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Let II be a finite group. A finitely generated Z-free II-module is briefly
called a I7-module. A II-module is called a permutation I7-module if it is
expressible as a direct sum of some {ZII/Il,} where each II; is a subgroup
of II. Further a II-module M is called a quasi-permutation I7-module if
there exists an exact sequence: 0— M—S— S —0 where S and S’ are per-
mutation //-modules.

In [2] we have studied the properties of quasi-permutation modules in
relation with a problem in invariant theory. In this paper we will give some
basic results on quasi-permutation modules as a continuation to [2].

First we will consider projective quasi-permutation I/-modules.

Let R be a Dedekind domain and K be the quotient field of R. Let X
be a separable K-algebra and 4 be an R-order in 2. Denote by P(A4) the set
of all isomorphism types of finitely generated projective (left) 4-modules and
put P(A)={[P1< P(A)|P is locally free}. Let P,4) be the Grothendieck
group of Py(A4). We define an epimorphism p,: Py(A)—Z by p([P,1—[P,])=
ranky KP,—rank; KP,, Now we put C(A4)=Ker p4, and call this the (reduced)
projective class group of A (cf. [6], [1I]). Especially, if 4 is commutative,
then C(A) is isomorphic to the Picard group of 4. Further let £ be a maximal
R-order in 2 which contains 4. We define a homomorphism: vy : C(A)— C(2)
by vg/A([Plj—[PZ]):[Q@Plj—[!)@ﬂ]. Then it is known that vy, is an

epimorphism but not always a monomorphism. Hence putting C(A4) =Ker vy,
we have an exact sequence:

0 C) CA) C(2) 0.

Especially let A=ZII and let £; be a maximal order in QI/ which
contains ZII. Then, by the Swan’s theorem ((1I]), we have P,(ZII)=P(ZII)
and C(ZIT)={[a]—[ZI1< C(ZII)|a is a projective (left) ideal of ZII such
that Q0P 2p = 2: PRy as Lr-modules}. It is noted that 5(Z17) does not
depend on the choice of 27 (cf. [3]). On the other hand, we put CYZI[)=
{[a]—[ZII71= C(ZIl)|a is a quasi-permutation projective (left) ideal of ZII}.
Then it is easily seen that CYZII) is also a subgroup of C(ZII).

Let IT be a cyclic group of order n and ¢ be a generator of II. We
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denote by @,(T) the m-th cyclotomic polynomial and by £, a primitive m-th
root of unity. Let M be a IT-module and put M?»= {us M| ®,(s)u=0} for
any m|n. Then ZII/(®,(0))= Z[{,] and M can be regarded as a Z[{,]-
module for any m|n. In[2], (1.11) we have proved that a projective /7-module
P is a quasi-permutation //-module if and only if, for any m|n, P’ is Z[{,]-
free. This is clearly equivalent to the assertion that 5(ZH):C‘1(ZH).

In this paper we will first give, as a generalization of this result,

[1] For any finite abelian group II, C(ZII) = CYZII).

It seems natural to ask whether C%ZII) coincides with é(ZH) for any
finite group /I or not. In fact, we will prove

[II] Let II be one of the following groups:

(i) p-groups where p is an odd prime;

(ii) dihedral groups, Dy, where p is a prime and [ is a positive integer ;

(iii) the quaternion group H,, the alternating group A, and the symmetric

group S,.

Then C(ZIT)=c«ZII).

To prove [II] we use the Jacobinski-Roiter’s results in and [6].
Furthermore using them, we can show the following refinement of [I].

(1] Let II be a finite abelian group and let a be a projective (left) ideal
of ZII. Then ais a quasi-permutation II-module if and only if a@ﬂé@@Zﬂ/ﬂ’

_f_-ZHEBIIZ) BZI /I, where & denotes the set of all subgroups, I’ (#1), of
TES

Il such that II/II" is cyclic.

It is much more difficult to examine the properties of non projective quasi-
permutation modules. Here we will consider only the case where I[7is a
cyclic group.

[IV] Let Il be a cyclic p-group of order p'.

(i) A II-module M is a quasi-permutation module if and only if, for any
0<m=<I, M°»™ is a free Z[{ m]-module.

(i) If M is a quasi-permutation II-module, then the dual module M* =
Hom; (M, Z) of M is also a quasi-permutation Il-module.

(iii) Let 0— M’ — M— M"—0 be an exact sequence of Il-modules. If two
of M', M and M” are quasi-permutation Il-modules, then the rest of them is a
quast-permutation II-module.

Let II be a finite group and K/k be a Galois extension with group = II.
Let M be a IT-module with a Z-free basis {u,, u,, -+, u,}. Denote by K(X;, X,,
-+, X,) the rational function field with n-variables X,, X,, -, X, over K and
define the action of IT on K(X|, X,,---, X;), as an extension of the action of
Il on K, by putting

n

n
o(Xy) =11 X7 when a-uiz_f_,‘lmijuj, my; €2
j=

J=1
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for any o<l and 1<i<n. We denote K(X,, X,, -, X,) with this action of
I by K(M).

[V] Let Il be a cyclic p-group and K/k be a Galois extension with
group=1II. In case of p+2, assume that k is infinite. If M 15 a quasi-per-
mutation IT-module, then K(M)"/k is rational.

§1. We give, as a slight generalization of [2], (1.1),

PROPOSITION 1.1. Let K/k be a Galois extension with group II and K(X,, X,,
-, X,) be the rational runction field with n variables X,, X,, -, X, over K,
Further suppose that II acts on K(X,, X,, -, X, as follows:

U(Xi):é\iaij(ff))(j-i—ﬁi(o)y a.0), Blo)eK.

Then K(X,, X,, -, X,)" is rational over k.

PrROOF. We denote by Aff(n, K) the affine transformation group of the
n-dimensional affine space over K. Then we have an exact sequence of [I-
groups:

1—> K™ — Aff(n, K) —> GL(n, K) —> 1.

From this we get an exact sequence:
H\IT, K)™ — H'II, Aff(n, K)) —> H'(Il, GL(n, K)) .

By the Hilbert’s theorem 90 H'(II, K)™ = H'(II, GL(n, K))=1, and so H'(/I,
Aff(n, K))=1. The proposition is clearly a restatement of the fact that
HY(II, Aff(n, K))=1 (cf. [2]).

Let E, F' be extensions of a field 2. We define a relation E—,~F if there
exist variables X, X,, -, X, and Y., Y,, ---,Y, such that E(X,, X,, -, X;) is
k-isomorphic to F(Y,, Y, ---,Y,). An extension E/k is said to be quasi-
rational if £k

Let II be a finite group and denote by Cz; the class of all I7-modules.
Let M, NeCz;. We define an equivalence relation M—5—N if, for any
Galois extension K/k with group=1Il, K(M)"—5-K(N)". If M;—w— N, and
M,——N,, then M, M,—— N,DN,. Let T(II) be the set of all equivalence
classes in Cz;. We define an addition in T({I) by [MJ]+[NI1=[MPN].
Then this makes T(/]) an abelian semigroup.

Further let M, Ne Czz. We write M=5—N if, for any Galois extension
K/k with group = II, K(M)" is k-isomorphic to K(N)".

The following fundamental theorem is essentially due to R.G. Swan (cf.
[13], [14]. Also see [2], (1.6).)

THEOREM 1.2. Let II be a finite group and let M be a Il-module. Then
the following conditions are equivalent:

(1) M is a quasi-permutation Il-module.
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(2) For a fixed Galois extension K/k with group=II, K(M)"/k is quasi-
rational.

(3) For any Galois extension K/k with group =II, K(M)"/k is quasi-rational,
. e., M—5—0.

COROLLARY 1.3. Let II be a finite group. Let

0 M N S 0

be an exact sequence where M, N are II-modules and S is a permutation II-
module. Then N=7=M@S and N——M. Especially N is a quasi-permutation
IT-module if and only if M is a quasi-permutation II-module.

PROPOSITION 1.4. Let II be a finite group. Let M be a II-module and L
be a quasi-permutation II-module. If M@L is a quasi-permutation IT-module,
then M is also a quasi-permutation II-module.

PROOF. By (1.2) we have L—;7—0 and M@ L——0. Therefore M——M
@B L——0. Again by (1.2) we can conclude that M is a quasi-permutation
IT-module.

LEMMA 1.5. Let Il be a finite group. Let M be a Il-module and let

e, Iy be subgroups of II. Then the following conditions are equivalent:

(1) HUI, My=0 for any 1<1<s.

(2) Every exact sequence OﬂM—»;\f—»AZs)EB(ZH/II’i)“ﬁHO, where t,, -, 1,
are non-negative integers, splits. =

PrOOF. For any II-module L and any subgroup II’ of II there exists a
natural isomorphism H'(II’, L) = Exty, (ZII/Il’, L). From this the lemma
follows immediately.

PROPOSITION 1.6. Let IT be a finite group. For any II-module M the follow-
ing conditions are equivalent:

(1) M is a quasi-permutation Il-module and H(II’, M)=0 for any sub-
group II' of II.

(2) There exist permutation II-modules S, S’ such that M S =S. Espe-
cially a projective Il -module P is a quasi-permutation II-module if and only if
there exist permutation IT-modules S, S’ such that PR S’ = S.

PROOF. Assume (1). Then there is an exact sequence 0— M—S—S5 —0
where S and S’ are permutation I/-modules. By (1.5) this sequence splits,
and hence M&@GS' = S. This proves (1)=(2). Conversely assume (2). Then
it is clear by the definition that M is a quasi-permutation I7/-module. Further
we see that H'(II', S)=H'(Il’, S’) =0 for any subgroup II’ of II. Therefore
HY(II', M)=0 for any subgroup /I’ of II. Thus (2)= (1). The second part
of the proposition follows from the first part.

It should be noted that the second part of (1.6) can be directly proved
by dualizing the exact sequence 0— P— S— S5 — 0 where S, S’ are permutation
IT-modules.
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PROPOSITION 1.7. For any finite group II, C(ZII) is a subgroup of C(ZII).

PROOF. Let a be a quasi-permutation, projective ideal of ZII. Then there
exists a projective ideal b of ZII such that aPb=ZII B ZII. By (1.6) (or
by (1.4)) b is a quasi-permutation //-module and we have —([a]—[ZII])=
[e1—[ZI.

§2. Let IT be a cyclic group of order n and ¢ be a generator of I[. Let
Z[T] be the polynomial ring with a variable T over Z and @, ¥ be monic
polynomials of Z[T] such that @-¥=T"—1. If M is a IT-module, there are
three ways to construct a ZII/(®(o¢))-module from M, i.e., putting ¥ M=
T(0)M, M,=M/®@)M and M°= {ue M|®(c)u=0} = Homz (ZII /(@(a)), M),
UM, M, and M° can be regarded as ZII/(®(s))-modules. Then ¥Mc M’
We define an epimorphism 6, : Me—¥ M by 0,@#)=¥(o)u. Especially, if
we take the m-th cyclotomic polynomial @,(T) (m|n) as @(T), we have
ZI /(@ ,(0)) = Z[{n] Where £, denotes the primitive m-th root of unity. We
can easily prove the following two lemmas (cf. [13]).

LEMMA 2.1. Let IT be a cyclic group of order n and o be a generator of
II. For any positive integers m, | dividing n, we have

Z[Cn] when m|l
(@I /LoD =]

when mtl.

If S is a permutation Il-module, then S°m is a free Z[{,]-module.

LEMMA 2.2. Let II be a cyclic group of order n and @(T), W (T) be monic
polynomials such that @(T)¥(T)=T"—1. Let P be a projective II-module.
Then WP=P® and 0p: Po— TP is an isomorphism.

The following proposition has been proved essentially in [2], (1.11).

PROPOSITION 2.3. Let II be a finite abelian group. Then the maximal
order Qp of QI which contains ZII is a quasi-permutation II-module.

PROOF. We can express £y as a direct sum of Z[{]’s where each { is
the root of unity. Therefore it suffices to prove that each Z[{] is a quasi-
permutation //-module. Let us denote by II’ the kernel of the natural pro-
jection of Il on [{]. Then II/Il’ is cyclic and Z[{] can be regarded as a
IT/Il'-module. Hence we may suppose that /I is a cyclic group of order =
with a generator ¢ and Z[{]=ZIl/[@,(c)]. Then, using the Mobius’ inversion
formula, we obtain the following exact sequences of I7-modules:

0 M, zIl ZI/i,—0
0 M, M, ZI/, —0

..........................................
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..........................................

0—ZII /(@ (0) —> M, —> ZII /I, —> 0,

where [I1,,---, I, are subgroups of II. Applying (1.3) to these exact sequences
repeatedly, we see that ZII/(®,(0)) is a quasi-permutation I7-module.
LEMMA 2.4. Let II be a finite group and a be a projective (left) ideal of
ZII. Let Abe an order in QII which contains ZII. Then a@P A=ZII P Aa as
IT-modules.
PROOF. Let n be the order of /I. Then we know nAd < ZIl and there
exists an ideal a, of ZIT such that a,=a and (Ann; A/a,, n)=1 ([IL]). Hence

we may assume that (AnnzA/a, n)=1. Now we can make the commutative
diagram with exact rows:

0 a & Aa n Aa/a — 0

g, e, |

0 —> ZIT AL gz —> 0

where a;, a,, 8;, B, are natural injections. Let p be a rational prime. If p+n,
then Z,II is a maximal Z,-order in QII, therefore both (B,), and (B,), are
isomorphisms. Hence d, (=0) is an isomorphism. On the other hand, if p|n,
then p+Anny ZII/a so that both (a,), and (a,), are isomorphisms, hence d, is
also an isomorphism. Accordingly, for any p, §, is an isomorphism. Thus 0
must be an isomorphism. We identify Aa/a with A/ZII through ¢ and denote
it by A. Forming the pullback of y, and y,, we get the following commuta-
tive diagram with exact rows and columns:

Since a, ZII are Il-projective and L, Aa, A are torsion-free, the second row
and the second column are IT-split. Therefore ZIIP Ada=L =aP A, which
completes the proof.
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Now we prove
THEOREM 2.5. Let Il be a finite abelian group. Then

CzI=c«zIl).

PRrROOF. Let a be a projective ideal of ZII and let £; be the maximal
order in QIT which contains ZII. By the definitions of C(ZIT) and C%ZII),
it suffices to prove that a is a quasi-permutation I/-module if and only if
Qpa= 02, as Qr-modules.

Suppose that a is a quasi-permutation I7-module. Then there exist per-
mutation /7-modules S, S’ such that a®®S =S by (1.6). Since I is abelian,
Q7 is expressible as the direct sum of Z[{,1's where each ¢, is a primitive
m-th root of unity. To show Qpa= Qg it suffices to show Z[{,Ja=Z[{x]
for every component Z[{,] of £,. We denote by II’ the kernel of the natural
projection of II on [{,]. Then II/Il’ is cyclic and Z[{,] can be regarded
as a II/Il’-module. ZH/H’%)Za is a quasi-permutation I7/Il’-module and

Z[Cm]a%Z[Cm]-(ZII/II’%a). Hence we may assume that I is cyclic. In

this case we have a’2@S’?n=S°~ and therefore Z[{,]=a’m=q,,=Z[{n,]a
by (2.1) and (2.2). This proves the only if part.

Conversely suppose that Q2pa=,; as 2;-modules. Then, by virtue of
(2.4), aP Qp=ZIIP Q4. Further, by (2.3), 2, is a quasi-permutation I/-module.
Therefore applying (1.4), we can conclude that a is a quasi-permutation I7-
module. Thus the proof of the theorem is completed.

COROLLARY 2.6. Let Il be a finite abelian group and let .Q,,:iél@gi be

the decomposition of Q27 into Dedekind domains. Then a Z-free 2p-module M
is a quasi-permutation II-module if and only if M= Zg)EBQ;“) for t;=0.
=1

PrOOF. The if part of the corollary follows immediately from (2.3).
Suppose that M is a quasi-permutation //-module. Since each £, is a Dede-
kind domain and a quasi-permutation //-module ((2.3)), we may suppose that

M= Zs)@ai where each a; is a non-zero ideal of £,. The natural homo-

i=1
morphism C(ZII)— C(2;) is an epimorphism. Therefore there exists a pro-
jective ideal a of ZII such that 2,a= M. According to (2.4), we have a@ 25
= ZIIP M, and it follows from (2.3) that a——M-——0. Hence a is a quasi-
permutation I7-module. By virtue of (2.5) we can conclude that M = Qpa= 24,
which completes the proof of the only if part.

REMARK 2.7. Let II be a finite abelian group and let Qn:ﬁ)@u@i be the
i=1

decomposition of 2, into Dedekind domains. Let P be a projective II-
S

module. Then we have P—w— 2@ 2;P. Especially, if II is cyclic, we have

=1
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P‘(%)*ZSZ@QiP-
i=1
PROOF. The first part follows directly from (2.3) and (2.4), and the second
part can be proved along the same line as in the proof of [2], (1.11).

§3. We sketch the Jacobinski-Roiter’s results on orders which will be
used in §§3 and 4.

Let K be an algebraic number field and R be the ring of all algebraic
integers in K. Let 2 be a semi-simple K-algebra and 4 be an R-order in X.
A A-module is called a A-lattice if it is a finitely generated projective R-
module and we denote by C, the class of all A-lattices. Given M, N=C,, we
write M~N if, for any prime ideal p of R, My, = N, as A,-modules.

We say that a A-lattice M satisfies (¢) if End:(KM) does not have any
totally definite quaternion algebra as its simple component.

Let 2 be a maximal R-order in 2 which contains 4. Given M, Ne C,
we write M=N if M~N and QM= 2N as 2-modules. We put yy={N& (4|
N=M} and denote by |rx| the number of all isomorphism types in yy. If
M satisfies (¢), then 7, does not depend on the choice of £.

(A) [6). If N is a local direct summand of M, then there is a decom-
position M= NP L with N'~N.

B) [6). If M is A-faithful and N~N’, then there is M’ such that
MPEN=MPN.

(C) [[6]. Suppose that N is a local direct summand of M and that every
simple X -module S which occurs in KM occurs strictly more times in KM than
in KN. Then N is a direct summand of M. _

(D) [3)). Let M satisfy (¢) and X be a local direct summand of M® for
some I. Then XPM=XPN implies M= N.

(E) @D. G) If Mis an Q-lattice which satisfies (¢), we have |yy|=1 as
a A-lattice. (ii) Let T be a A-faithful, A-lattice satisfying (e) such that |yr|=1.
Then M=N if and only if MPT = NPT.

(E") [@B). Let M be a A-lattice. Suppose that Endz(KM) is a commutative
field and that End.(M) 1is the integral closure of R in Ends; (KM). Then
lyul=1 as a A-latlice.

It is noted that (E’) is a special case of (E), (i).

In (2.5) we have shown that C(ZIT)=C%ZII) for any finite abelian group
II. Here it is natural to ask whether C%ZII) coincides with CzIl) for any
finite group II or not. In this section we will prove that 5(ZH):C‘1(ZH)
for some types of finite groups.

Let II be a finite group. Let QII=2,H2,H --- P2, be the decomposition
of QIT into simple algebras. Denote by K, the center of 2, and let R; be
the ring of all algebraic integers in K.
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A finite group /I is said to be of split type (over Q) if each %, is a full
matrix algebra over K,.

PROPOSITION 3.1. Let II be a finite group of split type. Suppose that, for
each i, there is a quasi-permutation II-module T; such that End;; (QT;) =K,
and Endgy (T))=R,. Then C(ZIT)c CYZII).

PROOF. Put T:iEBTI-. Then T is a faithful quasi-permutation 1I-
i=1

module. By (E’) we have |yr,|=1 for each i. Then, using (A), we easily
see that |yy|=1. Let a be a projective ideal of ZII such that a=ZII. By
virtue of (E), (ii) we have aT = ZIIDT. According to (1.4) this implies that
a is a quasi-permutation I7-module, which completes the proof.

Let S be a Dedekind domain with quotient field L. Let II be a finite
group of automorphisms of L and put K=L" and R=S7. We denote by
A1, S) (4(II, L)) the twisted group algebra of IT over S (L). Then 4(II, L)
is isomorphic to a full matrix algebra over K and 4(II, S) can be regarded
as an R-order in 41, L).

Especially, if S/R is tamely ramified, then 4(II, S) is hereditary, as is
well known, and any finitely generated projective 4(II, S)-module is expres-
sible as a direct sum of ambiguous ideals of S (cf. [8]).

LEMMA 3.2. Suppose that S/R is tamely ramified. Then |ysms|=1.

PROOF. Let a be an ambiguous ideal of S. Then we have Endszga=

[4
ST=R, hence, by (E’), |r./=1. Now we can write 4(II,S)=>@a; as
1=1

A(Il, S)-modules where each a; is an ambiguous ideal of S. Hence, using (C),
we easily see that |ysm,s|=1

LEMMA 3.3. Let Il be a finite group. Suppose that there is an order A in
QII containing ZII which is a quasi-permutation II-module with \y4|=1. Then
C(zIl) c czIl).

ProOF. This follows directly from (2.4) (or (E)) and (1.4).

We denote by I7,,,, the metacyclic group with generators ¢ and z satis-
fying the relations:

tlor=0", o"=1"=]

where (r,n)=1and r"=1modn. It is remarked that the group II,,,, means
the dihedral group D, of order 2n.

PROPOSITION 3.4. Let Il be one of the following groups:

(1) nilpotent groups of odd order;

(2) metacyclic groups {Il,,,,} where q is a prime such that gtn;

(3) dihedral groups {D,};

(4) the alternating group A, and the symmetric group S,.
Then C(ZIT) < C«ZI).

PrOOF. (1) Let II be a finite nilpotent group of odd order n. Let
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RII=%HY,D - P2, be the decomposition of QII into simple algebras and
denote by K; the center of X;. By the well-known Witt-Roquette’s theorem
(7D, for each i, the simple algebra X, is a full matrix algebra over K, and
the field K, is a cyclotomic field Q({,;) for some n;|n. Further let V; be a
simple X ;-module and let X; be the character of II afforded by V,. Then
there exist a subgroup II; of II and a one dimensional K;IT;-module K, with
character p; such that V-zQII%)K- and Q(X;) =Q(p;)=K,;. Now we put
T,=ZI (%)Z[Cm] Then we see that Endgs (T;)=Z[{,,], and from (2.3) it
follows that each T; is a quasi-permutation J7-module. So we have C(ZII)c
CY«ZII) from (3.1).

(2) Let II=II,,,, where ¢ is a prime such that g¢+n. Put II,=[7],
IlI,=[0] and m=(r—1,n). We can write QH:”S_,;EBQH/(@I(G)). If [ divides
m, then II/[6'] is a cyclic group and therefore we have QII/(@,(0)) = Q)
@D Q). Then the images of ZII by the projections on Q({;) and Q({,;) are
Z[¢:] and Z[{,.], respectively. Since both Z[{,] and Z[{,,] are regarded as
IT/[6"]-modules, according to (2.3) these are quasi-permutation I7-modules
and, by (E"), | 720! =172,/ =1. On the other hand, if / does not divide m,
then QIT/(®(0)) is isomorphic to the twisted group algebra A4(II,, Q)
because ¢ is a prime and the order ZII /(®,(0)) in QII /(D (o)) is also isomorphic
to the twisted group algebra 4(I1,, Z[{,]). From the assumption that g is a
prime such that ¢g+n it is easily seen that Z[{,1/Z[{, 1" is tamely ramified,
and hence, by (3.2), |7sumpziep|=1. It is clear that A(/],, Z[C,])zZHZQI? Z¢

as IT-modules and so, by (2.3), 4(I1,, Z[¢,]) is a quasi-permutation ]I-mlodule.
We put /1::”%EB(Z[C,]@Z[qu])@tgjn@d(ﬂo, Z[Z1). Then A is a hereditary
order in QII containing ZII and a quasi-permutation I/-module such that
ly4l=1. Hence, from (3.3), we get CzIh c cuzI).

(3 Let lI=D,=Il,,_,. When 2+n this is a special case of (2). Hence
we have only to prove the assertion when 2(n. We can write QI[=

%@Qﬂ/(@z(a))- Here QII/(@,(0)=Q®QII/(6—1,7+1) and QII/(P.(0)) =

QI /(6+1, t— V)P QI /(6+1, z+1). For each [|n, [>2, QII/(@D (o)) is iso-
morphic to the twisted group algebra 4(I1,, Q(¢,)) and the order ZII/(®,(0))
in QII/(®,(0)) is also isomorphic to the twisted group algebra 41, Z[{,]).
We put T®=Z2, T®=ZI/(6—1,7+1), T®=ZI/(c+1,7—1) and T®=
ZII/(6+1, z+1). Then it is clear that T is a quasi-permutation //-module
with |77l =1. Further, putting T,= 4, Z[{,)(c—1)=ZII /(®;(0), t+1)
for any [|n, [>2, we can show using the same method as in (2.3) that T, is
a quasi-permutation //-module. We easily see that End.; (T,)=Z[{,+ =
Z[Z, 1", and therefore, by (E’), we have |yr,|=1. Thus we conclude by (3.1)
that C(ZIT) < c«(ZID).
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(4) Both A, and S, are of split type, as is well known. The assertion
can be proved using (3.1).

To show the inverse inclusion C4ZII) < é(ZII ) we must refer to a Conlon’s
result.

LEMMA 3.5 ([1]). Let II be a finite group of order n. Suppose that

i@ZH/H{EBLEi“GBZ[I/H}’EBL where I}, and I} are subgroups of Il each
1=1 Jj=1

of which is a cyclic extension of a p-subgroup of II for some prime pln and
L is a II-module. Then s=t and the II} can be reovdered so that ZII/II;=
ZIT/IT} for any 1<i<s.

PROPOSITION 3.6. Let II be a finite group which is a cyclic extension of a
p-group. Then Cq(ZH)gCNJ(ZH). Further let © be a complete set of non-
conjugate subgroups of II, and put T:H,ZE)GEBZH/H’ in the case where no

simple component of QII is a totally definite quaternion algebra and T =
Z[]EBHZ PZII/II' in the other case. Then, for any quasi-permutation projec-
=

twe ideal a of ZII, a®T = ZIIDT, and |yr|=[C(ZI): CAZII)].

PROOF. Let a be a quasi-permutation projective ideal of ZII. Then
we have aEB:“_,@ZH/HQEZt]EBZH/H;’ for some subgroups I}, 11} of II.

i=1 i=1
However a'® = ZII‘® for some k>0 because C(ZII) is a finite group ([11J].
Hence Z]]"“’@i}@(ZH/HQ)“’zé@(ZII/II;-’)“”. By (3.5) we have s=17 and
i=1 Jj=1
¢=1I1, ZII/II! = ZII /Il for any 1<i<s by reordering the II]. Therefore

O@Zsl@zﬁ/ﬂézZU@ii@Zﬁ/H; From this and (D) we get £2,aP 2,

=1 =1
= ;P 2, where 2, denotes a maximal order in QII containing ZII. This
shows that C«ZIT)< C(ZIT). By (D) we have also a@T =ZIDT. Since T
is ZII-faithful, we easily see using (B) and (D) that |yr|=[C(ZII): C(ZII)].

REMARK 3.7. Let II be a finite group of split type. Let F=K, DK,
b --- DK, be the center of QII. Suppose that, for each i, the class number
of K; is 1. Then CYZII) < C(ZII)=C(ZII).

PROOF. Since II is of split type, we have C(2,)=C(F) ([5). By the
assumption, C(F):é@C(Ki):(), hence C(2,)=0. Thus CN(ZH):C(ZH).

i=1

We denote by H, (n=2) the generalized quaternion group of order 4n,

i.e., the group with generators ¢ and ¢ satisfying the relations:

=1, o"=1*%, tlor=g¢

Let N,=[0"]=[7%*] and H,=[¢]. Then H,/N,=D, and QH,=QD,D
QH,/(c"+I). Let n=2"n, 2+n,. Then QH,/(c"+1)= 3 BQH,/(D,(0)).

2™ l|n

For any 27|1|n, [ >1, ¥,=QH,/(®,,(0)) is a quaternion algebra over Q.+

-1
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In case 7 is odd there is a simple component QH,/(®D,(0)) = Q(:) in QH,/(e"+1).
For each 2™|l|n, ZH,/(®,,(0)) = ZH,,Z@ Z[¢;] and so A,=ZH,/(@,(0)) is a

quasi-permutation H,-module. Let £5, be a maximal order in QD, which
contains ZD,. We put Ay, =2,,P X P4, Then Ay, is an order in QH,

2™ {|n

which contains ZH,. Let 24, be a maximal order in QH, which contains
Ag,. There are natural epimorphisms a,: C(ZH,)— C(dy,) and B,: C(dx,)—
C(2y,) induced by Agn@ - and ‘QH"A® -, respectively.

Hp

ZHn
PROPOSITION 3.8. For any prime power p* there is an exact sequence:

Ayl
0 —> CUZHy) —> C(ZHp) —> C(Agy) —> 0.

We have 6(Zsz):Cq(Zsz) if and only if ,BPzN: Cldy ) — C(2p,) is an iso-
morphism. Especially C(Ay,) =0 and CHZH,)=C(ZH,)= C(ZH,).

PROOF. Let a be a quasi-permutation projective ideal of ZH,. Then
a/(6”—1)a is also a quasi-permutation projective ideal of ZD,.. By (3.4) and
(3.6) we have (NT(ZDpz):Cq(ZDpz). Hence we see 2p,a=2p,. On the other
hand, since each X,, is a division algebra, for any subgroup H of H,,
Apm-ZHy/H=A,, or 0. From this it follows that A,ma@ 4,n=Am® Apn.
Thus we have Ay,a® Ay, = Ay, DAy, Conversely let a be a projective
ideal of ZH,, such that Ay 0@ Ay = Ay @ Agy. Then Qppa= 2y, and so
a/(e?*—1)a is a quasi-permutation H,-module. We have also that, for any
m=l, Amd® Apn = Ayn® Apym. Since A,n is a quasi-permutation Hy-module,
according to (1.4), 4,,a is also a quasi-permutation H,-module. Using the
same method as in (2.3) we can show that a/(¢?'41)a is a quasi-permutation
H,-module. Furthermore, considering an exact sequence:

0 —> a/(e?*+1a —> a —> a/(6?*—1)a—> 0,

it can easily be seen that a is a quasi-permutation H,;-module. This completes
the proof of Kernel @, =C%ZH,). The second part of the proposition is
obvious. Hence we will prove only C(4y,)=0. We have Ay, =2p,D4,, and
therefore it suffices to show that any projective ideal of A, is principal. The
quaternion algebra Y, is generated by 1,7, 2 over @ such that *=j;*=—1,
1= —ji and k=1 and A4, can be identified with the order Z+Zi+Zj+Zk in

Y, Let I' be the order in 2, generated by 1,7, &, %—(l—l—i+j+k). Then, as

is well known, I is a maximal order in %, which contains 4, and the class
number ¢(I") of I" is 1. Let a be a projective ideal of 4,. Then there is an
ideal b of A, such that a=b and 2+4[4,:5]. Therefore we may suppose
24[4,:a]. Since [I": 4,]=2, we have a=I"an4,. Because of ¢(I')=1 there
exists w € I" such that 'a=I1"w. Then the norm of ® is odd. Therefore we
can find a unit ¢ of I' such that ew=1mod2 by the well-known result on
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quaternions. Accordingly we can show that a= A,ew, ew = 4,, which com-
pletes the proof of the proposition.
We remark here that Reiner-Ullom ([£]) has proved that C(ZH,) = Z/2Z.
From (3.4), (3.6), (3.7) and (3.8) we get
THEOREM 3.9. Let I be one of the following groups:
(1) p-groups with p+2;
(2) metacyclic groups {Il 1,,,,} where p, q are distinct primes;
(3) dihedral groups {Dp} where p is a prime;
(4) the quaternion group H,, the alternating group A, and the symmetric
group S,.
Then we have C(ZIT) = CYZII).

§4. In this section we will give a basic result on projective quasi-
permutation modules over a finite abelian group which is a refinement of
(2.5).

LEMMA 4.1. Let II=1[0] be a cyclic group of order n and a be a projective
tdeal of ZII such that o®» = Z[{,]. Then there exist a projective ideal ¢ of ZII
with = Z[{,] for any l|n, a permutation II-module S and a projective ideal
a, of ZII/[o™] for any m|n such that n/m is a prime, such that

a@%}@Zﬂ/[a’ﬂ@SEc@%@ﬂm@S.

PrROOF. Let M,=a®d X ®[a/(c™—1)a]’. Then M{»=a’» and Mn=

a’n@P(a?)m = Z[{]1® for any m|n such that n/m is a prime. Also, for any
l|n with n/l=p,p, for primes p,, p,, M= Z[{,J® D [(a~")*]“? for some a;=0.
We now put M,=M,® 3 &H[a/(¢'—1)a]“?. Then, by (2.1), we have

n/1=p1ps

M= Z[L],

MPm=Z[(,1® when n/m=p,

MP = Z[{, )2 when n/l=p,p,,
and MPr = Z[L, 19 P(a*)?*]7»  for some fy, 7, =0
when n/k=p,p,p,. We further put

M;=M,® X &La/(e*—Da)™]7»
n/k=P1P2P3
and repeat the same procedure to M; as to M,. Continuing this procedure,
we finally find s;,=0 and ¢(l)=+1 for any I|n such that, putting M=
aEBHE@[(a/(al—l)a)“”]‘sp, Mt is Z[{,]-free for any k|n. Since a is ZII-
n

<n
faithful and a/(¢'—1)a~ZII/[6"], by (C), there is a projective ideal of ZII
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such that M= cEB“E BLZIT/[e'13%°. Then we see easily that ¢®* = Z[{,] for

t<n

any k|n. Therefore ¢ is as required. Furthermore we have

Mo X D La/(e' —Da)*P] = ad L% DLZI/[o'11*Y
<n <n

=c EBLTZ” DLZI /6" 1D (a/(a'=Da)~]e0,
<n
Again, by (C), there is a II-module L such that
LNn EPEBZH/[U”L]

and

S®LZI /6 I® (a/ (o' —1Day-=w]e

<n

=L® ¥ PLZIH/e™] D X BLZI/[e'T]*P.

n/m=p n/l=p1p2-p;
t=2

Using (A), we can write L= > @a, for some a,~ZII/[s™]. Let

n/m=p

S__n/mzp@[zﬂ/[gm]]mm DEBM pZ; " DLZI/[e" 1],

Then we obtain

oD 2 SLZH/o™]1DS =P X EBamEBS

nm#

and this completes the proof of the lemma.
THEOREM 4.2. Let II be a finite abelian group and a be a projective ideal
of ZII. Then ais a quasi-permutation II-module if and only if a@HZ} DZI /Il =
=1

ZII® S @ZII/II', where © denotes the set of all subgroups, I’ (+1), of Il
nmres

such that IT/II" is cyclic.

PrOOF. The if part is evident. Hence we have only to prove the only
if part. Suppose that a is a quasi-permutation IT-module. Then aS' =S
for some permutation I7-modules S, S’ by (1.6), and 2za= 2, by (2.5), where
2, denotes the maximal order in QI containing ZII.

First suppose that /7 is a cyclic group of order 7 with a generator o.
In this case we can write

S=29 LzH/[e*]]vw,  S'=%O (ZI1/[e* 11"

for some N,, N, (=0). Since &= {[0*T} yn,icn in this case, it suffices by (D)
to prove N,=N}+1 and N,= N}, for any k<n. By our assumption we have
Z[C]® S =S%. But, by (21), S*»=[Z[{,]]"» and Son = [Z[C, 119,
Hence N,= N/, +1. Let m|n, m <n and suppose that N,=N;+1 and N,=
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N}, for each m <k <n. Then we have Z[{,]P S’®»=S’m and, again applying
2.0,

S""""“EZ[Cm]](N"'”@ ; SLZ11YPDLZLR11¥w

33

S 2L, B SN B2

m | \
This shows N, = N,.

Now suppose that I is a non-cyclic abelian group. We denote by &, the
subset of & consisting of all minimal members of ©&. We define &,,, to be
the subset of & consisting of &, and all minimal elements of &—&,. Then
we obtain an ascending chain of the subsets of ©: &, £6, & - £$&, =&, Let
@k be the set of all maximal elements in &,. To prove our assertion it
suffices to prove that, for any 0 =<k <{, there exist some az with

ap~ZI /I (II' =&,) such that
ad X @zZI/I' ¥ GzIn/nr
m'<e, m

S©-8, ) e (*)k-
=ZII® X GzIH/I'® ¥ Dand X DZI/II”
I'ee,—&, '8, m'ze-e,
In fact (*), implies our assertion, because &;,=& and &, = {II}. We will
prove (*), by induction on k. Since H;@@ZH/H’ is ZII -faithful, by (B),
we have -

a@HZ@@ZH/II’ =ZIITPBN

for some N with Nzngg@ZH/]I’. Then, by (A) and (C), we can find ag
with agp~ZII/II’ for all I’ &, such that
N= EBanEB 2 EBZH/H’.
II’»CQ
Hence we obtain that

ad > @ZH/H’EB 2 EBZH/IT”’“ZHEB P} EBamEB 2 @ZH/H”

Fi 2= &-&o

Thus (*), is proved. Next suppose (*),, k=0. For each Il'e @k, op 1S con-
sidered as a II/Il’-module. We denote by n’ the order of I7/II’. Then
afr = Z[{,]. By (4.1) there exist a projective ideal ¢, of ZII/II’ with
Quumln = 2uu, a permutation I7/II’-module Sy and a projective ideal af> of
ZII/II’ for any subgroup I’ of IT such that /I is a cyclic group of
prime order such that

@ 3 ®ZI/T &Sz ®_. Y D" DSk

€&/ i E@]p
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where ©; denotes the set of all subgroups /I’ of IT such that II’C [T’ and

[ﬁ 7. I1'] is a prime. However we have already proved the assertion in case

IT is cyclic. Therefore, for any II’ € &,, there is a permutation IT/IT"-module
# such that ¢p @Sy =ZII/II'®S}. Accordingly we have

w®.Y OZOH/T®Se=ZII/I'D .3 D DSy

II’E@H/ H’EQH/
for some permutation I7/I1’-module Sy. From this and (¥), it follows im-
mediately that

o 3 OZII'®_ Y SZO/'S % .32 @zZI/IT'S 3 ®Se
II'eey nIce-6g mwr II'<&p

<gr O'Sep

=ZII® ¥ &zI/I'e > SzZIH/NI"d 3 T Da™d 3 DSw.
IT'<s nce—-6p II'<ép <G

ﬁ'&@”l m

It is easily seen that any II' of \U ©y contains some II” of &,;;. Accord-
m'eé,
ing to (B), for fixed II” €&,,,, we have
Z/I'® 5. Sof’ =@ 5 GLZI/I1
i e

Teep Teep

for a projective ideal az of ZII/II” and lz =0. Hence from (**) we obtain

ad ¥ DzIo/red X QZI/IIeT

I"eSpyy mI'"ce—8g41

=ZN® 3 OIS % Swd N SZI/MST

II"c8p41—6pt1 'SEp41 I''"=e—-6&p41
for some permutation I/-module T such that TEH,ZE)@EB[ZH/H']U”' ) jp =0,
Since aEBH,Zi@@ZII/II’NZIIEBngg@ZH/II’, applying (D), we can omit T
from both sides, i.e.,

o X pzI/II"D . X @zl

s+ nI''=e-&gs1

=ZII® X zZI/II'e T Sud X SZI/1".

I"s&p41-8p41 II''=érqa nI''ce—6p4y1
Thus we obtain (*),.;, which completes the proof.
COROLLARY 4.3. Let II be a finite abelian group. Then

szneH, I @zn/m =1,

where © denotes the set of all subgroups, II’, of II such that II/II' is cyclic.

§5. In 8§85 and 6 we will study non-projective quasi-permutation modules

over finite cyclic groups.
Let IT be a cyclic group of order n. Let m|n and let @,(T) be the m-th
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cyclotomic polynomial. We put ¥ ,(T)=(T"—1)/®,,(T).
We begin with
LEMMA 5.1. Let Il be a cyclic group of order n. Let M be a Il-module.
Then, for any m|n, (M*m)* =T M*,
PrROOF. Consider the exact sequence: 0— M’m— M— M/M*m»—0. By
dualizing this sequence we get an exact sequence
0 —> (M/ M7y —> M* —s (M?m)* —> ().,

Then we have ¥, (M/M°n)*=0 and therefore there is an epimorphism:
(M°m* - M*. However rank;(M®my* =rank,¥ ,M*. Hence ¥, M*=(M*m)*,

PROPOSITION 5.2. Let Il be a cyclic group of order n. Then the following
conditions are equivalent:

(1) For any m|n, all prime divisors of n in Z[{.] are principal.

(2) For any exact sequence 0— M — M—M"—0 of II-modules and any
min, M= M'°nd M"om,

(8) For any Il-module M and any m|n, M°n=¥_ M.

(4) For any Il-module M and any m|n, (M*)®m = (M®m)*,

If nis a prime power or if the class number of Q(,) is 1, then the above con-
ditions are satisfied.

PROOF. The implications (1) = (2) and (1) > (3) were proved by Swan
(127, p. 108), and the implication (3) = (4) follows directly from (5.1). Let
m|n (n#+1) and let » be a prime divisor of n in Z[{,]. Then, by a direct
computation, we see that ¥ ,.({,)Ep and therefore there is a divisor d#m
of n such that @,{,)p. Now put A=Z[{,.1/p. Since A can be considered
as a Z[{s]-module, we can construct an exact sequence: 0—q—Z[{;]— A—0
where q is an ideal of Z[{;]. Forming the pullback as ZII-modules, we get
the following commutative diagram with exact rows and columns:

0 0
i
p

p

0 q M— Z[{n] — 0

ll

y
0—>q—Z[{s]—>A4 —0

0 0.

Then M’ =q and M°»=p. Suppose that the condition (2) is satisfied. Be-
cause of the exactness of the second row, we have M°m=Z[{,], hence p=
Z[€.], which implies (1). On the other hand, suppose that (4) is satisfied.
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By dualizing the second row, we have an exact sequence 0— Z[{,]— M*—
q-'—0. Hence (M*)’n=Z[{,]. Since (M*)’m=(M®m)* p=Z[{,], which im-
plies also (1). The second part of the proposition is obvious. Thus the proof
of the proposition is completed.

Recently T. Sumioka ([10]) proved the equivalence of (1) and (2) in (5.2)
in a little more general form.

We should remark that the smallest integer n which does not satisfy the
conditions in (5.2) is 39=3-13. In fact, p=({;,—3, 13) is a non-principal prime
ideal of Z[{,,] which divides 39.

LEMMA 5.3 ([13]). Let II be a cyclic group of order n and let 0— M— N
—S—0 be an exact sequence where M, N are Il -modules and S is a permutation
Il -module. Then N = M@ S° = M°»PDZ[{, 1P for some t=0. Especially,
if M is a quasi-permutation II-module, then M® is a free Z[{,]-module.

PROPOSITION 5.4. Let Il be a cyclic group of order n and let M be a II-
module, Then we have M—z— M®@ M/M®. Especially M is a quasi-per-
mutation II-module if and only if M®» is a free Z[{,]-module and M/M°®" is
a quasi-permutation IT-module.

PROOF. The second part of the proposition follows directly from the
first part and (5.3). Hence we have only to prove the first part. First sup-
pose that M is Z[{,]-free. Let ¢ be the rank of M°. Then we have an
exact sequence

0 Mo ZII® ZI | (0)® — 0

where o denotes a generator of II. Put F=ZII® and L= (ZII/{W (o).
Using the same method as in the proof of (2.3) we can show that L is a
quasi-permutation I/-module. Since FI°(H’, Z[Z,)=0 for any subgroup I’
of II, we have ﬁl(II’, L)=0 for any subgroup II’ of II. Hence, by (1.6),
there exist permutation I/-modules S, S’ such that LS’ = S. Forming the
pushout of M%»— F and M°»— M, we get the following commutative diagram
with exact rows and columns:

0 0

0 M?n» M M/ M — 0

|

0—> F — FOM/M°» — M/M°» — 0
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From the second column, we get an exact sequence
0O— M—>SHFHM/ Mo» — S —0.

According to (1.3), we have M—— S B F D M/ M®*»—— M/ M?®», and therefore
M—— M/ M°»—5— M°2@ M/M?®. In the general case we put M, = M@ (M°»)*,
Then M,/MS»= M/M** and M= M>~H(M?*)*. Since M°PH(M°)* is
Z[{,]-free, M,®r is Z[{,]-free. Therefore we have MB(M*m)* = M, —z—M,/ M,*"
= M/M°r, and hence M@ (M’ )*P M —7— M/M*>D M?». Because M°~D
(M) is Z[{,]-free, this shows that M—— M/M? P M. Thus the proof
of the proposition is completed.
THEOREM 5.5. Let Il be a cyclic p-group of order p'.

) Let M be a IH-module. Then M—o— > @ M
1

m=

(1) A Il-module M is a quasi-permutation II-module if and only if, for
any l=m=l1, M°™ is Z[{ m]-free.

(2) If M is a quasi-permutation II-module, then the dual module M* is
also a quasi-permutation II-module.

(38) Let 0—M —M—M"—0 be an exact sequence of II-modules. If two
of M', M and M” are quasi-permutation II-modules, then the rest of them is
also a quasi-permutation IT-module.

ProoOF. We will prove (0) by induction on [. For [=0 this is obvious.
Suppose that [=1. Now, by (5.4), we have M—z— M®'@® M/M*". Let I,
be the subgroup of IT of order p. Then M/M?® can be regarded as a II/II;-

{—1

module. Therefore, by induction, M/M?%'—z— > H(M/M?*")’™  However,
m=1

t—1

by (5.2), M®%™ = (M/M?")?™ for any 0<m <[—1, and so M/ M°»' — EI@ Mo,

Thus we get M—— é b Mo,
m=1

The assertion (1) follows directly from (0) and (2.6) (or (5.4)), and both
(2) and (3) are immediate consequences of (1) and (5.2).

COROLLARY 5.6. Let IT be a cyclic p-group and let Qn be the maximal
order in QII which contains ZII. Then the abelian semigroup T(II) is a group
isomorphic to C(Qy).

More generally, for a cyclic group I of order n, we consider the following
statements :

(1) A II-module M is a quasi-permutation /7-module if and only if, for
any min, M’ is Z[{,]-free.

(2) If M is a quasi-permutation /7/-module, then M* is also a quasi-
permutation /7-module.

(3 Let 0— M — M— M”—0 be an exact sequence of //-modules. If two
of M’, M and M” are quasi-permutation I7-modules, then the rest of them is
a quasi-permutation I7-module.
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We conjecture that, for any cyclic group of order n which satisfies the
conditions in (5.2), all of (1), (2) and (3) are true. However we did not succeed
in proving this in the general case.

REMARK 5.7. Let Il be a cyclic group of order n which satisfies the
conditions in (5.2). If (1) is true for I7, then both (2) and (3) are true for /1.

REMARK 5.8. Let II be a cyclic group of order n which does not satisfy
the conditions in (5.2). Then both (2) and (3) are false for II.

REMARK 5.9. Let p, ¢ be primes such that ¢|p—1 and suppose that there
is a non-principal prime divisor q of p in Z[{,]. Let Il be a cyclic group
of order pg. Then (1) is false for Il (cf. [12]). The smallest pair of primes
satisfying the assumption is {47, 23}.

From these remarks it seems fairly difficult to generalize (5.5), (0) and
(1) to any finite cyclic group.

PROPOSITION 5.10. Let Il =[o] be a cyclic group of order n and let p'|n
where p is a prime. Let 0— N—M—Z[{,]J®—0 be an exact sequence of II-
modules where N has no non-zero element invariant under o' (when 1=1) and
t is a non-negative integer. Let K/k be a Galois extension with group II.
Then K(M) can be identified with K(NG Z[{,]®).

ProoF. It suffices to prove this in the case of t=1and [=1. Let n=72,
g=p'—p*"* and r=p". We can identify K(M) with K(N)X,, X,, ---, Xp)

with the action of /I such that o(X;)=X;,,, 1=1<¢—1 and o(X,)=0%X))

— a - e’ .
- X1Xr+1X27+1 Xc:o—z)rﬂ for some a&N. Then o (Uq (X1>) =o? (Xl) -

o’a

- X,. Since o(X)=0%"(X,)=X,, we have

G W A PP B
a a a a ‘
l i - l . . .
Hence a-o”a-0**a--- 6“"PP'q is an element of N invariant under ¢”. By the
assumption we have

l l _ 1
a-o¥a-¢**°q-- g9 VPg=1,

If we put K= K(N)“*", then Ngwyx(a)=1. By the Hilbert’s theorem 90,
there is b € K(N) such that a =b/0?'b. Further put ¢=07b/b and Z;, = d*"'c- X;,
1=i=<q. Then ¢"'c€ K(N) and so K(M)=K(N)Z, Z,, ---,Z,). We easily
see that c-07c-0*c--- 0 P"¢c=¢q"! and so we get

1
o(Z)=
( q) ler+1zzr+1 Z(p-2)7‘+1 )

Therefore the group generated by Z,, Z,, -+, Z, is isomorphic to Z[{,]. Thus
K(M) can be identified with KIND ZIL,0).

COROLLARY 5.11. Let II =[0] be a cyclic group of order n and let p'in
where p is a prime. Let 0— N—M— L—0 be an exact sequence of II-modules
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where N has no non-zero element invariant under o” ' (when [=1) and L is a
Z[{]-module. Then M—g— NG L.
PrROOF. We have an exact sequence

0— N—MPL* — LPL*—0.

Since LGP L* is Z[{,]-free, this sequence satisfies the assumption in (5.10)
and hence M@P L*—— NP LP L*. Therefore MBL*PB L NOLHL*DL.
Since L@ L*——0, this shows that M—— NP L.

PROPOSITION 5.12. Let I be a cyclic group of ovder p'q where p, q are distinct
primes and | is a positive integer. Let M be a Il-module. Let M,= M", M,
=My, -, M, = M,_?""* and M':@plqM"’qu“’pl—lq"'“’q, M;:(Dpl_lq e, M,
=@, M;_,. Then

M M0 3 B MPo-a 3 DT, M, .
i=1 Jj=1

Especially M is a quasi-permutation II-module if and only if M®?a is Z[{, 1-
free, each M?P % is Z[{, ;,]-free and each ¥ ,;M; is Z[{,s]1-free.
PROOF. We consider the following exact sequences:

0 Ml M w‘lM ‘—>0
0— M, — M, — ¥ ,M,—0

........................

........................

0— M —M_,— w'pz—leq —>0
O.__)Mivpl__>Ml _—>W‘lel —> 0.

Here ¥',M is expressible as a direct sum of the copies of the trivial I7-
module Z and, for each 1=<j=/, ¥ ;M; can be regarded as a Z[{,]-module.
Let ¢ be a generator of II. Then M; has no non-zero element invariant
under o?’"'. Therefore, according to (5.11), M—— M, and, for each 1<j</,
M~ M;., DY ,;M;. Thus we get

M—z Mz"’l"@[Z@WW-Mj-
=1

We easily see that M,"»! = M®#l®?"1g*%, Put M’ = M,"»". Consider the follow-
ing exact sequences:
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0— Mj_ 2 — M, ,—> M, —>0

0— M2 — M, —0.

Here M'?pla= M®rla, Then, by (5.4), we have M’ —z— M*? e« M. Let II} be
the subgroup of II of order p?, foreach 1<:i<I[. Then M} can be regarded
as a I1/Il}-module. By virtue of (5.4), we have M}|—7— M{??"iaP M;,,. Hence
we get

3
M’ g MOPa@ 33 @ Mis~.
i=

Consequently we get
l t ) !
M= MO ZOY M, M7 2D Mé”"’l‘lqEBjZl DY M, .
J= i= =

This completes the proof of the first part. The second part of the proposition
follows immediately from the first part and (2.6).

LEMMA 5.13. Let II be a cyclic group of order n and let m,, m, be divisors
of n such that m1+m2 and mytm,. Then Exty,(M,, M,)=0 for any Z[{n.,]-
module M, and any Z[{,,]-module M,.

PROOF. From the fact that (@,,T), @,,(T))=Z[T] this follows im-
mediately.

PROPOSITION 5.14. Let II be a cyclic group of order p,p,p, where p,, b, Ds
are distinct primes. Let M be a Il-module. Let M' =@, ;,, M®P1r2Ps?P1p20p1 5023
and M" =M%, Then

M—q— MOpioars (5 N/opip2 (5 M/ 0P1ps (D M/0p203 () wle// & w‘pzM// D ngM” .

Especially M is a quasi-permutation II-module if and only if MoPpps g
Z{Lp,pops-STee, each M'°¥03 is Z[{,,,.1-free and each ¥, M" is Z[{,]-free.
PrROOF. We have only to prove the first part. Consider the exact sequence
0> M —>M—->T M—0. Then ¥ M=Z® for some t=0 and so M—z— M".
Now put =, 1.p: P10, Ppips Ppyp,. Then M?=M"’. Hence we have an
exact sequence 0— M°— M"—-@OM"”—0. Then O®M” can be regarded as a
ZIl /(@ ,,(0)D ,,(0)D,(0))-module where o denotes a generator of [I. Therefore
by (5.13) we can write M” =M, P M,D M, where each M; is a Z[{,,]-module.
Each M; is clearly isomorphic to ¥,,M”. Applying (5.11) repeatedly, we get

M —— MY, MDY, M" DY, M.

Next consider the exact sequence 00— M?Pi23— M?— M'—(. According
to (B4), M°—m— MPmsH M.  Since M can be regarded as a
ZIL /(@ p,p,(0)D p,p,(0)D p,p,(0))-module, again by (5.13) we can write M= M,,®
M,,@ M,, where each M;; is a Z[sz.pj]-module. It is easily seen that M;;=
M?7i?j, Hence we have

M?® —— Mor1vaps (5 M/oP1ps Chy M7OP1ps (O M/OP2ps |
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Thus we get
M o) M 9p1p2p3 @ M’9p1p2 EB M9pips @ M ®p2ps @ qrle// @ g[l‘plel EB gp‘psMﬂ .

COROLLARY 5.15. Let Il be a cyclic group as in (5.12) or (5.14) and let 2,
be the maximal order in QII containing ZII. Then the abelian semigroup TI)
1s a group isomorphic to C(2p).

§6. The following lemma is due to P. Samuel ([9]).

LEMMA 6.1. Let k be an infinite field and let K, K, be extensions of Fk
finitely generated over k. Suppose that there exist elements x,, x,, -+, X, which
are algebraically independent over K, and K, such that K,(xi, X5 -+, Xp) =
K,(xy, %5, <+, x,). Then K, is k-isomorphic to K,.

LEMMA 6.2. Let II be a cyclic p-group of order p* and let K/k be a Galois
extension with group II. In case of p+ 2, suppose that k is an infinite field.
Then K(Z[{,)" is rational over k.

PROOF. For /=1 this has been proved in [2], (1.13). Hence we may
suppose that /=2. Let ¢=7'" and let ¢ be a generator of II.

(i) Case of p=2. Take b K such that ¢% #+ b and put a=0b/g%. Then
a-c%a=1 and o¢%a+a. Now K(Z[{,]) is expressed as the rational function
field K(X,, X,, ---, X,) with the action of Il such that o(X,)= X;4,, 1=1=¢—1

and o(X)=1/X,. If we put ¥, =39 and Y,.,=o(¥,), 1=i<q—1, then
1

K(Z[{, ) =K(Y, Y, -, Y, and O(Yq)Z%!aYl, and therefore IT acts semi-

linearly on 3 KY; Thus, by (L1), K(Z[£, )" is rational over k.
=1

(ii) Case of p=+2. Suppose that % is an infinite field. By the definition
K(ZII) is the rational function field K(X,, X,, -+, X,;) with the action of II
such that ¢(X;)=X,.,, 1=<i<p'—1 and o(X,)=X,. Then K(Z[{,]) can be
identified with K(X 31X, X;31X,, -+, X/ Xyp-1») because Z[{,]=(0?—1), and
we have K(ZII)=K(Z[{,)(X,, X,, -+, Xy). Let

Y = X1+Xq+1+X2q+1+ +X(p—1)q+1
.Xl .

Then Y e K(Z[{,]). Further let Z, = X, + X, +Xo001+ -+ +Xp-13041 and Z;4,
=0¢'Z, 1=1<q—1. Then ¢Z,=Z7, and Z,, Z,, -+, Z, are algebraically inde-
l

pendent over K(Z[{,]) since Z; =o' (¥)-X, 1=i<g. Now put V=5 KX,
Jj=1

and W= EqJKZi. Then WSV and Il acts semi-linearly on V and W. By
=1

(1.1) there exist U,, U,, -, U, K(W) which are invariant under II such that
KW)=K(U,, Uy, ---, U,). Then we have

KZID" =[KZL DW= KZLED"U,y, Uy, -+, Uy
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On the other hand we have an exact sequence:

0 w Vv V/IW —0

of K-vector spaces. Applying (1.1) to this we can find U, Us, -, Ugp-o
e K(V) such that K(ZII)"=KWV)"=KW)X Ui, Us, -+, Ugp-p)- Therefore
we get

KZICD)"(Uy, Uy, -, U= K(ZID"
- k(U;a ér Tty Ul’z(p—l))<U1y UZ! T Uq) .

Here U,, U,, ---, U, are algebraically independent over K(Z[Cp,])” and k(U]

2 Ugep-p)- Then, by virtue of (6.1), K(Z[{, )" is k-isomorphic to the
rational function field (U1, Uj, -+, Ugp-n). This completes the proof of the
lemma.

THEOREM 6.3. Let Il be a cyclic p-group and let K/k be a Galois extension
with group II. In case of p+ 2 suppose that k is an infinite field. If M is a
quasi-permutation II-module, then K(M)"/k is rational.

PrOOF. Let I be a cyclic group of order p'. As in (5.12) we put M,=
M, My= M, M,=M», ---, M;= M7?""". Then we have the following exact
sequences:

0 M, M, . M,—>0

0—>M,— M,_, —> q/‘pl—lMl—l —0
0—‘_>ML —%prML —> 0.

By (5.2) we have ¥ ;M;= M®"* for each 0=:=/ and further, by (5.5), M*»*
is Z[{,:]-free for each 0=:=</ Therefore, applying (5.10) to the above exact
sequences repeatedly, we see that K(M) is k-isomorphic to K(M®'@ M?%'-1PH
-« @ M?®), Thus we can conclude by (6.2) that K(M)" is rational over k.
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