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Introduction.

In [1] the author has determined the permutation groups which are pri-
mitive extensions of rank 3 of 4-ply transitive permutation groups. This.
note is a continuation of [1], and here we consider primitive extensions of
rank 4 of multiply (5-ply) transitive permutation groups. Here we say that.
a permutation group (&, £) is a primitive extension of rank » of a (transi-
tive) permutation group (G, 4) if the following conditions are satisfied: (i)
® is primitive and of rank 7 on the set £, and (ii) there exists an orbit d(a)
of the stabilizer &, (¢ £) such that the action of &, on 4(a) is faithful
and that (&,, 4(a)) and (G, 4) are isomorphic as permutation groups.

In this note we will prove the following theorem:

THEOREM 1. Let (G, 4) be a 5-ply transitive permutation group. If (G, d)
has a primitive extension of rank 4 (®, 2) such that the orbits of &, (a = 2) on
Q are all self-paired, then (i) |4|=7 and G=S; or A, (symmetric and alter-
nating groups on 7 letters, respectively)?, or (ii) |4| =379, 1379, 3404, 6671, 18529
or 166754 and G+ Sy, Ay.

In the present note we devote ourselves to the case where all orbits are:
self-paired. The remaining case where there exists non-self-paired orbit will
be treated in a subsequent paper. There it will be shown that any 4-ply
transitive permutation group (G, 4) has no primitive extension of rank 4.
(®, 2) such that there exist non-self-paired orbits. Thus the determination
of primitive extensions of rank 4 of 5-ply transitive permutation group is.
almost completed.

Our main idea of the proof of is indebted to the concept of’
intersection matrices due to D.G. Higman [ 3], and is also indebted to some:
results of W. A. Manning (cf. P.]J. Cameron [2]).

Just before this work has been done, S.Iwasaki has determined the pri--

*) Supported in part by the Fujukai Foundation.
1) In these cases (G, 4) have indeed primitive extensions of rank 4 (&, 2) with.
regular normal subgroup of order 64.
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mitive extensions of rank 4 of the alternating groups (A4,, 4), |4|=n (cf.[5],
[[6]. Our result obtained here is a sort of generalization of that of [6]
The author thanks Mr. S. Iwasaki for kindly making the preprint of
available before publication and giving him the valuable remarks by reading

the manuscript. Although, we assume no familiarity with to the
reader of the present note.

§ 1. Notations and preliminary results.

A) Notations.

We fix the following notation throughout this note. (&, 2)is a primitive
extension of rank 4 of a 5-ply transitive permutation group (G, 4). That is
to say, ® is a primitive permutation group on a set £ such that the orbits
of the stabilizer &, (a € Q) are {a}, 4(a), I'(a) and A(a) with subdegrees 1, &,
! and m respectively, and moreover &, is faithful on 4(a) and the permuta-
tion group (&,, 4(a)) is identified with (G, 4). Henceforth we assume that
d(a), I'(a) and A(a) are all self-paired. We choose the orbits so that 4(a)®
= 4(a®), I'(a)®* =I"(a®*) and A(a)®= A(a®) hold for any e 2 and g=@®. Let
us set I'y(a)={a}, I'\(a)=4d(a), I'a)=1(a), I's(a)= A(a) and ¥ =|I"(b)N
I'y(a)| for b I';(a). For the fundamental properties and the relations among
them, see D.G. Higman [3], (4.1) and (4.2). Also see and for the
geometric (graph theoretical) interpretation of the intersection numbers 7.

We use the conventional notation g;;= g4 and

0o 1 0 0

M=M= ()= ko e . Sometimes we Wwrite p= g, Y= fiys.
Mo1 Moz Mas
0 Ma1  HMaz  Hss
Especially the following relations hold among the intersection numbers of M
(= M,) (these are all contained in (4.1) and (4.2) in [3].

A1) 14 g fort s = fliot Moot fse = flasT tast fas = k,
. Rptoy =11y, ks, =mpy, Ltz = mptyy .

B) Preliminary results.

LEMMA 1. (i) If the intersection matrix M is tridiagonal (i.e., of maximal
diameter), then M has 4 distinct eigen values, say a,=k, a,, a, and a, (all of
which are real).

(ii) Moreover, let f, f,, f; be the degree of the non-identity irreducible
characters of & appearing in the permutation character on . Then the follow-
ing relations hold:
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f1+f2+f3: k+l+m ’
a fita, fotafo=—Fk,
aifitaifotadfo=k(4+m+1).

(ili) Moreover, if k, [, m are not all equal, then at least one of the eigen
values ay, a,, a, is an integer.

PrROOF. The assertion (i) is already stated in D.G. Higman [3], page 35,
and so we omit the proof since it is easily done and well known.

(ii) The first equation is clear, and the second and the third equation is
immediately obtained by calculating the trace of the incidence matrix B; and
B} respectively, where B, = (%), Bsp=1 if a < 4(b) and B, =0 otherwise (cf.
[3], (4.13), or see [5], Lemma 2.3).

The assertion (iii) is already proved in [5], Lemma 2.3. Here we look
(iii) from a slightly more general view point, and we have the following
assertion:

(1.2) PROPOSITION., Let & be a transitive permutation group of any rank
on a set Q, and let M be an intersection matrix for some orbit of length k of
Sy (as Q). If the eigenvalues of M are all distinct and the characteristic poly-
nomial m(x)=det (M—1Ix) is a product of (x—Fk) and the irreducible polynomiak
over the rational field, then the orbits (+ {a}) of &, are all of equal length.

(iii) is immediately obtained from [Proposition] (1.2).
(1.2) is proved as follows: since the polynomial m(x)/(x—k&) is irreducible, all
eigenvalues #k of M are mutually conjugate by the action of the Galois
group over the rational field. By Theorem (5.5) in (or by (4.13) in [3)),
the degree of irreducible characters corresponding to conjugate eigenvalues
are equal. Thus we immediately have the assertion from Theorem 30.2 in
[7] q.e.d.

LEMMA 2. (i) Let G be a 2-ply transitive permutation group on a set X,
|3 |=mn, and let H be a subgroup of G of index n. If H is transitive on X,
then H is 2-ply transitive on 2.

(ii) Let G be a 3-ply transitive permutation group on a set X, |2 |=n, and
let Hbe a subgroup of G of index n. If H is transitive on X, then H is (5/2)-
ply transitive.

(iii) Let G be a 4-ply transitive permutation group on a set X, |2|=mn,
and let H be a subgroup of G of index n. If H is transitive on X, then H is
3-ply transitive except the only one case |X|=6 and G= A,.

(iv) Let G be a 5-ply transitive permutation group on a set 2, ||=n,
and let H be a subgroup of G of index n. If H is transitive on X, then H is
3-ply transttive.

PrOOF. (i) Let a= 2. Then G, H is a subgroup of index n of the
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transitive permutation group (G,, 2 —{a}) of degree n—1. Therefore G, \H
is transitive on X —{a} by Theorem 17.3 in Wielandt [7]. Thus (i) is proved.

(i) By (i), H is 2-ply transitive. Let a,be X, a+b. Then G,,"H is a
subgroup of index n of the transitive permutation group (G, 2 —{a, b}) of
degree n—2. Therefore either G,, N H is transitive on 2—{q, b} (thus H is
3-ply transitive), or Y—{q, b} is decomposed into two orbits of G,, "\ H of
equal length, by Lemma 17.1 in Wielandt [7]. Thus (ii) is proved.

(iii) By (ii), we may assume that the orbits on 2—{a, b} by the action
of G,»\H is two and both are of length (n—2)/2. Let a, b, ce2, a#b+c
#a. Ggu.N\H is a subgroup of index n/2 of the transitive permutation
group (Ggp,e, & —{a, b, c}) of degree n—3. Therefore, since the greatest
common divisor of n/2 and n—3 divides 3, by Lemma 17.1 in Wielandt [7],
all orbits of G, H are of length (1/3)(n—3), 1=1,2,3. While G4, H has
a union of orbits whose total length is (n—2)/2. Thus we have a contradic-
tion unless n =6, and we immediately have the assertion.

(iv) is obvious from (iii), q.e.d.

§2. Proof of Theorem 1.

(Step 1. Determination of the possible intersection matrix M.)

From now on we assume that there exists (®, £) which satisfies the
assumptions of [Theorem 1. Henceforth we always assume that 2 =5.

The main object of this section is to show that the intersection matrix
M of (®, 2) is of very restricted structure. That is, M must be one of those
listed in Main (2.12) given below.

(2.1) PROPOSITION. Either p,, (=) or py, is different from 0 and we may
assume that p, # 0.

PrROOF. Because otherwise (®, £) is imprimitive (cf. [3], (4.8)). If g, #0,
we have only to interchange the role of I'(a) and A(a), q.e.d.

(2.2) PROPOSITION. =0, ;=0 and p,;=k—1, and 1= p,,(=k(k—1)/1)
<k—1. Moreover p;;=0.

Proof is immediate from the doubly (5-ply) tranmsitivity of (&, 4(a))
(=(G, 4)) and [Theorem 1 of [2] together with the parameter relations
g.e.d.

(2.3) PROPOSITION. p,, (=p)=1 or 2.

PRrROOF. Since 4(a) is self-paired, there exists an element x=® which
interchanges a and b, where b < 4(a). We denote by ¢ the automorphism of
®,,, induced by the conjugation by x. Then there exist a point ce 4(a)— {b}
and a point d € I'(a) such that (&,,,)° < ®,,q4, since there exist ¢ 4(a) and
d < I'(a) such that ¢*=d because of p, and g, +0. While (8,,,.)’ is a sub-
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group of index |4|—1 of the 3-ply (4-ply) transitive permutation group
(®,,5, 4(a)—{b}). Thus by Satz 3 of N. Ito [4], either

(1) (Bgp,0)° is transitive on d(a)—{b}, or

(2) (®g,p,0)” =85, for some e < 4(a)— {b}.
Firstly, let us assume that the case (1) holds: then the orbits on 4(a) by the
action of &,,4 (=(®,,s,.)%) are either 4(a) itself, or {b} and d(a)—{b}. There-
fore either p=1, py=k—1, p=*% or £=0. Thus we have =1 by Proposi-
tion (2.2). Secondly let us assume that the case (2) holds: then there exists
an orbit by the action of &,,; (=(®,,,.)?) on 4(a) which contains the subset
Ad—{b, ¢}. Therefore either p=1, p=2, p=k—2, p=k—-1, p=%k or p=0.
The last three cases are impossible by (2.2), and p=Fk—2 is also
impossible, otherwise by the relation [=Fk(k—1)/(k—2) is not an integer
for =5, a contradiction, q.e.d.

(2.4) PROPOSITION. One of the following cases (1), (II) and (1I1) holds (where
b, ce d(a), b+c):

(D p=1 and (&.,,.)° is transitive on A(a)—{b}, moreover &, , (d < I'(a))

— (@a,b,c)q-

(I) p=1 and (G,,p,0)° =Gy, for some ec d(a)—{b}, moreover G,  (d <
F<a)):: @a,b,e-

(D) p=2 and (&,,,.)° =8y, for some e <= d(a)—{b}, moreover G, 4 (d &
I'(a))= @a,w,e)-

Proof of this proposition is already contained in the proof of
(2.3), q.e.d.

(2.5) PROPOSITION. p,, 0, and ps, #0.

PROOF. Because otherwise (&, 2) is imprimitive (cf. [3], (4.8)), since p;
and p,, are zero, q.e.d.

(2.6) PROPOSITION. If the case (I) (in Proposition (2.4)) holds, then p,,=0,
and so pg,=k—1.

PROOF. Since &, , is transitive on 4(a)— {b}, we have either p,,=0 or
k—1. However p,,=k—1 is impossible, because otherwise z;; =0 and it con-

tradicts to (25), q.e.d.

(2.7) PROPOSITION. If the case (1) holds, then p,,=1, 2, k—2, k—1 or k.

PROOF. Since ['(a) is self-paired, there exists an element y<=® which
interchanges a and d, where d= I'(a). We denote by = the automorphism of
®,,4 induced by the conjugation by y. Then there exist a point b d(a)yNd(d)
(del'(a)), a point c= 4(a) and a point f= A(a) such that (Bq,4,0) =8, 7,
since py, #0. Let c=5. Then the orbits on 4(a) by the action of (Gg,q4,)
is {6} and 4(a)—{b}. Therefore y£,,=0,1,k—1lork Let c#b. Then (8, )
is a subgroup of index k—1 of the group @, and the group ®,,q is 3-ply
transitive on the set A4(a)—{b}, unless (&, 4(a)— {b})= (A, on 6 letters).
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Because ,,; is a subgroup of index 2—1 of the 4-ply transitive group (&,,,,
d(a)—{b}) of degree k—1, the assertion is true by (iii). Thus if
(8,,s, 4(a)—{b}) is 3-ply transitive then by Satz 3 of N. Ito and even if
(8,5, 4(a)— {b}) = (A;, on 6 letters) then by the direct consideration, we have
either (1) (®,,4,.)° is transitive on d(a)— {b}, or (2) (&,,4.)" fixes two points,
say b and ¢, and transitive on remaining points 4(a)— {b, ¢}. Thus in any
case, (&,,4,.)° has an orbit of length =k—2. Therefore we have either u,,
=0, 1, k-2, k—1 or k. However g, #0, by Proposition 2.5, q.e.d.

(2.8) PROPOSITION. Let the case (II) hold. Then py, =0, 1 or k—2.

PROOF. Since &,,;=8,,,. (d<= ['(a)) for some b, e< d(a), b+e, and &, ,
has an orbit of length=/%k—2 on 4(a), we have p,,=0, 1, k—2 or k—1. How-
ever u,, #+ k—1, since otherwise we have a contradiction to (2.3)
and (25), q.e.d.

(2.9) PROPOSITION. Let the case (1) hold. Then p,,=1, 2, 3, k—3, k—2,
k—1 or k.

PROOF. We may assume that &, 5 = (8,,,,)7, since p,, 0, where d=l'(a),
By,0=®,,s, for some b, e <= d(a), h € d(a). (8,,q4,,) is a subgroup of index no
more than k—2 of the 3-ply transitive permutation group &,,. of degree
k—2. Therefore by Satz 3 of N. Ito [4], (&,,,:)° has on 4(a) an orbit of
length=%—3. Thus we have either p,,=0, 1, 2, 3, k—3, k—2, k—1 or k.
However p,, # 0 (cf. [3], (4.8)), q.e.d.

(2.10) PROPOSITION. Let the case (II) hold. Then p,,=0.

Proof is quite the same as that of (2.8), q.e.d.

(2.11) PROPOSITION. Let the case (Ill) hold. Then p,,=1, 2,3, k—3, k—2,
k—1 or k.

Proof is quite the same as that of (2.9), q.e.d.

Combining Propositions (2.1)~(2.11) so far obtained, we have the following
main proposition of this section.

(2.12) MAIN PROPOSITION. As for the permutation group (&, 2) and the
intersection matrix M, one of the following cases holds (where b, c € d(a), b+ c):

(D) p=1 and (Bqp,)? ts transitive on d(a)—{b}. Moreover the intersection
matrix M is as follows:

0 1 0 0
k 0 1 0
M= , acs{l, 2, k—2, k—1, k},
0 2—1 O a
0 0 k-1k—a

and the characteristic (=minimal) polynomial m(x) of M is given by

m(x)=(x—k){x*+ax’+(a—2k+1)x—a(k—1)} .
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(I) p=1 and (By,,s,c)° =y,p,. for some e < d(a)—{b}. Moreover the inter-
section matrix M is one of the following:
(11, A)

M= , as{l, 2 3, k—3, k=2, k—1, k},

0 0 k-1 k-«

and m(x)= (x—Rk){X*+ax*+(a—2k+ 1) x—alk—1)} ;
11, B)

M ’ La= {1! 27 37 k—“sv k-.zv k—ly k} ’

0 0 k=2 k—a

and m(x)=(x—k){X*+(a—Dx*+(1+a—2k)x+(—ak+a+tk)} ;
{11, C)
0 1 0 0

E 0 1 0
0 k—1k—2k—8]
0o 0 1 8

and m(x) = (x—k){x*+(2— B)x*+(—k+1—-B)x+(Bk—k—P)}.
(I) p=2 and (Gqg,.)° = Gy, for some e € Ad(a)—{b}. Moreover the inter-
" section matrix M is given by
0 1 0 0
k 0 2 0
M=
0 k-1 0 @
0 0 k—2 kb—«
and m(x)=(x—k){x*+ax’*+2a—3k+2)x—alk—2)}.

M= Be{0, 1,2 3 k=3 k=2, k—1},

acs{l, 2, 3, k-3, k-2, k—1, k},

§3. Proof of Theorem 1 (continued).

(Step 2. Completion of the proof.)

The main purpose of this section is to show the non-existence of the
group (@, £2) whose intersection matrix is one of those listed in
(2.12) by leading a contradiction for each case. But, we can get no contra-
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0 1 0 0
diction from the intersection matrix M,= k 0 2 0 with k=7
0 k21 0 3
0 0 k-2 k-3
0 1 0 0
k 0 1 0

(in this case, there really exist such (&, 2)’s), and M,= 0 E—1 0 5

0 0 k—1 k-2
with &, (8k—7)|11%.7%-3%.5%, However from the assumption of 5-ply transitivity
of (G, 4), we can exclude some of the latter cases. But there still remain 6
cases, i.e., k=379, 1379, 3404, 6671, 18529, 166754. (Probably there exist no
such groups.)

The method of the proof is as follows:

(1) the polynomial m(x)/(x—Fk) is irreducible over the rational field (i.e.,
m(x)/(x—k)=0 has an integral solution x) except for some special cases;

(2) even though the polynomial m(x)/(x—£k) is not irreducible, the degree
f; (or f,, fs) of the irreducible character is not an integer except for some
finite number of possibilities for %;

(3) the elimination of the remaining finite number of possibilities by ad
hoc consideration, that is, by considering the number of elements of & which
are conjugate to a fixed element, or by exploiting the known classification
theorems about multiply transitive permutation groups.

(8.1) PROPOSITION. The case (1) in Proposition (2.12) does not hold.

PROOF. Since k>1[, by the equation m(x)/(x—k)=x*+ax*+
(a—2k+1Dx—a(k—1)=0 must have an integral solution x=s.

(i) If a=1, then $*+s*—2(k—1)s—(k—1)=0 and so s*+s*=(2s+1)(k—1),
2s+1+0. Thus k—1=(s*+s%/(2s+1)=(1/8)(4s*+2s—1+1/(2s+1)). Thus in
order that 2—1 is an integer, s=—1 or 0. However s= —1 or 0 implies
k=1<5, and this is a contradiction.

(ii) If a=2, then x*+2x>+(3—2k)x—2(k—1)= (x+1)(x*+x4+2—2k). Thus
a,=—1, ay=(—1++v8k—7)/2, a;=(—1—+/8—7)/2. From the equations of
Lemma 1, (ii), we have

fitfotfi=R+14+m,
—fita fotasfy=—Fk,

f1+a§fz+a%f3:k(l+m+1)y
and moreover :
f — (k—ay)
2 (It+ag)a,—
_ (V8R—=T—1)k+(1+~8E—T7)/2) . k(k+1)
48R —T 2 !

aa) (l+m)
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and moreover
f = g(l\/fiﬁiji_‘g 1)( <1 . 4\{,‘87—7)/ 2>ﬁ . ,7‘( h 1)
: 4'\/8k — ;7 2 ’

fym HE—EED

moreover (2k+1)%k%(k-+1)?/(8k—7) must be an integer. While, (2k+1, 82—7)
(i.e., the greatest common divisor of 2k+1 and 8k—7) divides 11, (k, 8¢—7)
divides 7 and (k+1, 82—7) divides 15. Thus 8k—7 divides 11?-7%.3%.5% and
8&k—7 must be a square. Thus we have k=7, 16, 29, 56, 137, 154, 379, 742,
1379, 3404, 6671, 18529 or 166754 (since k=5). If (G, 4)=(S:, 4) or (A 4),
|4d|=Fk, then we have a contradiction unless k=7, since G, (b < 4(a)) (= S,_,
or Ax_,) has no subgroup of index k—1 which is transitive on 4(a)—{b}. It
is proved by the argument given in pp. 39~40 of Wielandt that there
exists no non-trivial 5-ply transitive permutation group of degree 16=13+3,
29=2-13-+3, 56 =53+3, 137=12-67+3, 154=151-+3 and 742=739+3. Thus we
may assume that k2 is one of 7, 379, 1379, 3404, 6671, 18529 and 166754. For
the elimination of the case k=7, see Iwasaki [6]. Unfortunately, we can
say nothing any more in these remaining 6 cases at present.

(iii) If a=k—2, then m=k(k—1)%?/(k—2). Thus k<5, a contradiction.

(iv) If a=%k—1, then s*+(k—1)s>—ks—(k—1)*=0. Setting h=~k—1, we
have s*+hs®*—(h+1)s—h*=0 and so —h*+(s*—-s)h+s*—s=0. Thus the dis-
criminant D= (s*—s)*+-4(s*—s)=s*+ 2s*+ s*—4s must be a square. Now
(s*4+s5s—1)*< D <(s*+s+1)* for s=2 and s<—3. If s=—2 then D is not a
square, and if —1<s=<1 we have k<5, a contradiction.

(vi) If a=k, then m(x)/(x—k)= x*4+kx*+(—k+1)x—k(k—1)=(x+k)(—k+
x4+1)=0. Thus the eigenvalues of M are k, a;=—k, a,=+vVk—1, a,= —+/b—1.
Moreover [=£k(k—1) and m=(k—1)>. Now the two relations f,-+f,+f,=
k+Il+m and R*+4aifit+aif,tadf,=k(1+k+I1+m) (=trace of the matrix B?)
lead f;=1. Thus (&, £) is not primitive. Because, if N denotes the normal
subgroup of & which is the kernel of the irreducible character of degree f,,
then NG is a proper subgroup of &, but since the normal subgroup N is
transitive on 2, NG # G, and we have the assertion.

Thus we have completed the proof of (3.1).

(3.2) PROPOSITION. The case (II, A) in Proposition (2.12) does not hold.

PROOF. The case a=1, k—2, k—1 and %k have been treated in Proposi-
tion (3.1). Thus we may assume that a =2, 3 or £—3.

(i) If a=2, then k(k—1)"/2 must divide k(k—1)(k—2), since §, =@, =
(84,0, = (Bqp,e,) (h e d(a), b, es 4(a), b+ e+ h+Db) (cf. proof of
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(2.9)). Thus k<5, a contradiction.

(ii) If a=3, then m=k(k—1)2/3 must divide k(k—1)(k—2).

(iii) If a=~%~—3, then m = k(k—1)*/(k—3) must divide k(k—1)(k—2). Thus
k <5, a contradiction.

Thus we have completed the proof of (3.2).

(3.3) PROPOSITION. The case (II, B) in Proposition (2.12) does not hold.

PROOF. Since k<!, by the equation m(x)/(x—Ek)= x*+(a—1)x*
+(1+a—2k)x+{(—ak+a+k)=0 must have an integral solution s.

(i) If a=1, then s*4+(2—2k)s+1=0, s#0. Thus k=(s*+2s+1)/2s, and
k is not an integer =5, a contradiction.

(ii) If a=2, then s*+s>+(3—2k)s+(—k+2)=0, and so (—2s—1)k+s*4-s*+
35+2=0, 2s+1+0. Thus k=(s*+s*+3s+2)/(2s+1)=(1/8)(4s*+2s+11+5/(2s+1)).
Thus s=—3, —1, 0 or 2. Thus k=5 (s=—3), since #=5. Thus G=S,,
|2]=56 and |&|=2°-3-5-7. A minimal normal subgroup & of & is simple
and of order 2°-3-5-7 or 2°-3-5-7. Moreover a Sylow 5 subgroup of & is
self-centralizing, and we can easily show that there exists no such simple
group of order 2°-3-5-7 or 2°-3-5-7 by using the theorems of Sylow and
Burnside together with the standard consideration about principal 5 and 7
blocks of &',

(iii) If a=3, m(x)/(x—k)=x*+2x*+(4—2k)x+(3—2k) = (x+ 1)(x*+ x—2k+3).
Thus a,=—1, a,=(—1++/8k—11)/2, a;=(—1—+/8k—11)/2. As in the proof
of (3.1), (ii), we have

fo=- _ (e—ay)
(It a)a,—ay)
_ (vVBE—11—-1)(k+(1++8k—11)/2 1

In order that f, is an integer, (2k+1)k(E—1)(k-+1)/~8k—11 must be an integer.

While the G.C.D. (2k+1, 8k—11) divides 15, (k, 8k—11) divides 11, (k—1, 8k —11)

divides 3 and (k+1, 84—11) divides 19. Thus 8&k—11 divides 3*-5*-11%-19% and

8k—11 must be a square. However this is impossible, because 3*=5*=11*%

=19=1 (mod8) and so 8k—11=1 (mod8), hence %k is not an integer and
this is a contradiction.

(iv) If a=k—3, then m=k(k—1)(k—2)/(k—3). Thus k=9, 6 or 5 (since
kE=5). If k=9, then |Q2]|=14+94+72+84-=166=2-83 where 83 is a prime.
Thus this contradicts to Theorem 31.1 of Wielandt [7]. If #=6, 5 then
a =3, 2 respectively and these are impossible as were already proved in (ii)
and (iii).

(v) If a=k—2, then s$*+(k—3)s>+(—k—1)s+ (—k*+4k—2)=0, and so
—Rk*+(s*—s+4)k+5°—3s2—s—2=0. The discriminant D= s*+2s*—3s2—12s-+8.

(I +m)
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While (s?+s—~1)2> D >(s®*+s—3) for s=4 and s< —6. (s’+s—2)’=D implies
s=1/2, a contradiction. If —5=<s=3, then D is not a square unless s=2
or —1. If s=2 then k=2 or 4<5, a contradiction. If s=—1, then k=5
and a =23, and this is already excluded by (iii).

(vi) If a=Fk—1, then s*+(k—2)s*+(—k)s+(—k*+3k—1)=0, and so —Fk*+
(s2—s5+3)k+(s*—2s*—1)=0. The discriminant D= s'42s’—s*>—6s+5. While
(s2+5)2> D > (s*+s—2)* for s=1and s=—4. (s+s—1’=D implies s=1. If
s=0, —2, —3, then D is not a square, a contradiction. If s=—1 or 1, then
D is a square, but we have k<5, a contradiction.

(vii) If a==Fk, then s*+(k—1)s>+(1—k)s+(—k*+2k)=0, and so —R*+(s*—
s+2k+(s*—s?+5)=0. The discriminant D= s"42s*+s’+4. While (s®+s+41)
> D> (s%+s)? for s<—2 and s=1. If s=—1or0, then £ <5, a contradiction.

Thus we have completed the proof of (3.3).

(3.4) PROPOSITION. The case (II, C) in Proposition (2.12) does not hold.

PROOF. Since k<[, and so by Lemma 1, m(x)/(x—k)=x*4+2—B)x*+(—k
+1—p)x+(Bk—k—p)=0 must have an integral solution s.

(i) If B=0, then the intersection matrix M, with respect to the orbit
A(a) must have the form

(0 0 0 1

0 0 1 0
M,= (where m=£k—1)
0 m m—1 0

m 0 0 m—1

since pff <m—1 (cf. the parameter relations [3], (4.1) and (4.2)). This implies
that (&, £) is not primitive (cf. [3], (4.8). Change the second and the fourth
rows and columns of M,!) and this is a contradiction.

(i) If B=1, then $*+s*+(—s)k—1=0, s+ 0 and so k=s*+s—1/s. Thus
%k is not an integer =5, a contradiction.

(iii) If =2, then m=k(k—1)/(k—2) must be an integer, and this implies
k <5, a contradiction.

(iv) If 3=3, then m=k(k—1)/(k—3) must be an integer, and this implies
k=56 or 9 since £=5. If k=5 then |£2|=1+5+20+10=36, and this is
excluded similarly as in the case of Proposition 3.3 (ii) k=5. If £=6, then
|2|=146430+10=47, a prime, and this is impossible. If £=09, then |2|=
14+94724+12=94=2-47 with 47 a prime, and this contradicts to Theorem
31.1 of Wielandt [7].

(v) If =k—3 then s+ (5—Fk)s*}(—2k+4)s+(k*—5k+3)=0 and so k*+
(—8*—25—5)k+s*+5s*+4s+3=0. The discriminant D= s*—6s*+4s-+13. While
(s?—2)*> D > (s*—4)* for s<—3 and s=4, and (s*>-3)?=D implies s=—1. If
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—2=<s=3, then s= —1 (since D must be a square), and so k<5, a contra-
diction.

(vi) If f=Fk—2, then s’+(4—k)s*4-(—2k+3)s+(kF*—4k+2)=0 and so k*4
(—s*—2s—Ak+s*+4s*4+3s+2=0. The discriminant D = s*—4s®-+4s+8. While
(s2—12> D >(s*—3) for s<—3 and s=4, and (s*—2)*= D implies s=—1. If
—2<s<3, then s=—2, —1, 1 or 2 (since D must be a square), and k<5
except for the two cases k=5 (s=1) and k=8 (s=2). If k=5 then =3
and this is impossible as was already proved in (iv). If 2=28, then G=25;
or A, It is immediately shown that (G, I'(a)) = G acting on the set of ordered
pairs of 4(a), and also that (G, A(a))= G acting on the set of unordered pairs
of 4(a). Now |2|=1+8-+56+28=93, and an element r € G (=S, or A4;) con-
sisting of one 3-cycle fixes 1+5+20+410=236 points of £, and other elements
of G of order 3 and not consisting of one 3-cycle fix less than 36 points.
Thus the number of elements of & which are conjugate to ¢ is given by
|G: Cy(z)|-(12]/36)=8-7-2-93/36. However this is not an integer, and this
is a contradiction.

(vii) If B=k—1, then s+ (3—Fk)s*+(—2k+2)s+(k*—3k+1)=0 and so k*+
(—s*—25—3)k+s°+3s*4+2s+1. The discriminant D=s'—2s*+4s+5. While
s*>D>(s*—2)® for s<—2 and s=3, and D=(s*—1)* implies s=—1. If —1
=s=2, then s=—1 (since D must be a square), and so # <5, a contradiction.

Thus we have completed the proof of (3.4).

(3.5) PROPOSITION. The case (II1) in Proposition (2.12) does not hold, unless
a=3 and k=1.

PROOF. Since £ </, by m(x)/(x—k)=(x—Fk)- {x*+ ax*+(2a—3k+
2)x—a(k—2)} has an integral solution s.

(i) If a=1, then s*+s*+(4—3k)s—(k—2)=10 and so s*+s*+4s+2=(3s+ 1)k,
354+1+#0. Thus 2=(1/27)(9s*+6s+34+20/(3s+1)). In order that % is an integer
=5 k=5 (s=3) or k=16 (s=—7). If k=5 then the eigenvalues of M are
5 a;=3, ay=—2++V3, a;=—2—+/3. Thus f,=1, (cf. Proof of Lemma 1.
Moreover, from the first and the second relations in Lemma 1, (ii), we easily
have a contradiction. But if £#=16 then |£2|=1+16+8-15+8-15-14=1817=
23-79. But this case is also excluded by the same method as in the case of
k=5, ie, a;=—7, a;=3++V11, a,=3—+/11, f,=f,=16-6-299/(2-41) is not
an integer.

(i) If a=2, then s*42s*+(6—3k)s—2(k—2)=0 and so s*+2s*+6s+4=(3s-+
2)k, 3s+2+#0. Thus k=(s+2s*+65+4)/(3s-+2)=(1/27)(9s*+ 125446+ 16/(3s+2)).
It is easily shown that there exists no integral solution 2 =5, unless s= —6.
If s=-—6, then k=11, m=k(k—1)(k—2)/2a=11-10-9/(2-2) is not an integer,
a contradiction.

(iii) If a=3, then m(x)/(x—k)= x*+3x2+(8—3k)x—3(k—2), and so the
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eigenvalues of M are k, a,=—1, a,= —1++v3k—5, a;= —1—+/3k—5. From
the equations of Lemma 1|, (ii), we have

o (=)

? (1+a2)(a2—a3

_ (kt1++/3k—5)  k(k—1)(k+1)
~ V/3k—5-2v/3k—5 6 -

Clearly f,+# fo=((b—a,)/(1+a,)(a;—a))(I+m), and so +/3k—5 must be an
integer. Thus in order that f, is an integer, (k+1)2k(k—1)/+/3k—5 must be
an integer, and moreover (k+1)*k%(k—1)*/(3k—5) must be an integer. While
(B+1, 3k—5) divides 8, (k, 3k—5) divides 5, (k—1, 3k—5) divides 2. Therefore
3k—5 divides 8*-2%-5* and 3k—5 must be a square. However, if 5% divides
3k—5 then the denominator of the above formula giving f, is divisible by
5%, while the numerator is not divisible by 5% a contradiction. Thus 3k—5
divides 2'*. Moreover we can easily show that f, is never an integer unless
k=7 or 23 (here £=5). If k=23 then G=3S,; or A,, |2|=1+234253+1771
=2048=2", It is quickly shown that (G, I'(a))= G acting on the set of
unordered pairs of 4(a), and that (G, A(a))= G acting on the set of unordered
triples of 4(a). Now an element 7 € G (= S,, or A,,) consisting of one 3-cycle
fixes 1420419041141 =1352=2%-13* points of £, and other elements of G of
order 3 and not consisting of one 3-cycle fix less than 2°-13% points. Thus
the number of elements of & which are conjugate to r is given by
|G: Ce(z)]-2"/(2°-13%) and this is not an integer, a contradiction.

For k=7, there really exist primitive extensions of rank 4 of (4,, 4) and
(5;, 4), |4]=7, and these extensions have regular normal subgroups of order
64. (For the detailed exposition on these extensions, see S. Iwasaki [6].)

(iv) If a=k—3+2, #3, then m = k(k—1)(k—2)/2(k—3) must be an integer,
and this implies 2=9. If k=9, then m=42 and G=S, or A,. However it
is quickly shown that G has no subgroup of index 42, a contradiction.

(v) If a=k—2+3, then $’+(k—2)s*+(—k—2)s+(—Fk*+4k—4)=0 and so
— k(P —s+4)k+s*—2s*—25s—4=0. The discriminant D = s*+2s®-s>—16s.
While (s*+s+1)>> D > (s*+s—1)* for s<—9 and s =38, and D = (s*+5)* implies
s=0. If —8=s=<7, then s=—2, —1, 0, 2 (since D must be a square), and
k<6 except for the case k=8 and s= —2. If k=28, then the eigenvalues
of M are 8, a,=—2, a,=—2++/22 and a,=—2—+/22. Quite the same
argument as in the proof of (i) for 2=5 shows a contradiction.

(vi) If a=k—1, then $’+(k—1)s®*+(—k)s—k*+3k—2=0 and so —k*+
(s®—5+3)k+s*—s*>—2=0. The discriminant D =s'4-2s*4 3s*>—6s+1. While
(8°+s+2)*> D > (s*+5s)* for s<—5 and s=3, and D=(s*+s+1)* implies s=0.
If —4<s=<2, then s=—2, —1, 0 or 1 (since D must be a square), and £ <5

7(1—*— 7’”)
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except for the case k=7 and s=—2. If k=7, then |2|=1+4+7+214+18=47,
a prime, and this is a contradiction.

(vii) If a==Fk, then m(x)=(x—k)(x+k)(x*—k-+2). Thus the eigenvalues
of M are b, ay=—Fk, a,=vVE—2, ay=—~'k—2. Moreover [=k(k—1)/2 and
m=(k—1)(k—2)/2. Quite the same argument as in the proof of
(3.1), (vi) shows f;=1, and this is a contradiction.

Thus we have completed the proof of (3.5).

Thus Theorem 1 is completely proved.
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Added in Proof: Part II of this paper has appeared in J. Fac. Sci. Univ.
Tokyo, 19 (1972), 151-154. Statement of in Part II needs a slight
correction, according to the fact that of this paper (Part I) was
slightly corrected from that of the original version. That is,

THEOREM 2. Let (G, 4) be a 5-ply transitive permutation group. If (G, 4)
has a primitive extension of rank 4, then either (i) |4|=7 and G=S, or A,
or (i) |4]|=379, 1379, 3404, 6671, 18529 or 166754 and G + S, 4, Auan
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