Λ -lattice if it is a finitely generated projective R-module and we denote by C_{Λ} the class of all Λ -lattices. Given $M, N \in C_{\Lambda}$, we write $M \sim N$ if, for any prime ideal $\mathfrak p$ of $R, M_{\mathfrak p} \cong N_{\mathfrak p}$ as $\Lambda_{\mathfrak p}$ -modules.

We say that a Λ -lattice M satisfies (ε) if $\operatorname{End}_{\mathfrak{I}}(KM)$ does not have any totally definite quaternion algebra as its simple component.

Let Ω be a maximal R-order in Σ which contains Λ . Given $M, N \in C_{\Lambda}$ we write $M \approx N$ if $M \sim N$ and $\Omega M \cong \Omega N$ as Ω -modules. We put $\gamma_M = \{N \in C_{\Lambda} \mid N \approx M\}$ and denote by $|\gamma_M|$ the number of all isomorphism types in γ_M . If M satisfies (s), then γ_M does not depend on the choice of Ω .

- (A) ([6]). If N is a local direct summand of M, then there is a decomposition $M \cong N' \oplus L$ with $N' \sim N$.
- (B) ([6]). If M is Λ -faithful and $N \sim N'$, then there is M' such that $M \oplus N \cong M' \oplus N'$.
- (C) ([6]). Suppose that N is a local direct summand of M and that every simple Σ -module S which occurs in KM occurs strictly more times in KM than in KN. Then N is a direct summand of M.
- (D) ([3]). Let M satisfy (ε) and X be a local direct summand of $M^{(l)}$ for some l. Then $X \oplus M \cong X \oplus N$ implies $M \cong N$.
- (E) ([3]). (i) If M is an Ω -lattice which satisfies (ε), we have $|\gamma_M|=1$ as a Λ -lattice. (ii) Let T be a Λ -faithful, Λ -lattice satisfying (ε) such that $|\gamma_T|=1$. Then $M\approx N$ if and only if $M\oplus T\cong N\oplus T$.
- (E') ([3]). Let M be a Λ -lattice. Suppose that $\operatorname{End}_{\Sigma}(KM)$ is a commutative field and that $\operatorname{End}_{\cdot}(M)$ is the integral closure of R in $\operatorname{End}_{\Sigma}(KM)$. Then $|\gamma_{M}|=1$ as a Λ -lattice.

It is noted that (E') is a special case of (E), (i).

In (2.5) we have shown that $\widetilde{C}(Z\Pi) = C^q(Z\Pi)$ for any finite abelian group Π . Here it is natural to ask whether $C^q(Z\Pi)$ coincides with $\widetilde{C}(Z\Pi)$ for any finite group Π or not. In this section we will prove that $\widetilde{C}(Z\Pi) = C^q(Z\Pi)$ for some types of finite groups.

Let Π be a finite group. Let $Q\Pi = \Sigma_1 \oplus \Sigma_2 \oplus \cdots \oplus \Sigma_t$ be the decomposition of $Q\Pi$ into simple algebras. Denote by K_i the center of Σ_i and let R_i be the ring of all algebraic integers in K_i .

A finite group Π is said to be of split type (over Q) if each Σ_i is a full matrix algebra over K_i .

PROPOSITION 3.1. Let Π be a finite group of split type. Suppose that, for each i, there is a quasi-permutation Π -module T_i such that $\operatorname{End}_{\mathcal{Z}_i}(QT_i) \cong K_i$ and $\operatorname{End}_{\mathcal{Z}_{\Pi}}(T_i) \cong R_i$. Then $\widetilde{C}(Z\Pi) \subseteq C^q(Z\Pi)$.

PROOF. Put $T = \sum_{i=1}^{t} \oplus T_i$. Then T is a faithful quasi-permutation Π -module. By (E') we have $|\gamma_{T_i}| = 1$ for each i. Then, using (A), we easily see that $|\gamma_T| = 1$. Let \mathfrak{a} be a projective ideal of $Z\Pi$ such that $\mathfrak{a} \approx Z\Pi$. By virtue of (E), (ii) we have $\mathfrak{a} \oplus T \cong Z\Pi \oplus T$. According to (1.4) this implies that \mathfrak{a} is a quasi-permutation Π -module, which completes the proof.

Let S be a Dedekind domain with quotient field L. Let Π be a finite group of automorphisms of L and put $K = L^{\pi}$ and $R = S^{\pi}$. We denote by $\Delta(\Pi, S)$ ($\Delta(\Pi, L)$) the twisted group algebra of Π over S(L). Then $\Delta(\Pi, L)$ is isomorphic to a full matrix algebra over K and $\Delta(\Pi, S)$ can be regarded as an R-order in $\Delta(\Pi, L)$.

Especially, if S/R is tamely ramified, then $\Delta(\Pi, S)$ is hereditary, as is well known, and any finitely generated projective $\Delta(\Pi, S)$ -module is expressible as a direct sum of ambiguous ideals of S (cf. [8]).

LEMMA 3.2. Suppose that S/R is tamely ramified. Then $|\gamma_{A(II,S)}|=1$.

PROOF. Let \mathfrak{a} be an ambiguous ideal of S. Then we have $\operatorname{End}_{A(\Pi,S)}\mathfrak{a}\cong S^{\Pi}=R$, hence, by (E'), $|\gamma_{\mathfrak{a}}|=1$. Now we can write $\Delta(\Pi,S)\cong \sum_{i=1}^{l} \oplus \mathfrak{a}_{i}$ as $\Delta(\Pi,S)$ -modules where each \mathfrak{a}_{i} is an ambiguous ideal of S. Hence, using (C), we easily see that $|\gamma_{A(\Pi,S)}|=1$.

LEMMA 3.3. Let Π be a finite group. Suppose that there is an order Λ in $Q\Pi$ containing $Z\Pi$ which is a quasi-permutation Π -module with $|\gamma_A|=1$. Then $\widetilde{C}(Z\Pi)\subseteq C^q(Z\Pi)$.

PROOF. This follows directly from (2.4) (or (E)) and (1.4).

We denote by $\Pi_{n,m,r}$ the metacyclic group with generators σ and τ satisfying the relations:

$$au^{-1}\sigma au=\sigma^{r}$$
 , $\sigma^{n}= au^{m}=I$

where (r, n) = 1 and $r^m \equiv 1 \mod n$. It is remarked that the group $\Pi_{n,2,-1}$ means the dihedral group D_n of order 2n.

PROPOSITION 3.4. Let Π be one of the following groups:

- (1) nilpotent groups of odd order;
- (2) metacyclic groups $\{\Pi_{n,q,r}\}$ where q is a prime such that q+n;
- (3) dihedral groups $\{D_n\}$;
- (4) the alternating group A_4 and the symmetric group S_4 . Then $\widetilde{C}(Z\Pi) \subseteq C^q(Z\Pi)$.

PROOF. (1) Let Π be a finite nilpotent group of odd order n. Let

- $Q\Pi = \Sigma_1 \oplus \Sigma_2 \oplus \cdots \oplus \Sigma_t$ be the decomposition of $Q\Pi$ into simple algebras and denote by K_i the center of Σ_i . By the well-known Witt-Roquette's theorem ([7]), for each i, the simple algebra Σ_i is a full matrix algebra over K_i and the field K_i is a cyclotomic field $Q(\zeta_{n_i})$ for some $n_i \mid n$. Further let V_i be a simple Σ_i -module and let χ_i be the character of Π afforded by V_i . Then there exist a subgroup Π_i of Π and a one dimensional $K_i\Pi_i$ -module K_i with character ρ_i such that $V_i \cong Q\Pi \underset{Q\Pi_i}{\otimes} K_i$ and $Q(\chi_i) = Q(\rho_i) = K_i$. Now we put $T_i = Z\Pi \underset{Z\Pi_i}{\otimes} Z[\zeta_{n_i}]$. Then we see that $\operatorname{End}_{Z\Pi}(T_i) \cong Z[\zeta_{n_i}]$, and from (2.3) it follows that each T_i is a quasi-permutation Π -module. So we have $\widetilde{C}(Z\Pi) \subseteq C^q(Z\Pi)$ from (3.1).
- (2) Let $\Pi = \Pi_{n,q,r}$ where q is a prime such that q + n. Put $\Pi_0 = [\tau]$, $\Pi_1 = [\sigma]$ and m = (r-1, n). We can write $Q\Pi = \sum_{l|n} \bigoplus Q\Pi/(\Phi_l(\sigma))$. If l divides m, then $\Pi/[\sigma^l]$ is a cyclic group and therefore we have $Q\Pi/(\Phi_l(\sigma))\cong Q(\zeta_l)$ $\bigoplus Q(\zeta_{ql})$. Then the images of $Z\Pi$ by the projections on $Q(\zeta_{l})$ and $Q(\zeta_{ql})$ are $Z[\zeta_l]$ and $Z[\zeta_{ql}]$, respectively. Since both $Z[\zeta_l]$ and $Z[\zeta_{ql}]$ are regarded as $\Pi/[\sigma^l]$ -modules, according to (2.3) these are quasi-permutation Π -modules and, by (E'), $|\gamma_{z[\zeta_l]}| = |\gamma_{z[\zeta_{ql}]}| = 1$. On the other hand, if l does not divide m, then $Q\Pi/(\Phi_l(\sigma))$ is isomorphic to the twisted group algebra $\Delta(\Pi_0, Q(\zeta_l))$ because q is a prime and the order $Z\Pi/(\Phi_l(\sigma))$ in $Q\Pi/(\Phi_l(\sigma))$ is also isomorphic to the twisted group algebra $\Delta(\Pi_0, Z[\zeta_1])$. From the assumption that q is a prime such that q+n it is easily seen that $Z[\zeta_l]/Z[\zeta_l]^{n_0}$ is tamely ramified, and hence, by (3.2), $|\gamma_{A(\Pi_0,Z[\zeta_l])}|=1$. It is clear that $\Delta(\Pi_0,Z[\zeta_l])\cong Z\Pi\underset{Z\Pi_1}{\bigotimes}Z[\zeta_l]$ as Π -modules and so, by (2.3), $\varDelta(\Pi_{\scriptscriptstyle 0},Z[\zeta_l])$ is a quasi-permutation Π -module. We put $\Lambda = \sum_{l \mid m} \bigoplus (Z[\zeta_l] \oplus Z[\zeta_{ql}]) \oplus \sum_{l \nmid m} \bigoplus \Delta(\Pi_0, Z[\zeta_l])$. Then Λ is a hereditary order in $Q\Pi$ containing $Z\Pi$ and a quasi-permutation Π -module such that $|\gamma_A|=1$. Hence, from (3.3), we get $\tilde{C}(Z\Pi)\subseteq C^q(Z\Pi)$.
- (3) Let $\Pi=D_n=\Pi_{n,2,-1}$. When 2+n this is a special case of (2). Hence we have only to prove the assertion when 2|n. We can write $Q\Pi=\sum_{l|n}\oplus Q\Pi/(\varPhi_l(\sigma))$. Here $Q\Pi/(\varPhi_1(\sigma))\cong Q\oplus Q\Pi/(\sigma-1,\,\tau+1)$ and $Q\Pi/(\varPhi_2(\sigma))\cong Q\Pi/(\sigma+1,\,\tau-1)\oplus Q\Pi/(\sigma+1,\,\tau+1)$. For each $l\mid n,\ l>2,\ Q\Pi/(\varPhi_l(\sigma))$ is isomorphic to the twisted group algebra $\varDelta(\Pi_0,\,Q(\zeta_l))$ and the order $Z\Pi/(\varPhi_l(\sigma))$ in $Q\Pi/(\varPhi_l(\sigma))$ is also isomorphic to the twisted group algebra $\varDelta(\Pi_0,\,Z[\zeta_l])$. We put $T^{(1)}=Z,\ T^{(2)}=Z\Pi/(\sigma-1,\,\tau+1),\ T^{(3)}=Z\Pi/(\sigma+1,\,\tau-1)$ and $T^{(4)}=Z\Pi/(\sigma+1,\,\tau+1)$. Then it is clear that $T^{(i)}$ is a quasi-permutation Π -module with $|\gamma_{T(i)}|=1$. Further, putting $T_l=\varDelta(\Pi_0,\,Z[\zeta_l])(\tau-1)=Z\Pi/(\varPhi_l(\sigma),\,\tau+1)$ for any $l\mid n,\ l>2$, we can show using the same method as in (2.3) that T_l is a quasi-permutation Π -module. We easily see that $\operatorname{End}_{Z\Pi}(T_l)=Z[\zeta_l+\zeta_l^{-1}]=Z[\zeta_l]^{n_0}$, and therefore, by (E'), we have $|\gamma_{T_l}|=1$. Thus we conclude by (3.1) that $\widetilde{C}(Z\Pi)\subseteq C^q(Z\Pi)$.

(4) Both A_4 and S_4 are of split type, as is well known. The assertion can be proved using (3.1).

To show the inverse inclusion $C^q(Z\Pi) \subseteq \widetilde{C}(Z\Pi)$ we must refer to a Conlon's result.

LEMMA 3.5 ([1]). Let Π be a finite group of order n. Suppose that $\sum_{i=1}^s \bigoplus Z\Pi/\Pi'_i \bigoplus L \cong \sum_{j=1}^t \bigoplus Z\Pi/\Pi''_j \bigoplus L$ where Π'_i and Π''_j are subgroups of Π each of which is a cyclic extension of a p-subgroup of Π for some prime $p \mid n$ and L is a Π -module. Then s=t and the Π''_j can be reordered so that $Z\Pi/\Pi'_i \cong Z\Pi/\Pi''_j$ for any $1 \leq i \leq s$.

PROPOSITION 3.6. Let Π be a finite group which is a cyclic extension of a p-group. Then $C^q(Z\Pi) \subseteq \tilde{C}(Z\Pi)$. Further let $\mathfrak S$ be a complete set of nonconjugate subgroups of Π , and put $T = \sum_{\Pi' \in \mathfrak S} \oplus Z\Pi/\Pi'$ in the case where no simple component of $Q\Pi$ is a totally definite quaternion algebra and $T = Z\Pi \oplus \sum_{\Pi' = \mathfrak S} \oplus Z\Pi/\Pi'$ in the other case. Then, for any quasi-permutation projective ideal $\mathfrak A$ of $Z\Pi$, $\mathfrak A \oplus T \cong Z\Pi \oplus T$, and $|\gamma_T| = [\tilde{C}(Z\Pi) : C^q(Z\Pi)]$.

PROOF. Let \mathfrak{a} be a quasi-permutation projective ideal of $Z\Pi$. Then we have $\mathfrak{a} \oplus \sum_{i=1}^s \oplus Z\Pi/\Pi_i' \cong \sum_{j=1}^t \oplus Z\Pi/\Pi_j''$ for some subgroups Π_i' , Π_j'' of Π . However $\mathfrak{a}^{(k)} \cong Z\Pi^{(k)}$ for some k>0 because $C(Z\Pi)$ is a finite group ([11]). Hence $Z\Pi^{(k)} \oplus \sum_{i=1}^s \oplus (Z\Pi/\Pi_i')^{(k)} \cong \sum_{j=1}^t \oplus (Z\Pi/\Pi_j'')^{(k)}$. By (3.5) we have s=t and $\Pi_0'' = I$, $Z\Pi/\Pi_i'' \cong Z\Pi/\Pi_i'$ for any $1 \leq i \leq s$ by reordering the Π_j'' . Therefore $\mathfrak{a} \oplus \sum_{i=1}^s \oplus Z\Pi/\Pi_i' \cong Z\Pi \oplus \sum_{i=1}^s \oplus Z\Pi/\Pi_i'$. From this and (D) we get $\Omega_{\Pi}\mathfrak{a} \oplus \Omega_{\Pi} \cong \Omega_{\Pi} \oplus \Omega_{\Pi}$ where Ω_{Π} denotes a maximal order in $Q\Pi$ containing $Z\Pi$. This shows that $C^q(Z\Pi) \subseteq \widetilde{C}(Z\Pi)$. By (D) we have also $\mathfrak{a} \oplus T \cong Z\Pi \oplus T$. Since T is $Z\Pi$ -faithful, we easily see using (B) and (D) that $|\gamma_T| = [\widetilde{C}(Z\Pi) : C^q(Z\Pi)]$.

REMARK 3.7. Let Π be a finite group of split type. Let $F = K_1 \oplus K_2 \oplus \cdots \oplus K_t$ be the center of $Q\Pi$. Suppose that, for each i, the class number of K_i is 1. Then $C^q(Z\Pi) \subseteq \widetilde{C}(Z\Pi) = C(Z\Pi)$.

PROOF. Since Π is of split type, we have $C(\Omega_{\Pi}) = C(F)$ ([5]). By the assumption, $C(F) = \sum_{i=1}^{t} \bigoplus C(K_i) = 0$, hence $C(\Omega_{\Pi}) = 0$. Thus $\widetilde{C}(Z\Pi) = C(Z\Pi)$.

We denote by H_n $(n \ge 2)$ the generalized quaternion group of order 4n, i.e., the group with generators σ and τ satisfying the relations:

$$\sigma^{2n} = I$$
, $\sigma^n = \tau^2$, $\tau^{-1} \sigma \tau = \sigma^{-1}$.

Let $N_n = \lceil \sigma^n \rceil = \lceil \tau^2 \rceil$ and $H'_n = \lceil \sigma \rceil$. Then $H_n/N_n \cong D_n$ and $QH_n \cong QD_n \oplus QH_n/(\sigma^n+I)$. Let $n = 2^m n_0$, $2+n_0$. Then $QH_n/(\sigma^n+I) \cong \sum_{2^m \mid l \mid n} \oplus QH_n/(\varPhi_{2l}(\sigma))$. For any $2^m \mid l \mid n$, l > 1, $\Sigma_l = QH_n/(\varPhi_{2l}(\sigma))$ is a quaternion algebra over $Q(\zeta_{2l} + \zeta_{2l}^{-1})$.

In case n is odd there is a simple component $QH_n/(\Phi_2(\sigma))\cong Q(i)$ in $QH_n/(\sigma^n+I)$. For each $2^m|l|n$, $ZH_n/(\Phi_{2l}(\sigma))\cong ZH_n\underset{ZH_n}{\otimes} Z[\zeta_{2l}]$ and so $\Lambda_l=ZH_n/(\Phi_{2l}(\sigma))$ is a quasi-permutation H_n -module. Let Ω_{D_n} be a maximal order in QD_n which contains ZD_n . We put $\Lambda_{H_n}=\Omega_{D_n}\bigoplus_{2^m|l|n}\bigoplus \Lambda_l$. Then Λ_{H_n} is an order in QH_n which contains ZH_n . Let Ω_{H_n} be a maximal order in QH_n which contains Λ_{H_n} . There are natural epimorphisms $\alpha_n:C(ZH_n)\to C(\Lambda_{H_n})$ and $\beta_n:C(\Lambda_{H_n})\to C(\Omega_{H_n})$ induced by $\Lambda_{H_n}\underset{ZH_n}{\otimes}$ and $\Omega_{H_n}\underset{A_{H_n}}{\otimes}$, respectively.

PROPOSITION 3.8. For any prime power p^{l} there is an exact sequence:

$$0 \longrightarrow C^q(ZH_{p^l}) \longrightarrow C(ZH_{p^l}) \stackrel{\alpha_{p^l}}{\longrightarrow} C(\varLambda_{H_{p^l}}) \longrightarrow 0 \, .$$

We have $\widetilde{C}(ZH_{pl}) = C^q(ZH_{pl})$ if and only if $\beta_{pl}: C(\Lambda_{H_pl}) \to C(\Omega_{H_pl})$ is an isomorphism. Especially $C(\Lambda_{H_2}) = 0$ and $C^q(ZH_2) = \widetilde{C}(ZH_2) = C(ZH_2)$.

PROOF. Let $\mathfrak a$ be a quasi-permutation projective ideal of ZH_{pl} . Then $\mathfrak a/(\sigma^{pl}-1)\mathfrak a$ is also a quasi-permutation projective ideal of ZD_{pl} . By (3.4) and (3.6) we have $\widetilde{C}(ZD_{pl})=C^q(ZD_{pl})$. Hence we see $\Omega_{Dpl}\mathfrak a\cong\Omega_{Dpl}$. On the other hand, since each Σ_{pm} is a division algebra, for any subgroup H of H_{pl} , $\Lambda_{pm}\cdot ZH_{pl}/H\cong\Lambda_{pm}$ or 0. From this it follows that $\Lambda_{pm}\mathfrak a\oplus\Lambda_{pm}\cong\Lambda_{pm}\oplus\Lambda_{pm}$. Thus we have $\Lambda_{Hpl}\mathfrak a\oplus\Lambda_{Hpl}\cong\Lambda_{Hpl}\oplus\Lambda_{Hpl}$. Conversely let $\mathfrak a$ be a projective ideal of ZH_{pl} such that $\Lambda_{Hpl}\mathfrak a\oplus\Lambda_{Hpl}\cong\Lambda_{Hpl}\oplus\Lambda_{Hpl}$. Then $\Omega_{Hpl}\mathfrak a\cong\Omega_{Hpl}\mathfrak a$ and so $\mathfrak a/(\sigma^{pl}-1)\mathfrak a$ is a quasi-permutation H_{pl} -module. We have also that, for any $m\leq l$, $\Lambda_{pm}\mathfrak a\oplus\Lambda_{pm}\cong\Lambda_{pm}\oplus\Lambda_{pm}$. Since Λ_{pm} is a quasi-permutation H_{pl} -module, according to (1.4), $\Lambda_{pm}\mathfrak a$ is also a quasi-permutation H_{pl} -module. Using the same method as in (2.3) we can show that $\mathfrak a/(\sigma^{pl}+1)\mathfrak a$ is a quasi-permutation H_{pl} -module. Furthermore, considering an exact sequence:

$$0 \longrightarrow \alpha/(\sigma^{pl}+1)\alpha \longrightarrow \alpha \longrightarrow \alpha/(\sigma^{pl}-1)\alpha \longrightarrow 0$$

it can easily be seen that $\mathfrak a$ is a quasi-permutation H_{pl} -module. This completes the proof of Kernel $\alpha_{pl} = C^q(ZH_{pl})$. The second part of the proposition is obvious. Hence we will prove only $C(\Lambda_{H_2}) = 0$. We have $\Lambda_{H_2} = \Omega_{D_2} \oplus \Lambda_2$, and therefore it suffices to show that any projective ideal of Λ_2 is principal. The quaternion algebra Σ_2 is generated by i,j,k over Q such that $i^2 = j^2 = -1$, ij = -ji and k = ij and Λ_2 can be identified with the order Z + Zi + Zj + Zk in Σ_2 . Let Γ be the order in Σ_2 generated by $i,j,k,\frac{1}{2}(1+i+j+k)$. Then, as is well known, Γ is a maximal order in Σ_2 which contains Λ_2 and the class number $c(\Gamma)$ of Γ is 1. Let $\mathfrak a$ be a projective ideal of Λ_2 . Then there is an ideal $\mathfrak b$ of Λ_2 such that $\mathfrak a \cong \mathfrak b$ and $2 + [\Lambda_2 : \mathfrak b]$. Therefore we may suppose $2 + [\Lambda_2 : \mathfrak a]$. Since $[\Gamma : \Lambda_2] = 2$, we have $\mathfrak a = \Gamma \mathfrak a \cap \Lambda_2$. Because of $c(\Gamma) = 1$ there exists $\mathfrak a \in \Gamma$ such that $\Gamma \mathfrak a = \Gamma \mathfrak a$. Then the norm of $\mathfrak a$ is odd. Therefore we can find a unit $\mathfrak a = \Gamma$ such that $\mathfrak a = \Gamma$ and $\mathfrak a = \Gamma$ be the well-known result on

quaternions. Accordingly we can show that $a = \Lambda_2 \varepsilon \omega$, $\varepsilon \omega \in \Lambda_2$, which completes the proof of the proposition.

We remark here that Reiner-Ullom ([4]) has proved that $C(ZH_2) \cong \mathbb{Z}/2\mathbb{Z}$. From (3.4), (3.6), (3.7) and (3.8) we get

Theorem 3.9. Let Π be one of the following groups:

- (1) p-groups with $p \neq 2$;
- (2) metacyclic groups $\{\Pi_{p^l,q,r}\}$ where p, q are distinct primes;
- (3) dihedral groups $\{D_{pl}\}$ where p is a prime;
- (4) the quaternion group H_2 , the alternating group A_4 and the symmetric group S_4 .

Then we have $\tilde{C}(Z\Pi) = C^q(Z\Pi)$.

§ 4. In this section we will give a basic result on projective quasipermutation modules over a finite abelian group which is a refinement of (2.5).

LEMMA 4.1. Let $\Pi = [\sigma]$ be a cyclic group of order n and \mathfrak{a} be a projective ideal of $Z\Pi$ such that $\mathfrak{a}^{\mathfrak{o}_n} \cong Z[\zeta_n]$. Then there exist a projective ideal \mathfrak{c} of $Z\Pi$ with $\mathfrak{c}^{\mathfrak{o}_l} \cong Z[\zeta_l]$ for any l|n, a permutation Π -module S and a projective ideal \mathfrak{a}_m of $Z\Pi/[\sigma^m]$ for any m|n such that n/m is a prime, such that

$$\mathfrak{a} \oplus \sum_{m} \oplus Z\Pi/[\sigma^{m}] \oplus S \cong \mathfrak{c} \oplus \sum_{m} \oplus \mathfrak{a}_{m} \oplus S$$
.

PROOF. Let $M_1=\mathfrak{a}\oplus\sum_m\oplus\lfloor\mathfrak{a}/(\sigma^m-1)\mathfrak{a}\rfloor^{-1}$. Then $M_1^{\mathfrak{o}_n}=\mathfrak{a}^{\mathfrak{o}_n}$ and $M_1^{\mathfrak{o}_m}=\mathfrak{a}^{\mathfrak{o}_m}\oplus(\mathfrak{a}^{-1})^{\mathfrak{o}_m}\cong Z\lfloor\zeta_m\rfloor^{(2)}$ for any $m\!\mid\! n$ such that n/m is a prime. Also, for any $l\!\mid\! n$ with $n/l=p_1p_2$ for primes $p_1,p_2,M_1^{\mathfrak{o}_l}\cong Z\lfloor\zeta_l\rfloor^{(2)}\oplus\lfloor(\mathfrak{a}^{-1})^{\mathfrak{o}_l}\rfloor^{(\alpha_l)}$ for some $\alpha_l\geqq0$. We now put $M_2=M_1\oplus\sum_{n/l=p_1p_2}\oplus\lfloor\mathfrak{a}/(\sigma^l-1)\mathfrak{a}\rfloor^{(\alpha_l)}$. Then, by (2.1), we have

$$\begin{split} &M_2^{\mathfrak{g}_n} \cong Z \llbracket \zeta_n \rrbracket \;, \\ &M_2^{\mathfrak{g}_m} \cong Z \llbracket \zeta_m \rrbracket^{(2)} \qquad \text{when} \quad n/m = p \;, \\ &M_2^{\mathfrak{g}_l} \cong Z \llbracket \zeta_l \rrbracket^{(2+2\alpha_l)} \qquad \text{when} \quad n/l = p_1 p_2 \;, \\ &M_2^{\mathfrak{g}_k} \cong Z \llbracket \zeta_k \rrbracket^{(\beta_k)} \bigoplus \llbracket (\mathfrak{a}^{\pm 1})^{\mathfrak{g}_k} \rrbracket^{(\gamma_k)} \qquad \text{for some} \quad \beta_k, \gamma_k \geqq 0 \end{split}$$

and

when $n/k = p_1 p_2 p_3$. We further put

$$M_3 = M_2 \bigoplus \sum_{n/k = p_1 p_2 p_3} \bigoplus \left[(\mathfrak{a}/(\sigma^k - 1)\mathfrak{a})^{\scriptscriptstyle \mp 1} \right]^{(\gamma_k)}$$

and repeat the same procedure to M_3 as to M_2 . Continuing this procedure, we finally find $s_l \ge 0$ and $\varepsilon(l) = \pm 1$ for any $l \mid n$ such that, putting $M = \mathfrak{a} \oplus \sum_{\substack{l \mid n \\ l \leqslant n}} \oplus [(\mathfrak{a}/(\sigma^l - 1)\mathfrak{a})^{\varepsilon(l)}]^{(s_l)}$, $M^{\mathfrak{o}_k}$ is $Z[\zeta_k]$ -free for any $k \mid n$. Since \mathfrak{a} is $Z\Pi$ -

faithful and $\alpha/(\sigma^l-1)\alpha\sim Z\Pi/[\sigma^l]$, by (C), there is a projective ideal of $Z\Pi$

such that $M \cong \mathfrak{c} \oplus \sum_{\substack{l \mid n \\ l < n}} \oplus [Z\Pi/[\sigma^l]]^{(\mathfrak{s}_l)}$. Then we see easily that $\mathfrak{c}^{\phi_k} \cong Z[\zeta_k]$ for

any $k \mid n$. Therefore c is as required. Furthermore we have

$$\begin{split} M \bigoplus_{\substack{l \mid n \\ l < n}} \bigoplus \left[(\mathfrak{a}/(\sigma^l - 1)\mathfrak{a})^{-\varepsilon(l)} \right]^{(s_l)} &\cong \mathfrak{a} \bigoplus \sum_{\substack{l \mid n \\ l < n}} \bigoplus \left[Z \Pi / \left[\sigma^l \right] \right]^{(2s_l)} \\ &\cong \mathfrak{c} \bigoplus \sum_{\substack{l \mid n \\ l < n}} \bigoplus \left[Z \Pi / \left[\sigma^l \right] \bigoplus (\mathfrak{a}/(\sigma^l - 1)\mathfrak{a})^{-\varepsilon(l)} \right]^{(s_l)} \,. \end{split}$$

Again, by (C), there is a Π -module L such that

$$L \sim \sum_{n/m=p} \bigoplus Z \Pi / [\sigma^m]$$

and

$$\begin{split} &\sum_{\substack{l \mid n \\ l < n}} \bigoplus \lfloor Z \Pi / \lfloor \sigma^l \rfloor \bigoplus (\mathfrak{a}/(\sigma^l - 1)\mathfrak{a})^{-\varepsilon(l)} \rfloor^{(s_l)} \\ & \cong L \bigoplus \sum_{\substack{n/m = p \\ n/m = p}} \bigoplus \lfloor Z \Pi / \lfloor \sigma^m \rfloor \rfloor^{(2s_{m-1})} \bigoplus \sum_{\substack{n/l = p_1 p_2 \cdots p_t \\ t \ge 2}} \bigoplus \lfloor Z \Pi / \lfloor \sigma^l \rfloor \rfloor^{(2s_l)} \,. \end{split}$$

Using (A), we can write $L \cong \sum_{n/m=p} \bigoplus \mathfrak{a}_m$ for some $\mathfrak{a}_m \sim Z\Pi/[\sigma^m]$. Let

$$S = \sum_{n/m=p} \bigoplus \lfloor Z \Pi / \lfloor \sigma^m \rfloor \rfloor^{(2s_{m-1})} \bigoplus \sum_{\substack{n/l=p_1p_2\cdots p_t\\t \geq 2}} \bigoplus \lfloor Z \Pi / \lfloor \sigma^l \rfloor \rfloor^{(2s_l)}.$$

Then we obtain

$$\mathfrak{a} \bigoplus_{n/m=p} \bigoplus [Z\Pi/[\sigma^m]] \bigoplus S \cong \mathfrak{c} \bigoplus \sum_{n/m=p} \bigoplus \mathfrak{a}_m \bigoplus S ,$$

and this completes the proof of the lemma.

THEOREM 4.2. Let Π be a finite abelian group and $\mathfrak a$ be a projective ideal of $Z\Pi$. Then $\mathfrak a$ is a quasi-permutation Π -module if and only if $\mathfrak a \bigoplus_{\Pi' \in \mathfrak S} \bigoplus Z\Pi/\Pi' \cong Z\Pi \bigoplus_{\Pi' \in \mathfrak S} \bigoplus Z\Pi/\Pi'$, where $\mathfrak S$ denotes the set of all subgroups, Π' (\neq 1), of Π such that Π/Π' is cyclic.

PROOF. The if part is evident. Hence we have only to prove the only if part. Suppose that \mathfrak{a} is a quasi-permutation Π -module. Then $\mathfrak{a} \oplus S' \cong S$ for some permutation Π -modules S, S' by (1.6), and $\Omega_{\Pi}\mathfrak{a} \cong \Omega_{\Pi}$ by (2.5), where Ω_{Π} denotes the maximal order in $Q\Pi$ containing $Z\Pi$.

First suppose that Π is a cyclic group of order n with a generator σ . In this case we can write

$$S = \sum_{k+n} \bigoplus \lfloor Z\Pi / \lfloor \sigma^k \rfloor \rfloor^{(N_k)}, \qquad S' = \sum_{k+n} \bigoplus \lfloor Z\Pi / \lfloor \sigma^k \rfloor \rfloor^{(N_k')}$$

for some N_k , N_k' (≥ 0). Since $\mathfrak{S} = \{ \lceil \sigma^k \rceil \}_{k \mid n,k < n}$ in this case, it suffices by (D) to prove $N_n = N_n' + 1$ and $N_k = N_k'$ for any k < n. By our assumption we have $Z \lceil \zeta_n \rceil \oplus S'^{\mathfrak{o}_n} \cong S^{\mathfrak{o}_n}$. But, by (2.1), $S'^{\mathfrak{o}_n} \cong \lceil Z \lceil \zeta_n \rceil \rceil^{(N_n)}$ and $S^{\mathfrak{o}_n} \cong \lceil Z \lceil \zeta_n \rceil \rceil^{(N_n)}$. Hence $N_n = N_n' + 1$. Let $m \mid n$, m < n and suppose that $N_n = N_n' + 1$ and $N_k = N_n' + 1$.

 N'_k for each m < k < n. Then we have $Z[\zeta_m] \oplus S'^{\mathfrak{o}_m} \cong S^{\mathfrak{o}_m}$ and, again applying (2.1),

$$S^{\prime \bullet_m} \cong [Z[\zeta_m]]^{(N_n-1)} \bigoplus \sum_{\substack{m+k+n\\m < k < n}} \bigoplus [Z[\zeta_m]]^{(N_k)} \bigoplus [Z[\zeta_m]]^{(N_k)}$$
$$S^{\bullet_m} \cong [Z[\zeta_m]]^{(N_n)} \bigoplus \sum_{\substack{m+k+n\\m < k < n}} \bigoplus [Z[\zeta_m]]^{(N_k)} \bigoplus [Z[\zeta_m]]^{(N_m)}.$$

This shows $N_m = N'_m$.

Now suppose that Π is a non-cyclic abelian group. We denote by \mathfrak{S}_0 the subset of \mathfrak{S} consisting of all minimal members of \mathfrak{S} . We define \mathfrak{S}_{k+1} to be the subset of \mathfrak{S} consisting of \mathfrak{S}_k and all minimal elements of $\mathfrak{S}-\mathfrak{S}_k$. Then we obtain an ascending chain of the subsets of $\mathfrak{S}:\mathfrak{S}_0 \subsetneq \mathfrak{S}_1 \subsetneq \cdots \subsetneq \mathfrak{S}_t = \mathfrak{S}$. Let \mathfrak{S}_k be the set of all maximal elements in \mathfrak{S}_k . To prove our assertion it suffices to prove that, for any $0 \leq k \leq t$, there exist some $\mathfrak{a}_{\Pi'}$ with

$$\begin{array}{l} \mathfrak{a}_{\Pi'} \sim Z\Pi/\Pi' \ (\Pi' \in \widetilde{\mathfrak{S}}_k) \ \text{such that} \\ \mathfrak{a} \oplus \sum\limits_{\Pi' \in \mathfrak{S}_k} \oplus Z\Pi/\Pi' \oplus \sum\limits_{\Pi'' \in \mathfrak{S} - \mathfrak{S}_k} \oplus Z\Pi/\Pi'' \\ & \cong Z\Pi \oplus \sum\limits_{\Pi' \in \mathfrak{S}_k - \widetilde{\mathfrak{S}}_k} \oplus Z\Pi/\Pi' \oplus \sum\limits_{\Pi' \in \widetilde{\mathfrak{S}}_k} \oplus \mathfrak{a}_{\Pi'} \oplus \sum\limits_{\Pi'' \in \mathfrak{S} - \mathfrak{S}_k} \oplus Z\Pi/\Pi'' \end{array} \right\} \cdot \cdot \cdot \cdot \cdot (*)_k \, .$$

In fact $(*)_t$ implies our assertion, because $\mathfrak{S}_t = \mathfrak{S}$ and $\mathfrak{S}_t = \{\Pi\}$. We will prove $(*)_k$ by induction on k. Since $\sum_{\Pi' \in \mathfrak{S}} \oplus Z\Pi/\Pi'$ is $Z\Pi$ -faithful, by (B), we have

$$\mathfrak{a} \bigoplus_{\mathbf{\Pi}' \in \mathfrak{S}} \bigoplus Z\mathbf{\Pi}/\mathbf{\Pi}' \cong Z\mathbf{\Pi} \oplus N$$

for some N with $N \approx \sum_{\Pi' \in \mathfrak{S}} \oplus Z\Pi/\Pi'$. Then, by (A) and (C), we can find $\mathfrak{a}_{\Pi'}$ with $\mathfrak{a}_{\Pi'} \sim Z\Pi/\Pi'$ for all $\Pi' \in \mathfrak{S}_0$ such that

$$N\cong\sum_{II'\in\mathfrak{S}_0}\oplus\mathfrak{a}_{II'}\oplus\sum_{II'\in\mathfrak{S}-\mathfrak{S}_0}\oplus ZII/II'$$
 .

Hence we obtain that

$$\mathfrak{a} \oplus \sum_{\Pi' \in \mathfrak{S}_0} \oplus Z\Pi/\Pi' \oplus \sum_{\Pi'' \in \mathfrak{S} - \mathfrak{S}_0} \oplus Z\Pi/\Pi'' \cong Z\Pi \oplus \sum_{\Pi' \in \mathfrak{S}_0} \oplus \mathfrak{a}_{\Pi'} \oplus \sum_{\Pi'' \in \mathfrak{S} - \mathfrak{S}_0} \oplus Z\Pi/\Pi'' \text{.}$$

Thus $(*)_0$ is proved. Next suppose $(*)_k$, $k \ge 0$. For each $\Pi' \in \mathfrak{S}_k$, $\mathfrak{a}_{\Pi'}$ is considered as a Π/Π' -module. We denote by n' the order of Π/Π' . Then $\mathfrak{a}_{\Pi}^{\mathfrak{g},n'} \cong Z[\zeta_{n'}]$. By (4.1) there exist a projective ideal $\mathfrak{c}_{\Pi'}$ of $Z\Pi/\Pi'$ with $\Omega_{\Pi/\Pi'}\mathfrak{c}_{\Pi'} \cong \Omega_{\Pi/\Pi'}$, a permutation Π/Π' -module $S'_{\Pi'}$ and a projective ideal $\mathfrak{a}_{\Pi'}^{(\Pi')}$ of $Z\Pi/\widetilde{\Pi'}$ for any subgroup $\widetilde{\Pi}'$ of Π such that $\widetilde{\Pi}'/\Pi'$ is a cyclic group of prime order such that

$$\mathfrak{a}_{\pi'} \oplus \sum_{\widetilde{H}' \in \mathfrak{S}_{\overline{H}'}} \oplus Z\overline{H}/\widetilde{H}' \oplus S'_{\pi'} \cong \mathfrak{c}_{\pi'} \oplus \sum_{\widetilde{H}' \in \mathfrak{S}_{\overline{H}'}} \oplus \mathfrak{a}_{\widetilde{H}'}^{(\pi')} \oplus S'_{\pi'}$$

where $\mathfrak{S}_{\pi'}$ denotes the set of all subgroups $\widetilde{\Pi}'$ of Π such that $\Pi' \subset \widetilde{\Pi}'$ and $[\widetilde{\Pi}' : \Pi']$ is a prime. However we have already proved the assertion in case Π is cyclic. Therefore, for any $\Pi' \in \widetilde{\mathfrak{S}}_k$, there is a permutation Π/Π' -module $S''_{\pi'}$ such that $\mathfrak{c}_{\pi'} \oplus S''_{\pi'} \cong Z\Pi/\Pi' \oplus S''_{\pi'}$. Accordingly we have

$$\mathfrak{a}_{\Pi'} \bigoplus_{\widetilde{\Pi}' \in \mathfrak{S}_{\Pi'}} \bigoplus Z\Pi/\widetilde{\Pi}' \oplus S_{\Pi'} \cong Z\Pi/\Pi' \oplus \sum_{\widetilde{\Pi}' \in \mathfrak{S}_{\Pi'}} \bigoplus \mathfrak{a}_{\widetilde{\Pi}'}^{(\Pi')} \oplus S_{\Pi'}$$

for some permutation Π/Π' -module $S_{\Pi'}$. From this and $(*)_k$ it follows immediately that

$$\mathfrak{a} \bigoplus_{\Pi' \in \mathfrak{S}_{k}} \mathcal{Z}\Pi/\Pi' \bigoplus_{\Pi'' \in \mathfrak{S}_{-} \mathfrak{S}_{k}} \mathcal{Z}\Pi/\Pi'' \bigoplus_{\Pi' \in \mathfrak{S}_{k}} \sum_{\widetilde{\Pi'} \in \mathfrak{S}_{H'}} \mathcal{Z}\Pi/\widetilde{\Pi'} \bigoplus_{\Pi' \in \mathfrak{S}_{k}} \mathcal{Z}\Pi/\widetilde{\Pi'} \bigoplus_$$

$$\cong Z\Pi \oplus \sum_{\Pi' \in \mathfrak{S}_k} \oplus Z\Pi/\Pi' \oplus \sum_{\Pi'' \in \mathfrak{S} - \mathfrak{S}_k} \oplus Z\Pi/\Pi'' \oplus \sum_{\Pi' \in \tilde{\mathfrak{S}}_k} \sum_{\widetilde{\Pi}' \in \mathfrak{S}_{\Pi'}} \oplus \mathfrak{a}^{(\Pi')} \oplus \sum_{\Pi' \in \tilde{\mathfrak{S}}_k} \oplus S_{\Pi'}.$$

It is easily seen that any $\widetilde{\Pi}'$ of $\bigcup_{\Pi'\in\widetilde{\mathfrak{S}}_k}\mathfrak{S}_{\Pi'}$ contains some Π'' of \mathfrak{S}_{k+1} . According to (B), for fixed $\Pi''\in\mathfrak{S}_{k+1}$, we have

$$Z\Pi/\Pi'' \bigoplus_{\substack{\Pi'' \subseteq \widetilde{\Pi}' \\ \widetilde{\Pi}' \in \mathfrak{S}_{\Pi'}}} \bigoplus \mathfrak{a}_{\widetilde{\Pi}'}^{(\Pi')} \cong \mathfrak{a}_{\Pi'} \bigoplus_{\substack{\Pi'' \subseteq \widetilde{\Pi}' \\ \widetilde{\Pi}' \in \mathfrak{S}_{\Pi'}}} \bigoplus [Z\Pi/\widetilde{\Pi}']^{(l\widetilde{\Pi}')}$$

for a projective ideal $\mathfrak{a}_{\Pi'}$ of $Z\Pi/\Pi''$ and $l_{\tilde{\Pi}'} \geq 0$. Hence from (**) we obtain $\mathfrak{a} \oplus_{\Pi'' \in \mathfrak{S}_{k+1}} \oplus Z\Pi/\Pi'' \oplus \sum_{\Pi''' \in \mathfrak{S} - \mathfrak{S}_{k+1}} \oplus Z\Pi/\Pi''' \oplus T$

$$\cong Z\Pi \oplus \sum_{\Pi'' \in \mathfrak{S}_{k+1} - \tilde{\mathfrak{S}}_{k+1}} \oplus Z\Pi/\Pi'' \oplus \sum_{\Pi'' \in \tilde{\mathfrak{S}}_{k+1}} \oplus \mathfrak{a}_{\Pi'} \oplus \sum_{\Pi''' \in \mathfrak{S} - \mathfrak{S}_{k+1}} \oplus Z\Pi/\Pi''' \oplus T$$

for some permutation Π -module T such that $T \cong \sum_{\Pi' \in \mathfrak{S}} \bigoplus [Z\Pi/\Pi']^{(j_{\Pi'})}$, $j_{\Pi'} \geq 0$. Since $\mathfrak{a} \oplus \sum_{\Pi' \in \mathfrak{S}} \oplus Z\Pi/\Pi' \sim Z\Pi \oplus \sum_{\Pi' \in \mathfrak{S}} \oplus Z\Pi/\Pi'$, applying (D), we can omit T from both sides, i.e.,

$$\begin{split} \mathfrak{a} \oplus \sum_{\Pi'' \in \mathfrak{S}_{k+1}} \oplus Z\Pi/\Pi'' \oplus \sum_{\Pi''' \in \mathfrak{S}_{-} \otimes_{k+1}} \oplus Z\Pi/\Pi''' \\ & \cong Z\Pi \oplus \sum_{\Pi'' \in \mathfrak{S}_{k+1} - \tilde{\mathfrak{S}}_{k+1}} \oplus Z\Pi/\Pi'' \oplus \sum_{\Pi'' \in \tilde{\mathfrak{S}}_{k+1}} \oplus \mathfrak{a}_{\Pi'} \oplus \sum_{\Pi''' \in \mathfrak{S}_{-} \otimes_{k+1}} \oplus Z\Pi/\Pi''' \,. \end{split}$$

Thus we obtain $(*)_{k+1}$, which completes the proof.

COROLLARY 4.3. Let Π be a finite abelian group. Then

$$|\gamma_{Z\Pi\oplus_{\Pi'\in\mathfrak{S}}^{\Sigma}\oplus Z\Pi/\Pi'}|=1$$
,

where \mathfrak{S} denotes the set of all subgroups, Π' , of Π such that Π/Π' is cyclic.

§ 5. In §§ 5 and 6 we will study non-projective quasi-permutation modules over finite cyclic groups.

Let Π be a cyclic group of order n. Let $m \mid n$ and let $\Phi_m(T)$ be the m-th

cyclotomic polynomial. We put $\Psi_m(T) = (T^n - 1)/\Phi_m(T)$.

We begin with

LEMMA 5.1. Let Π be a cyclic group of order n. Let M be a Π -module. Then, for any $m \mid n$, $(M^{\mathfrak{o}_m})^* \cong \Psi_m M^*$.

PROOF. Consider the exact sequence: $0 \to M^{\mathfrak{o}_m} \to M \to M/M^{\mathfrak{o}_m} \to 0$. By dualizing this sequence we get an exact sequence

$$0 \longrightarrow (M/M^{\mathfrak{o}_m})^* \longrightarrow M^* \longrightarrow (M^{\mathfrak{o}_m})^* \longrightarrow 0.$$

Then we have $\Psi_m(M/M^{\mathfrak{o}_m})^* = 0$ and therefore there is an epimorphism: $(M^{\mathfrak{o}_m})^* \to \Psi_m M^*$. However $\operatorname{rank}_Z(M^{\mathfrak{o}_m})^* = \operatorname{rank}_Z\Psi_m M^*$. Hence $\Psi_m M^* \cong (M^{\mathfrak{o}_m})^*$.

PROPOSITION 5.2. Let Π be a cyclic group of order n. Then the following conditions are equivalent:

- (1) For any $m \mid n$, all prime divisors of n in $Z[\zeta_m]$ are principal.
- (2) For any exact sequence $0 \to M' \to M \to M'' \to 0$ of Π -modules and any $m \mid n$, $M^{\bullet_m} \cong M'^{\bullet_m} \oplus M''^{\bullet_m}$.
 - (3) For any Π -module M and any $m \mid n$, $M^{\Phi_m} \cong \Psi_m M$.
 - (4) For any Π -module M and any $m \mid n$, $(M^*)^{\bullet_m} \cong (M^{\bullet_m})^*$.

If n is a prime power or if the class number of $Q(\zeta_n)$ is 1, then the above conditions are satisfied.

PROOF. The implications $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$ were proved by Swan ([12], p. 108), and the implication $(3) \Leftrightarrow (4)$ follows directly from (5.1). Let $m \mid n \ (n \neq 1)$ and let \mathfrak{P} be a prime divisor of n in $Z[\zeta_m]$. Then, by a direct computation, we see that $\Psi_m(\zeta_m) \in \mathfrak{p}$ and therefore there is a divisor $d \neq m$ of n such that $\Phi_d(\zeta_m) \in \mathfrak{p}$. Now put $A = Z[\zeta_m]/\mathfrak{p}$. Since A can be considered as a $Z[\zeta_d]$ -module, we can construct an exact sequence: $0 \to \mathfrak{q} \to Z[\zeta_d] \to A \to 0$ where \mathfrak{q} is an ideal of $Z[\zeta_d]$. Forming the pullback as $Z\Pi$ -modules, we get the following commutative diagram with exact rows and columns:

Then $M^{\mathfrak{o}_d} \cong \mathfrak{q}$ and $M^{\mathfrak{o}_m} \cong \mathfrak{p}$. Suppose that the condition (2) is satisfied. Because of the exactness of the second row, we have $M^{\mathfrak{o}_m} \cong Z[\zeta_m]$, hence $\mathfrak{p} \cong Z[\zeta_m]$, which implies (1). On the other hand, suppose that (4) is satisfied.

By dualizing the second row, we have an exact sequence $0 \to Z[\zeta_m] \to M^* \to \mathfrak{q}^{-1} \to 0$. Hence $(M^*)^{\phi_m} \cong Z[\zeta_m]$. Since $(M^*)^{\phi_m} \cong (M^{\phi_m})^*$, $\mathfrak{p} \cong Z[\zeta_m]$, which implies also (1). The second part of the proposition is obvious. Thus the proof of the proposition is completed.

Recently T. Sumioka ([10]) proved the equivalence of (1) and (2) in (5.2) in a little more general form.

We should remark that the smallest integer n which does not satisfy the conditions in (5.2) is $39 = 3 \cdot 13$. In fact, $\mathfrak{p} = (\zeta_{39} - 3, 13)$ is a non-principal prime ideal of $Z[\zeta_{39}]$ which divides 39.

LEMMA 5.3 ([13]). Let Π be a cyclic group of order n and let $0 \to M \to N \to S \to 0$ be an exact sequence where M, N are Π -modules and S is a permutation Π -module. Then $N^{\phi_n} \cong M^{\phi_n} \oplus S^{\phi_n} \cong M^{\phi_n} \oplus Z[\zeta_n]^{(t)}$ for some $t \ge 0$. Especially, if M is a quasi-permutation Π -module, then M^{ϕ_n} is a free $Z[\zeta_n]$ -module.

PROPOSITION 5.4. Let Π be a cyclic group of order n and let M be a Π -module. Then we have $M_{(r)} = M^{\mathfrak{o}_n} \oplus M/M^{\mathfrak{o}_n}$. Especially M is a quasi-permutation Π -module if and only if $M^{\mathfrak{o}_n}$ is a free $Z[\zeta_n]$ -module and $M/M^{\mathfrak{o}_n}$ is a quasi-permutation Π -module.

PROOF. The second part of the proposition follows directly from the first part and (5.3). Hence we have only to prove the first part. First suppose that $M^{\mathfrak{o}_n}$ is $Z[\zeta_n]$ -free. Let t be the rank of $M^{\mathfrak{o}_n}$. Then we have an exact sequence

$$0 \longrightarrow M^{\phi_n} \longrightarrow Z\Pi^{(t)} \longrightarrow (Z\Pi/(\Psi_n(\sigma)))^{(t)} \longrightarrow 0$$

where σ denotes a generator of Π . Put $F = Z\Pi^{(t)}$ and $L = (Z\Pi/(\Psi_n(\sigma)))^{(t)}$. Using the same method as in the proof of (2.3) we can show that L is a quasi-permutation Π -module. Since $\hat{H}^0(\Pi', Z[\zeta_n]) = 0$ for any subgroup Π' of Π , we have $\hat{H}^1(\Pi', L) = 0$ for any subgroup Π' of Π . Hence, by (1.6), there exist permutation Π -modules S, S' such that $L \oplus S' \cong S$. Forming the pushout of $M^{\phi_n} \to F$ and $M^{\phi_n} \to M$, we get the following commutative diagram with exact rows and columns:

From the second column, we get an exact sequence

$$0 \longrightarrow M \longrightarrow S' \oplus F \oplus M/M^{\bullet_n} \longrightarrow S \longrightarrow 0.$$

According to (1.3), we have $M_{\overline{(r)}} S' \oplus F \oplus M/M^{\mathfrak{o}_n} \overline{(r)} M/M^{\mathfrak{o}_n}$, and therefore $M_{\overline{(r)}} M/M^{\mathfrak{o}_n} \overline{(r)} M/M^{\mathfrak{o}_n} \oplus M/M^{\mathfrak{o}_n} \oplus M/M^{\mathfrak{o}_n}$. In the general case we put $M_0 = M \oplus (M^{\mathfrak{o}_n})^*$. Then $M_0/M_0^{\mathfrak{o}_n} \cong M/M^{\mathfrak{o}_n}$ and $M_0^{\mathfrak{o}_n} \cong M^{\mathfrak{o}_n} \oplus (M^{\mathfrak{o}_n})^*$. Since $M^{\mathfrak{o}_n} \oplus (M^{\mathfrak{o}_n})^*$ is $Z[\zeta_n]$ -free, $M_0^{\mathfrak{o}_n}$ is $Z[\zeta_n]$ -free. Therefore we have $M \oplus (M^{\mathfrak{o}_n})^* \cong M_0 \overline{(r)} M_0/M_0^{\mathfrak{o}_n} \cong M/M^{\mathfrak{o}_n}$, and hence $M \oplus (M^{\mathfrak{o}_n})^* \oplus M^{\mathfrak{o}_n} \overline{(r)} M/M^{\mathfrak{o}_n} \oplus M^{\mathfrak{o}_n}$. Because $M^{\mathfrak{o}_n} \oplus (M^{\mathfrak{o}_n})^*$ is $Z[\zeta_n]$ -free, this shows that $M_{\overline{(r)}} M/M^{\mathfrak{o}_n} \oplus M^{\mathfrak{o}_n}$. Thus the proof of the proposition is completed.

Theorem 5.5. Let Π be a cyclic p-group of order p^l .

- (0) Let M be a Π -module. Then $M = \sum_{m=1}^{l} \bigoplus M^{\phi_{p}m}$.
- (1) A Π -module M is a quasi-permutation Π -module if and only if, for any $1 \leq m \leq l$, $M^{\bullet_{p^m}}$ is $Z[\zeta_{p^m}]$ -free.
- (2) If M is a quasi-permutation Π -module, then the dual module M^* is also a quasi-permutation Π -module.
- (3) Let $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ be an exact sequence of Π -modules. If two of M', M and M'' are quasi-permutation Π -modules, then the rest of them is also a quasi-permutation Π -module.

PROOF. We will prove (0) by induction on l. For l=0 this is obvious. Suppose that $l \ge 1$. Now, by (5.4), we have $M \xrightarrow{(r)} M^{\mathfrak{o}_p l} \oplus M/M^{\mathfrak{o}_p l}$. Let Π_1 be the subgroup of Π of order p. Then $M/M^{\mathfrak{o}_p l}$ can be regarded as a Π/Π_1 -module. Therefore, by induction, $M/M^{\mathfrak{o}_p l} \xrightarrow{(r)} \sum_{m=1}^{l-1} \oplus (M/M^{\mathfrak{o}_p l})^{\mathfrak{o}_p m}$. However, by (5.2), $M^{\mathfrak{o}_p m} \cong (M/M^{\mathfrak{o}_p l})^{\mathfrak{o}_p m}$ for any $0 \le m \le l-1$, and so $M/M^{\mathfrak{o}_p l} \xrightarrow{(r)} \sum_{m=1}^{l-1} \oplus M^{\mathfrak{o}_p m}$. Thus we get $M \xrightarrow{(r)} \sum_{m=1}^{l} \oplus M^{\mathfrak{o}_p m}$.

The assertion (1) follows directly from (0) and (2.6) (or (5.4)), and both (2) and (3) are immediate consequences of (1) and (5.2).

COROLLARY 5.6. Let Π be a cyclic p-group and let Ω_{π} be the maximal order in $Q\Pi$ which contains $Z\Pi$. Then the abelian semigroup $T(\Pi)$ is a group isomorphic to $C(\Omega_{\pi})$.

More generally, for a cyclic group Π of order n, we consider the following statements:

- (1) A Π -module M is a quasi-permutation Π -module if and only if, for any $m \mid n$, M^{ϕ_m} is $Z[\zeta_m]$ -free.
- (2) If M is a quasi-permutation Π -module, then M^* is also a quasi-permutation Π -module.
- (3) Let $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ be an exact sequence of Π -modules. If two of M', M and M'' are quasi-permutation Π -modules, then the rest of them is a quasi-permutation Π -module.

We conjecture that, for any cyclic group of order n which satisfies the conditions in (5.2), all of (1), (2) and (3) are true. However we did not succeed in proving this in the general case.

REMARK 5.7. Let Π be a cyclic group of order n which satisfies the conditions in (5.2). If (1) is true for Π , then both (2) and (3) are true for Π .

REMARK 5.8. Let Π be a cyclic group of order n which does not satisfy the conditions in (5.2). Then both (2) and (3) are false for Π .

REMARK 5.9. Let p, q be primes such that $q \mid p-1$ and suppose that there is a non-principal prime divisor q of p in $Z[\zeta_q]$. Let Π be a cyclic group of order pq. Then (1) is false for Π (cf. [12]). The smallest pair of primes satisfying the assumption is $\{47, 23\}$.

From these remarks it seems fairly difficult to generalize (5.5), (0) and (1) to any finite cyclic group.

PROPOSITION 5.10. Let $\Pi = [\sigma]$ be a cyclic group of order n and let $p^l \mid n$ where p is a prime. Let $0 \rightarrow N \rightarrow M \rightarrow Z [\zeta_{pl}]^{(t)} \rightarrow 0$ be an exact sequence of Π -modules where N has no non-zero element invariant under σ^{pl-1} (when $l \ge 1$) and t is a non-negative integer. Let K/k be a Galois extension with group Π . Then K(M) can be identified with $K(N \oplus Z [\zeta_{nl}]^{(t)})$.

PROOF. It suffices to prove this in the case of t=1 and $l \ge 1$. Let $n=p^ld$, $q=p^l-p^{l-1}$ and $r=p^{l-1}$. We can identify K(M) with $K(N)(X_1,X_2,\cdots,X_q)$ with the action of H such that $\sigma(X_i)=X_{i+1},\ 1\le i\le q-1$ and $\sigma(X_q)=\sigma^q(X_1)=\frac{a}{X_1X_{r+1}X_{2r+1}\cdots X_{(p-2)r+1}}$ for some $a\in N$. Then $\sigma^r(\sigma^q(X_1))=\sigma^{p^l}(X_1)=\frac{\sigma^r a}{a}\cdot X_1$. Since $\sigma^n(X_1)=\sigma^{dp^l}(X_1)=X_1$, we have

$$\frac{\sigma^r a}{a} \cdot \sigma^{pl} \left(\frac{\sigma^r a}{a} \right) \cdot \sigma^{2pl} \left(\frac{\sigma^r a}{a} \right) \cdot \cdots \cdot \sigma^{(d-1)pl} \left(\frac{\sigma^r a}{a} \right) = 1.$$

Hence $a \cdot \sigma^{pl} a \cdot \sigma^{2pl} a \cdots \sigma^{(d-1)pl} a$ is an element of N invariant under σ^r . By the assumption we have

$$a \cdot \sigma^{pl} a \cdot \sigma^{2pl} a \cdots \sigma^{(d-1)pl} a = 1$$
.

If we put $K' = K(N)^{[\sigma^p l]}$, then $N_{K(N)/K'}(a) = 1$. By the Hilbert's theorem 90, there is $b \in K(N)$ such that $a = b/\sigma^p l b$. Further put $c = \sigma^r b/b$ and $Z_i = \sigma^{i-1} c \cdot X_i$, $1 \le i \le q$. Then $\sigma^{i-1} c \in K(N)$ and so $K(M) = K(N)(Z_1, Z_2, \dots, Z_q)$. We easily see that $c \cdot \sigma^r c \cdot \sigma^{2r} c \cdots \sigma^{(p-1)r} c = a^{-1}$ and so we get

$$\sigma(Z_q) = \frac{1}{Z_1 Z_{r+1} Z_{2r+1} \cdots Z_{(p-2)r+1}}.$$

Therefore the group generated by Z_1, Z_2, \dots, Z_q is isomorphic to $Z[\zeta_{pl}]$. Thus K(M) can be identified with $K(N \oplus Z[\zeta_{pl}])$.

COROLLARY 5.11. Let $\Pi = [\sigma]$ be a cyclic group of order n and let $p^l | n$ where p is a prime. Let $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$ be an exact sequence of Π -modules

where N has no non-zero element invariant under σ^{pl-1} (when $l \ge 1$) and L is a $Z[\zeta_{nl}]$ -module. Then $M_{\overline{(r)}} N \oplus L$.

PROOF. We have an exact sequence

$$0 \longrightarrow N \longrightarrow M \oplus L^* \longrightarrow L \oplus L^* \longrightarrow 0$$
.

Since $L \oplus L^*$ is $Z[\zeta_{p^l}]$ -free, this sequence satisfies the assumption in (5.10) and hence $M \oplus L^* \xrightarrow{(r)} N \oplus L \oplus L^*$. Therefore $M \oplus L^* \oplus L \xrightarrow{(r)} N \oplus L \oplus L^* \oplus L$. Since $L \oplus L^* \xrightarrow{(r)} 0$, this shows that $M \xrightarrow{(r)} N \oplus L$.

PROPOSITION 5.12. Let Π be a cyclic group of order p^lq where p,q are distinct primes and l is a positive integer. Let M be a Π -module. Let $M_1 = M^{\Psi_1}$, $M_2 = M_1^{\Psi_p}$, \cdots , $M_l = M_{l-1}^{\Psi_{pl-1}}$ and $M'_1 = \Phi_{plq} M^{\Phi_{plq}\Phi_{pl-1q}\cdots\Phi_q}$, $M'_2 = \Phi_{pl-1q} M'_1$, \cdots , $M'_l = \Phi_{pq} M'_{l-1}$. Then

$$M_{\stackrel{(r)}{-}}M^{\mathfrak{o}plq} \oplus \sum\limits_{i=1}^l \oplus M'_i{}^{\mathfrak{o}pl-iq} \oplus \sum\limits_{j=1}^l \oplus \Psi_{pj}M_j$$
 .

Especially M is a quasi-permutation Π -module if and only if $M^{\bullet_{pl_q}}$ is $Z[\zeta_{pl_q}]$ -free, each $M'^{\bullet_{pl-l_q}}$ is $Z[\zeta_{pl-l_q}]$ -free and each $\Psi_{p^j}M_j$ is $Z[\zeta_{pl}]$ -free.

PROOF. We consider the following exact sequences:

$$0 \longrightarrow M_{1} \longrightarrow M \longrightarrow \Psi_{1}M \longrightarrow 0$$

$$0 \longrightarrow M_{2} \longrightarrow M_{1} \longrightarrow \Psi_{p}M_{1} \longrightarrow 0$$

$$\vdots$$

$$0 \longrightarrow M_{l} \longrightarrow M_{l-1} \longrightarrow \Psi_{pl-1}M_{l-1} \longrightarrow 0$$

$$0 \longrightarrow M_{l}^{\psi_{pl}} \longrightarrow M_{l} \longrightarrow \Psi_{pl}M_{l} \longrightarrow 0.$$

Here $\Psi_1 M$ is expressible as a direct sum of the copies of the trivial Π -module Z and, for each $1 \leq j \leq l$, $\Psi_{pj} M_j$ can be regarded as a $Z[\zeta_{pl}]$ -module. Let σ be a generator of Π . Then M_j has no non-zero element invariant under σ^{pj-1} . Therefore, according to (5.11), $M_{-(r)} M_1$ and, for each $1 \leq j \leq l$, $M_j - (r) M_{j+1} \oplus \Psi_{pj} M_j$. Thus we get

$$M \xrightarrow{(r)} M_l \Psi_p l \bigoplus \sum_{i=1}^l \bigoplus \Psi_{pj} M_j$$
.

We easily see that $M_l^{\Psi_p l} = M^{\Phi_p l} q^{\Phi_p l - 1} q^{\dots \Phi_q}$. Put $M' = M_l^{\Psi_p l}$. Consider the following exact sequences:

$$0 \longrightarrow M'^{\bullet plq} \longrightarrow M' \longrightarrow M'_1 \longrightarrow 0$$

$$0 \longrightarrow M'_1^{\bullet pl-1q} \longrightarrow M'_1 \longrightarrow M'_2 \longrightarrow 0$$
......

$$0 \longrightarrow M'_{l-1}{}^{\phi pq} \longrightarrow M'_{l-1} \longrightarrow M'_{l} \longrightarrow 0$$
$$0 \longrightarrow M'_{l}{}^{\phi q} \longrightarrow M'_{l} \longrightarrow 0.$$

Here $M'^{\bullet plq} = M^{\bullet plq}$. Then, by (5.4), we have $M' \xrightarrow{(r)} M^{\bullet plq} \oplus M'_1$. Let Π'_i be the subgroup of Π of order p^i , for each $1 \le i \le l$. Then M'_i can be regarded as a Π/Π'_i -module. By virtue of (5.4), we have $M'_i \xrightarrow{(r)} M'_i{}^{\bullet pl-iq} \oplus M'_{i+1}$. Hence we get

$$M'$$
 $\stackrel{(r)}{-}$ $M^{\phi plq} \bigoplus \sum_{i=1}^{l} \bigoplus M'^{\phi pl-iq}_i$.

Consequently we get

$$M^{-}_{(r)}M' \oplus \sum_{j=1}^{l} \oplus \Psi_{pj}M_{j} -_{(r)}M^{\mathfrak{o}plq} \oplus \sum_{i=1}^{l} \oplus M'_{i}{}^{\mathfrak{o}pl-iq} \oplus \sum_{j=1}^{l} \oplus \Psi_{pj}M_{j}.$$

This completes the proof of the first part. The second part of the proposition follows immediately from the first part and (2.6).

LEMMA 5.13. Let Π be a cyclic group of order n and let m_1 , m_2 be divisors of n such that m_1+m_2 and m_2+m_1 . Then $\operatorname{Ext}^1_{Z\Pi}(M_1,\,M_2)=0$ for any $Z[\zeta_{m_1}]$ -module M_1 and any $Z[\zeta_{m_2}]$ -module M_2 .

PROOF. From the fact that $(\Phi_{m_1}(T), \Phi_{m_2}(T)) = Z[T]$ this follows immediately.

PROPOSITION 5.14. Let Π be a cyclic group of order $p_1p_2p_3$ where p_1 , p_2 , p_3 are distinct primes. Let M be a Π -module. Let $M' = \Phi_{p_1p_2p_3}M^{\Phi_{p_1p_2p_3\Phi_{p_1p_3\Phi_{p_2p_3}}}}$ and $M'' = M^{\#_1}$. Then

$$M_{\stackrel{(r)}{-}}M^{\phi_{p_1p_2p_3}} \oplus M'^{\phi_{p_1p_2}} \oplus M'^{\phi_{p_1p_3}} \oplus M'^{\phi_{p_2p_3}} \oplus \Psi_{p_1}M'' \oplus \Psi_{p_2}M'' \oplus \Psi_{p_2}M''$$
.

Especially M is a quasi-permutation Π -module if and only if $M^{\mathfrak{o}_{p_1p_2p_3}}$ is $Z[\zeta_{p_1p_2p_3}]$ -free, each $M'^{\mathfrak{o}_{p_ip_j}}$ is $Z[\zeta_{p_ip_j}]$ -free and each $\Psi_{p_i}M''$ is $Z[\zeta_{p_i}]$ -free.

PROOF. We have only to prove the first part. Consider the exact sequence $0 \to M'' \to M \to \Psi_1 M \to 0$. Then $\Psi_1 M \cong Z^{(t)}$ for some $t \ge 0$ and so $M \to M'' \to M''$. Now put $\Phi = \Phi_{p_1 p_2 p_3} \cdot \Phi_{p_1 p_2} \cdot \Phi_{p_1 p_3} \cdot \Phi_{p_2 p_3}$. Then $M^{\phi} = M''^{\phi}$. Hence we have an exact sequence $0 \to M^{\phi} \to M'' \to \Phi M'' \to 0$. Then $\Phi M''$ can be regarded as a $Z\Pi/(\Phi_{p_1}(\sigma)\Phi_{p_2}(\sigma)\Phi_{p_3}(\sigma))$ -module where σ denotes a generator of Π . Therefore by (5.13) we can write $M'' = M_1 \oplus M_2 \oplus M_3$ where each M_i is a $Z[\zeta_{p_i}]$ -module. Each M_i is clearly isomorphic to $\Psi_{p_i}M''$. Applying (5.11) repeatedly, we get

Next consider the exact sequence $0 \to M^{\mathfrak{o}_{p_1p_2p_3}} \to M^{\mathfrak{o}} \to M' \to 0$. According to (5.4), $M^{\mathfrak{o}} \xrightarrow{(r)} M^{\mathfrak{o}_{p_1p_2p_3}} \oplus M'$. Since M' can be regarded as a $Z\Pi/(\Phi_{p_1p_2}(\sigma)\Phi_{p_1p_3}(\sigma)\Phi_{p_2p_3}(\sigma))$ -module, again by (5.13) we can write $M' = M_{12} \oplus M_{13} \oplus M_{23}$ where each M_{ij} is a $Z[\zeta_{p_ip_j}]$ -module. It is easily seen that $M_{ij} \cong M'^{\mathfrak{o}_{p_ip_j}}$. Hence we have

$$M^{\phi} \xrightarrow{(r)} M^{\phi p_1 p_2 p_3} \bigoplus M'^{\phi p_1 p_2} \bigoplus M'^{\phi p_1 p_3} \bigoplus M'^{\phi p_2 p_3}$$
.

Thus we get

$$M \xrightarrow{\quad (r) \quad} M^{\phi p_1 p_2 p_3} \oplus M'^{\phi p_1 p_2} \oplus M'^{\phi p_1 p_3} \oplus M'^{\phi p_2 p_3} \oplus \varPsi_{p_1} M'' \oplus \varPsi_{p_2} M'' \oplus \varPsi_{p_3} M'' \ .$$

COROLLARY 5.15. Let Π be a cyclic group as in (5.12) or (5.14) and let Ω_{Π} be the maximal order in $Q\Pi$ containing $Z\Pi$. Then the abelian semigroup $T(\Pi)$ is a group isomorphic to $C(\Omega_{\Pi})$.

§ 6. The following lemma is due to P. Samuel ([9]).

LEMMA 6.1. Let k be an infinite field and let K_1 , K_2 be extensions of k finitely generated over k. Suppose that there exist elements x_1, x_2, \dots, x_n which are algebraically independent over K_1 and K_2 such that $K_1(x_1, x_2, \dots, x_n) = K_2(x_1, x_2, \dots, x_n)$. Then K_1 is k-isomorphic to K_2 .

LEMMA 6.2. Let Π be a cyclic p-group of order p^l and let K/k be a Galois extension with group Π . In case of $p \neq 2$, suppose that k is an infinite field. Then $K(Z[\zeta_{pl}])^{\pi}$ is rational over k.

PROOF. For l=1 this has been proved in [2], (1.13). Hence we may suppose that $l \ge 2$. Let $q = p^{l-1}$ and let σ be a generator of Π .

- (i) Case of p=2. Take $b\in K$ such that $\sigma^q b\neq b$ and put $a=b/\sigma^q b$. Then $a\cdot \sigma^q a=1$ and $\sigma^q a\neq a$. Now $K(Z[\zeta_{2l}])$ is expressed as the rational function field $K(X_1,X_2,\cdots,X_q)$ with the action of $I\!\!I$ such that $\sigma(X_i)=X_{i+1},\ 1\leq i\leq q-1$ and $\sigma(X_q)=1/X_1$. If we put $Y_1=\frac{X_1+a}{X_1+\sigma^q a}$ and $Y_{i+1}=\sigma(Y_i),\ 1\leq i\leq q-1$, then $K(Z[\zeta_{2l}])=K(Y_1,Y_2,\cdots,Y_q)$ and $\sigma(Y_q)=\frac{\sigma^q a}{a}Y_1$, and therefore $I\!\!I$ acts semilinearly on $\sum_{i=1}^q KY_i$. Thus, by (1.1), $K(Z[\zeta_{2l}])^I$ is rational over k.
- (ii) Case of $p \neq 2$. Suppose that k is an infinite field. By the definition $K(Z\Pi)$ is the rational function field $K(X_1, X_2, \cdots, X_{pl})$ with the action of Π such that $\sigma(X_i) = X_{i+1}$, $1 \leq i \leq p^l 1$ and $\sigma(X_{pl}) = X_1$. Then $K(Z \lceil \zeta_{pl} \rceil)$ can be identified with $K(X_{q-1}^{-1}|X_1, X_{q+2}^{-1}|X_2, \cdots, X_{pl}^{-1}|X_{q(p-1)})$ because $Z \lceil \zeta_{pl} \rceil = (\sigma^q 1)$, and we have $K(Z\Pi) = K(Z \lceil \zeta_{pl} \rceil)(X_1, X_2, \cdots, X_q)$. Let

$$Y = \frac{X_1 + X_{q+1} + X_{2q+1} + \dots + X_{(p-1)q+1}}{X_1}.$$

Then $Y\in K(Z[\zeta_{pl}])$. Further let $Z_1=X_1+X_{q+1}+X_{2q+1}+\cdots+X_{(p-1)q+1}$ and $Z_{i+1}=\sigma^iZ_1,\ 1\leq i\leq q-1$. Then $\sigma^qZ_1=Z_1$ and Z_1,Z_2,\cdots,Z_q are algebraically independent over $K(Z[\zeta_{pl}])$ since $Z_i=\sigma^{i-1}(Y)\cdot X_i,\ 1\leq i\leq q$. Now put $V=\sum\limits_{j=1}^{pl}KX_j$ and $W=\sum\limits_{i=1}^qKZ_i$. Then $W\subseteq V$ and Π acts semi-linearly on V and W. By (1.1) there exist $U_1,U_2,\cdots,U_q\in K(W)$ which are invariant under Π such that $K(W)=K(U_1,U_2,\cdots,U_q)$. Then we have

$$K(Z\Pi)^{\mathrm{II}} = [K(Z\lceil \zeta_{\mathit{pl}}\rceil)(W)]^{\mathrm{II}} = K(Z\lceil \zeta_{\mathit{pl}}\rceil)^{\mathrm{II}}(U_{\mathit{1}},\ U_{\mathit{2}},\ \cdots,\ U_{\mathit{q}})\ .$$

On the other hand we have an exact sequence:

$$0 \longrightarrow W \longrightarrow V \longrightarrow V/W \longrightarrow 0$$

of K-vector spaces. Applying (1.1) to this we can find $U_1', U_2', \cdots, U_{q(p-1)}' \in K(V)$ such that $K(Z\Pi)^{\Pi} = K(V)^{\Pi} = K(W)^{\Pi}(U_1', U_2', \cdots, U_{q(p-1)}')$. Therefore we get

Here U_1, U_2, \cdots, U_q are algebraically independent over $K(Z[\zeta_{pl}])^n$ and $k(U_1, U_2, \cdots, U_{q(p-1)})$. Then, by virtue of (6.1), $K(Z[\zeta_{pl}])^n$ is k-isomorphic to the rational function field $k(U_1, U_2, \cdots, U_{q(p-1)})$. This completes the proof of the lemma.

THEOREM 6.3. Let Π be a cyclic p-group and let K/k be a Galois extension with group Π . In case of $p \neq 2$ suppose that k is an infinite field. If M is a quasi-permutation Π -module, then $K(M)^{\Pi}/k$ is rational.

PROOF. Let Π be a cyclic group of order p^l . As in (5.12) we put $M_0 = M$, $M_1 = M_0^{\psi_1}$, $M_2 = M_1^{\psi_p}$, \cdots , $M_l = M_{l-1}^{\psi_p}$. Then we have the following exact sequences:

$$0 \longrightarrow M_{1} \longrightarrow M_{0} \longrightarrow \Psi_{1}M_{0} \longrightarrow 0$$

$$0 \longrightarrow M_{2} \longrightarrow M_{1} \longrightarrow \Psi_{p}M_{1} \longrightarrow 0$$

$$\vdots$$

$$0 \longrightarrow M_{l} \longrightarrow M_{l-1} \longrightarrow \Psi_{pl-1}M_{l-1} \longrightarrow 0$$

$$0 \longrightarrow M_{l} \longrightarrow \Psi_{pl}M_{l} \longrightarrow 0.$$

By (5.2) we have $\Psi_{pi}M_i \cong M^{\bullet_p i}$ for each $0 \leq i \leq l$ and further, by (5.5), $M^{\bullet_p i}$ is $Z[\zeta_{pi}]$ -free for each $0 \leq i \leq l$. Therefore, applying (5.10) to the above exact sequences repeatedly, we see that K(M) is k-isomorphic to $K(M^{\bullet_p l} \oplus M^{\bullet_p l-1} \oplus \cdots \oplus M^{\bullet_1})$. Thus we can conclude by (6.2) that $K(M)^n$ is rational over k.

References

- [1] S. B. Conlon, Monomial representations under integral similarity, J. Algebra, 13 (1969), 496-508.
- [.2] S. Endo and T. Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan, 25 (1973), 7-26.
- [3] H. Jacobinski, Genera and decompositions of lattices over orders, Acta Math., 121 (1968), 1-29.
- [4] I. Reiner and S. Ullom, Class groups of integral group rings, Trans. Amer. Math. Soc., 170 (1972), 1-30.

- [5] D.S. Rim, On projective class groups, Trans. Amer. Math. Soc., 98 (1961), 459-467.
- [6] A. V. Roiter, On integral representations belonging to a genus, Izv. Akad. Nauk SSSR, 30 (1966), 1315-1324.
- [7] P. Roquette, Realisierung von Darstellungen endlicher nilpotenter Gruppen, Archiv. der Math., 9 (1958), 241-250.
- [8] M. Rosen, Representations of twisted group rings, Thesis at Princeton Univ., 1963.
- [9] P. Samuel, Some remarks on Lüroth's theorem, Mem. Univ. Kyoto, 27 (1953), 223-224.
- [10] T. Sumioka, A note on the Grothendieck group of a finite group, to appear in Osaka J. Math.
- [11] R.G. Swan, Induced representations and projective modules, Ann. of Math., 71 (1960), 552-578.
- [12] R.G. Swan, The Grothendieck ring of a finite group, Topology, 2 (1963), 85-110.
- [13] R.G. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math., 7 (1969), 145-158.
- [14] V. E. Voskresenskii, Birational properties of linear algebraic groups, Izv. Akad. Nauk SSSR, 34 (1970), 3-19.
- [15] V. E. Voskresenskii, On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $Q(x_1, \dots, x_n)$, Izv. Akad. Nauk SSSR, 34 (1970), 366-375.

Shizuo ENDO

Department of Mathematics Tokyo Metropolitan University Fukazawa-cho, Setagaya-ku, Tokyo, Japan Takehiko MIYATA

Department of Mathematics Osaka City University Sugimoto-cho, Sumiyoshi-ku, Osaka, Japan