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\S 1. Introduction

Let $E$ be a holomorphic vector bundle over a complex manifold $M$. To
each point $x$ of $M$ we assign the complex projective space of complex 1-
dimensional subspaces in the fibre $E_{x}$ . Let $P(E)$ be the resulting fibre bundle
over $M$ with fibre $P_{\tau-1}(C)$ , where $r$ is the fibre dimension of $E$ . To each
point of $P(E)$ which is a complex line in a fibre of $E$, we assign that com-
plex line. The resulting complex line bundle over $P(E)$ will be denoted by
$L(E)$ . In order to prevent any misunderstanding, we emphasize that $E$ minus
its zero section is the principal bundle associated to $L(E)$ and that, when $M$

reduces to a point, $L(E)$ is a line bundle over $P_{r-1}(C)$ without any non-trivial
holomorphic section.

For a complex line bundle we have a universally accepted notion of posi-
tivity or negativity. We say that a line bundle $L$ over $M$ is semi-negative
and write $L\leqq 0$ if, for every proper holomorphic map $\pi$ of a complex mani-
fold $Y$ into $M$ and for every negative line bundle $F$ over $Y$, the line bundle
$\pi^{*}L^{k}\cdot F$ over $Y$ is negative for every positive integer $k^{1)}$ In this paper, we
say that a complex vector bundle $E$ is negative and write $E<0$ if the line
bundle $L(E)$ over $P(E)$ is negative. We say that $E$ is semi-negative and write
$E\leqq 0$ if $L(E)$ is semi-negative and if $L(E)^{k}\pi^{*}F$ is negative for every positive
integer $k$ and every negative line bundle $F$ over $M$, where $\pi$ denotes the
projection $P(E)\rightarrow M$. We say that $E$ is positive (resp. semi-positive) and write
$E>0$ (resp. $E\geqq 0$) if its dual bundle $E^{*}$ is negative (resp. semi-negative). It
has been pointed out to us by P. Kiernan that $E$ is negative in our sense if
and only if the zero section of $E$ has a strongly pseudo-convex neighborhood
in $E,$ $i$ . $e.$ , weakly negative in the sense of Grauert [5]. But we omit in this
paper the cumbersome adverb ”weakly”.

Combining results of Leray and Bott with Kodaira’s vanishing theorems,
we obtain vanishing theorems for positive or negative vector bundles. From
these vanishing theorems and Riemann-Roch-Hirzebruch theorem we prove
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1) We may adopt a weaker “ semi-negativity ” by considering only holomorphic

bundles $\pi:Y\rightarrow M$ whose fibres are complex projective spaces.
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that every algebraic surface with positive tangent bundle (resp. semi-positive
tangent bundle) and positive first Chern class admits at least 3 (resp. at least
2) linearly independent holomorphic vector fields and that every algebraic
threefold with positive tangent bundle (resp. semi-positive tangent bundle)
and positive first Chern class admits at least 6 (resp. at least 5) linearly
independent holomorphic vector fields. Since a Kaehler manifold with posi-
tive holomorphic bisectional curvature has positive tangent bundle, our result
shows in particular that a compact 3-dimensional Kaehler manifold with
positive holomorphic bisectional curvature admits at least 6 linearly inde-
pendent holomorphic vector fields, thus giving another supporting evidence
to the conjecture that such a manifold must be biholomorphic to a projective
space. As a matter of fact, we started this work in an attempt to prove
this conjecture. As another application of our vanishing theorems and Rie-
mann-Roch-Hirzebruch theorem, we determine with a few exceptions those
complete intersection submanifolds of projective spaces which have positive
or semi-positive tangent bundles. We shall prove also that no complete inter-
section submanifolds can admit Kaehler metrics of positive holomorphic
bisectional curvature except the projective spaces themselves and possibly
the quadrics of odd dimension. We have been unable to decide if a quadric
of odd dimension (even in 3-dimension) admits such a metric.

Finally, we like to remark that our definition of positivity or negativity
of a vector bundle is algebraic rather than differential geometric since it
depends only on the notion of negativity for a line bundle and this latter
can be characterized by ampleness of a certain negative power.

\S 2. Vanishing theorems

Throughout this section, let $E$ be a holomorphic complex vector bundle
over a compact complex manifold $M$ with fibre dimension $r$ . Let $E-O$ denote
the bundle space $E$ minus its zero section. We denote by $P(E)$ the quotient
$(E-0)/C^{*}$ by the multiplicative group $C^{*}$ of nonzero complex numbers acting

on $E-O$ . Clearly, $E-O$ is a principal bundle over $P(E)$ with group $C^{*}$ . Let
$L(E)$ be the associated complex line bundle over $P(E)$ .

The following theorem relates cohomology of $M$ with cohomology of $P(E)$ .
THEOREM 2.1. Let $E$ and $W$ be holomorphic complex vector bundles over

M. Then

$H^{*}(M;W\otimes S^{k}E^{*})=H^{*}(P(E);\pi^{*}W\otimes L(E)^{-k})$ for $k=0,1,2,$ $\cdots$ ,

where $S^{k}E^{*}$ denotes the k-th symmetric tensor power of the dual $E^{*}$ of $E$ and
$\pi^{*}W$ is the pull-back bundle of $W$ by the projection $\pi\cdot P(E)\rightarrow M$.

We note that the fibre of $S^{k}E^{*}$ over $x\in M$ is the space of homogeneous
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polynomials of degree $k$ on $E_{x}$ .
PROOF. To avoid an inessential and only technical complication, we prove

this theorem for $k=1$ and for the trivial line bundle $W$. It is easy to see
the proof for the general case from the reasoning below.

We recall the following theorem of Leray. Let $\pi;Y\rightarrow X$ be a continuous,
proper map of paracompact, locally compact spaces. Let EY be a sheaf over
Y. For each open set $U$ of $X$, let

$\ovalbox{\tt\small REJECT}_{u}^{q}=H^{q}(\pi^{-1}(U):g|\pi^{-1}(U))$ .
We denote by $\mathscr{K}^{q}$ the sheaf over $X$ defined by the presheaf $\ovalbox{\tt\small REJECT}_{U}^{q}$ .

THEOREM OF LERAY. If $\ovalbox{\tt\small REJECT}^{q}=0$ except for $q=p$ , then

$H^{i}(Y;q)=H^{i-p}(X;\ovalbox{\tt\small REJECT}^{p})$ for all $i$ .
For a proof, see [13]. We use this theorem as follows.

$Y=P(E)$ , $X=M$, $\pi;P(E)\rightarrow M$, $\ovalbox{\tt\small REJECT}=\Omega(L(E)^{-1})$ ,

where $\Omega$ denotes the functor “ the sheaf of germs of holomorphic sections
in $\ldots$ ”. Choose a small open polydisk $U$ in $M$ and let

$\pi^{-1}(U)\approx U\times P(V)$ ,

where $V$ is the standard fibre of $E$ and $P(V)$ is the projective space of 1-
dimensional subspaces in $V,$ $i$ . $e.,$ $P(V)=(V-O)/C^{*}$ . We denote by $L(V)$ the
line bundle over $P(V)$ associated with the principal bundle $V-O$ over $P(V)$

with group $C^{*}$ . In other words, $L(V)$ is obtained by specializing the con-
struction of $L(E)$ to the case where the base space $M$ is a point. Then

$\Omega(L(E)^{-1})|\pi^{-1}U\approx O_{U}\otimes\Omega(L(V)^{-1})\wedge$ ,

where $O_{U}$ denotes the sheaf of germs of holomorphic functions over $U$ . By
K\"unneth formula (see, for instance, [7]),

$H^{q}(\pi^{-1}(U);L(E)^{-1}|\pi^{-1}(U))\approx H^{0}(U;O_{U})^{\wedge}\otimes H^{q}(P(V);L(V)^{-1})$ ,

since $U$ is a domain of holomorphy and hence

$H^{i}(U;O_{U})=0$ for $i>0$ .
On the other hand, $L(V)^{-1}$ is a positive line bundle over $P(V)$ and the canon-
ical line bundle $K$ of $P(V)$ is given by $L(V)^{r},$ $r=\dim V$, and is negative.
Hence, $L(V)^{-1}K^{-1}=L(V)^{-r-1}$ is positive. We invoke now the following vanish-
ing theorem of Kodaira, [10].

THEOREM OF KODAIRA. If $X$ is a compact complex manifold with canonical
line bundle $K$ and if $F$ is a line bundle over $X$ such that $FK^{-1}$ is positive, then

$H^{i}(X;F)=0$ for $i\geqq 1$ .
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If we apply this theorem to

$X=P(V)$ and $F=L(V)^{-1}$ ,

then we obtain
$H^{i}(P(V);L(V)^{-1})=0$ for $i\geqq 1$ .

On the other hand,

$H^{0}(P(V);L(V)^{-1})=V^{*}$ ,

where $V^{*}$ is the dual space of V. (To prove the theorem in its full gener-
ality, we have only to observe the fact $H^{0}(P(V);L(V)^{-k})=S^{k}V^{*})$ . Hence,

$H^{q}(\pi^{-1}(U);L(E)^{-1}|\pi^{-1}(U))=0$ for $q\geqq 1$ ,

$H^{0}(\pi^{-1}(U);L(E)^{-1}|\pi^{-1}(U))=H^{0}(U;\mathcal{O}_{U})\otimes V^{*}$ .
In order to conclude

$H^{*}(P(E);L(E)^{-1})=H^{*}(M;E^{*})$

from the theorem of Leray, we have to establish a natural isomorphism

$f:H^{0}(\pi^{-1}(U);L(E)^{-1}|\pi^{-1}(U))\rightarrow H^{0}(U;E^{*})$ .
Let $\eta\in H^{0}(\pi^{-1}(U);L(E)^{-1}|\pi^{-1}(U))$ . We want to define $f(\eta)\in H^{0}(U;E^{*})$ . An
element of $H^{0}(U;E^{*})$ should define, for each point $x$ of $U$, a linear functional
on the fibre $E_{x}$ . We want to define $f(\eta)$ as a linear functional on $E_{x}$ . Let
$e\in E_{x}$ . If $e=0$ , then $f(\eta)\cdot e=0$ . If $e\neq 0$ , then consider the pointy of $\pi^{-1}(U)$

$\subset P(E)$ represented by $e$ . Since $e$ is in the fibre of $L(E)$ over $y$ and since
$\eta(y)\in L(E)^{-1}$ is a linear functional on the fibre of $L(E)$ over $y$ , we can set

$ f(\eta)\cdot e=\langle\eta(y), e\rangle$ .

It is easy to verify that $f$ is an isomorphism. QED.
REMARK. This is a special case of Bott’s theorem VI [2; p. 238]. It

seems that Bott’s proposition 13.1 [2; p. 242] does not agree with the theorem
just proved. He seems to assert $H^{*}(M, E)=H^{*}(P(E), L(E))$ with our notation.

In order to be able to apply Kodaira’s vanishing theorem to a line bundle
over $P(E)$ , we have to know the canonical line bundle $K_{P(E)}$ of $P(E)$ . We
denote by $\det E$ the line bundle $\wedge^{r}E$ over $M$, where $r$ is the fibre dimension
of $E$ . Then

PROPOSITION 2.2. Let $E$ be a holomorphic complex vector bundle over $M$

with fibre dimension $r$. Let $K_{P(E)}$ and $K_{M}$ be the canonical line bundles of $P(E)$

and $M$, respectively. Then

$K_{P(E)}=L(E)^{r}\cdot\pi^{*}(K_{M}\cdot\det E^{*})$ ,

where $\pi;P(E)\rightarrow M$ is the projection.
PROOF. Consider the following three vector bundles over $P(E)$ :
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$T=T(P(E))=the$ tangent bundle of $P(E)$ ;

$\tau/=the$ subbundle of $T$ consisting of vectors tangent to fibres
of the fibration $P(E)\rightarrow M$ ;

$T^{;/}=\pi^{*}T(M)=the$ pull-back of $T(M)$ by $\pi$ .
Their duals are denoted by $\tau*,$ $\tau/*,$ $\tau^{\gamma;}*$ . From the exact sequence

$0\rightarrow\tau\prime\prime*-\tau*\rightarrow\tau/*\rightarrow 0$

we obtain
$\det T^{*}=(\det T^{\prime*})\cdot(\det T^{\gamma\gamma*})$ ,

which may be rewritten in the form

$K_{P(E)}=(\det T^{\prime*})(\pi^{*}K_{M})$ .
To complete the proof, we have only to show that

$\det T^{\prime*}=L(E)^{r}\cdot\pi^{*}(\det E^{*})$ ,
$i$ . $e.$ ,

$\det T^{\prime}=L(E)^{-r}\cdot\pi^{*}(\det E)$ .
In other words, it suffices to construct a non-degenerate dual pairing

$\mu:\det T^{\prime}\times L(E)^{r}\rightarrow\pi^{*}(\det E)$ .
Let $u\in P(E)$ and let

$\zeta=Z_{2}\wedge\cdots\wedge Z_{r}\in\wedge^{r- 1}T^{\prime}=\det T^{\prime}$

be an element over $u$ , where $Z_{2}$ , $\cdot$ .. , $Z_{r}\in T^{\prime}$ . Represent $u$ by a nonzero ele-
ment $e_{1}\in E_{x}$ , where $x=\pi(u)$ . Since $E_{x}$ is a vector space, we identify the
tangent space $T_{e_{1}}(E_{x})$ at $e_{1}$ with $E_{x}$ itself in a natural manner. Let $e_{2}$ , $\cdot$ . , $e_{r}$

be elements of $E_{x}$ which, considered as elements in $T_{e_{1}}(E_{x})$ , are mapped onto
$Z_{2}$ , $\cdot$ .. , $Z_{r}$ by the differential of the projection $E_{x}-0\rightarrow P(E)_{x}$ . Let $\varphi\in L(E)^{r}$

be an element over $u\in P(E)$ . Then $\varphi$ is of the form

$\varphi=a\cdot e_{1}\otimes\cdots\otimes e_{1}$ ( $e_{1}$ : $r$ times), $a\in C$ .
We define

$\mu(\zeta, \varphi)=a\cdot e_{1}\wedge e_{2}\wedge\cdots\wedge e_{r}$ .
It is straightforward to verify that $\mu(\zeta, \varphi)$ is well-defined, independent of all
the choices made above. QED.

We are now in a position to prove the following vanishing theorem.
THEOREM 2.3. Let $E$ be a holomorphic complex vector bundle over a com-

pact complex manifold $M$ with fibre dimension $r$. Let $F$ be a line bundle over
M. Let $k$ be a non-negative integer. If the line bundle

$L(E^{*})^{-(r+k)}\cdot\pi^{*}(K_{M^{1}}^{-}\cdot\det E^{*}\cdot F)$
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over $P(E^{*})$ is positive, then
$H^{i}(M;S^{k}E\otimes F)=0$ for $i\geqq 1$ ,

where $S^{k}E$ is the k-th symmetric tensor power of $E$.
PROOF. By Theorem 2.1, we have an isomorphism

$H^{i}(M;S^{k}E\otimes F)=H^{i}(P(E^{*});L(E^{*})^{-k}\cdot\pi^{*}F)$ for all $i$ :

The right hand side vanishes for $i\geqq 1$ by Kodaira’s vanishing theorem since

$L(E^{*})^{-k}\cdot\pi^{*}F\cdot K_{P(E)}^{-1}=L(E^{*})^{-(r+k)}\cdot\pi^{*}(K_{M}^{-1}\cdot\det E^{*}\cdot F)$

by Proposition 2.2. QED.

We shall list a few immediate consequences.
COROLLARY 2.4. If either

(i) $E>0$ and $K_{M}\cdot\det E\cdot F^{-1}\leqq 0$

$or$

(ii) $E\geqq 0$ and $K_{M}\cdot\det E\cdot F^{-1}<0$ ,

then
$H^{i}(M;S^{k}E\otimes F)=0$ for $i\geqq 1$ and $k=0,1,2,$ $\cdots$

COROLLARY 2.5. Let $M$ be a compact complex manifold such that either

(i) $T(M)>0$ and $F\geqq 0$

$or$

(ii) $T(M)\geqq 0$ and $F>0$ .
Then

$H^{i}(M;S^{k}T\otimes F)=0$ for $i\geqq 1$ and $k=0,1,2,$ $\cdots$ ,

where $T=T(M)$ .
We remark here that if $T(M)>0$ , then $H^{1}(M, T(M))=0$ so that $M$ has

no infinitesimal deformations of the complex structure.
COROLLARY 2.6. If $L(E)^{-(r+k)}\cdot\pi^{*}(\det E\cdot F^{-1})>0$, then

$H^{j}(M;S^{k}E\otimes F)=0$ for $j\leqq n-1$ ,

where $n=\dim M$.
PROOF. If we replace $F$ by $F\cdot K_{M}$ in Theorem 2.3, then

$L(E^{*})^{-(r+k)}\cdot\pi^{*}(\det E^{*}\cdot F)>0\Rightarrow H^{i}(M;S^{k}E\otimes F\cdot K_{M})=0$ for $i\geqq 1$ .
On the other hand, by Serre’s duality theorem, we have

$H^{i}(M;S^{k}E\otimes F\cdot K_{M})_{dua1}\sim H^{n- i}(M;S^{k}E^{*}\otimes F^{-1})$ .

Replacing $E^{*}$ by $E$ and $F^{-1}$ by $F$, we obtain the corollary. QED.
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COROLLARY 2.7. If either

(i) $E<0$ and $\det E\cdot F^{-1}\geqq 0$

$or$

(ii) $E\leqq 0$ and $\det E\cdot F^{-1}>0$ ,

then
$H^{j}(M;S^{k}E\otimes F)=0$ for $j\leqq n-1$ and $k=0,1,2,$ $\cdots$

REMARK. In relation to Corollary 2.5, we mention the following

PROPOSITION 2.8. Let $M$ be a compact complex manifold with canonical
line bundle $K_{M}$ . If $F$ is a line bundle such that $K_{M}^{-1}\cdot F>0$ , then

$H^{i}(M;T(M)\otimes F)=0$ for $i\geqq 2$ .
PROOF. By Serre’s duality theorem, we obtain (setting $T=T(M)$)

$H^{i}(M;T\otimes F)_{dua1}\sim H^{n- i}(M ; T^{*}\otimes K_{M}\cdot F^{-1})=H^{n- i1}(M;K_{M}\cdot F^{-1})$ .

Now our proposition follows from the following vanishing theorem of Nakano
[12]:

If $F$ is a negative line bundle over a compact complex manifold $M$, then

$H^{p,q}(M;F)=0$ $p+q\leqq n-1$ , (where $n=\dim M$).
QED.

\S 3. Positive vector bundles over algebraic surfaces

Let $E$ be a holomorphic complex vector bundle over a compact complex
manifold $M$ of dimension $n$ . Let $g$ denote the first Chern class of the line
bundle $L(E^{*})^{-1}$ over $P(E^{*})$ . Denote by $d_{i}$ the i-th Chern class of the vector
bundle $E$ . Then

$g^{r}-d_{1}g^{r-1}+d_{2}g^{r- 2}-$ $+(-1)^{r}d_{r}=0$ ,

where $r$ is the fibre dimension of $E$ . Using this identity, we can reduce any
polynomial in $g$ to a polynomial of degree less than $r$ (whose coefficients are
polynomials in the Chern classes $d_{i}$). In particular, we can reduce $g^{n+r- 1}$ to
such a polynomial. Using the fact that the integral of $g^{r-1}$ along a fibre of
$P(E^{*})$ is 1 and the integral of a term whose degree in $g$ is less than $r-1$

along a fibre is zero, we can express $g^{n+r-1}[P(E^{*})]$ in terms of Chern num-
bers of $E$ .

For instance, if $\dim M=2$, then we obtain by a simple calculation

$g^{2+r-1}[P(E^{*})]=(d_{1}^{2}-d_{2})[M]$ .
As a consequence, we obtain

THEOREM 3.1. Let $E$ be a holomorphic complex vector bundle over an alge-
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braic surface M. Then
(i) If $E>0$, then $(d_{1}^{2}-d_{2})[M]>0$ ;

(ii) If $E\geqq 0$ , then $(d_{1}^{2}-d_{2})[M]\geqq 0$ .
PROOF. (i). If $E>0$, then $L(E^{*})^{-1}$ is positive so that $g$ can be represented

by a positive definite closed $(1, 1)$ -form $\varphi$ . The integral of $\varphi^{r+1}$ on $P(E^{*})$ is
therefore positive, i. e., $g^{r+1}[P(E^{*})]>0$ .

(ii). Let $F$ be a positive line bundle over $M$ ; such a bundle exists since
$M$ is algebraic. Then $L(E^{*})^{-k}\cdot\pi^{*}F$ is a positive line bundle over $P(E^{*})$ ; this
is immediate from the definition of $E\geqq 0$ . Let $f$ denote the first Chern class
of $\pi^{*}F$. Represent $f$ and $g$ by closed $(1, 1)$ -forms $\psi$ and $\varphi$ , respectively.
Since $kg+f$ is positive for every positive integer $k$ , it follows that the inte-

gral,-of $(k\varphi+\psi)^{r+1}$ over $P(E^{*})$ is positive. Hence, the integral of $(\varphi+\frac{\psi}{k})^{r+1}$

over $P(E^{*})$ is also positive. Letting $k$ go to infinity, we see that the integral
of $\varphi^{r+1}$ is positive or zero. QED.

REMARK. Although we did not make use of the assumption that $M$ be
algebraic in (i), the assumption that $E$ be positive implies $M$ is algebraic.

THEOREM 3.2. Let $E$ be a holomorphic complex vector bundle over an alge-
braic surface $M$ with fibre dimension $r$. Then

(i) If $E>0,$ $\det E>0$ and $K_{M}\cdot\det E\leqq 0$ , then $\dim H^{0}(M;E)>r$ ;
(ii) If $E\geqq 0,$ $\det E\geqq 0$ and $K_{M}\cdot\det E<0$ , then $\dim H^{0}(M;E)\geqq r$.
PROOF. (i). From Corollary 2.4, we obtain

$H^{i}(M;E)=0$ for $i\geqq 1$

so that
$H^{0}(M;E)=x(M;E)$ .

For an algebraic surface $M$ and a holomorphic vector bundle $E$ over $M$,
$\chi(M;E)$ is given by (see [6])

$\chi(M;E)=\{\frac{1}{2}(d_{1}^{2}-2d_{2})+^{1}-2-d_{1}c_{1}+\frac{r}{12}(c_{1}^{2}+c_{2})\}[M]$ ,

which may be rewritten as follows:

$\chi(M;E)=(d_{1}^{2}-d_{2})[M]+\{\frac{1}{2}d_{1}(c_{1}-d_{1})+\frac{r}{12}(c_{1}^{2}+c_{2})\}[M]$ .

Since $\det E>0$ , its characteristic class $d_{1}$ can be represented by a positive
definite closed $(1, 1)$ -form. Since $(K_{M}\cdot\det E)^{-1}\geqq 0,$ $(K_{M}\cdot\det E)^{-k}\cdot F$ is positive
for every positive integer $k$ and every positive line bundle $F$ . Let $f$ denote
the Chern class of $F$. Then $k(c_{1}-d_{1})+f$ can be represented by a positive
definite closed $(1, 1)$ -form. Hence, $d_{1}(k(c_{1}-d_{1})+f)[M]>0$ . Dividing the both
sides by $k$ and letting $k$ go to infinity, we obtain
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$d_{1}(c_{1}-d_{1})[M]\geqq 0$ .
Since $\det E>0$ and $K_{M}\cdot\det E\leqq 0$, it follows that $K_{M}<0$ so that

$H^{i0}(M;C)=0$ for $i>1$

by Kodaira’s vanishing theorem. This implies that arithmetic genus $\chi(M)$

$=\frac{1}{12}(c_{1}^{2}+c_{2})[M]$ is equal to 1. Hence, by Theorem 3.1, we have

$\chi(M;E)\geqq(d_{1}^{2}-d_{2})[M]+r>r$ .
(iii). The proof for (ii) is similar and hence omitted. QED.

REMARK. It is very likely that $E>0$ implies $\det E>0$ and that $E\geqq 0$

implies $\det E\geqq 0$ .
THEOREM 3.3. Let $M$ be an algebraic surface with $K_{M}<0$ .
(i) If $T(M)>0$ , then $\dim H^{0}(M;T(M))>2$ and $\dim H^{11}(M;C)<4$ ,

(ii) If $T(M)\geqq 0$ , then $\dim H^{0}(M;T(M))\geqq 2$ and $\dim H^{11}(M;C)\leqq 4$ .
PROOF. Since $K_{M}<0$ , Kodaira’s vanishing theorem implies $H^{i0}(M;C)=0$

for $i\geqq 1$ so that
$c_{2}[M]=2+\dim H^{11}(M;C)$ ,

$(c_{1}^{2}+c_{2})[M]=12\cdot\chi(M)=12$ .
Hence,

8–2 $\dim H^{11}(M;C)=(c_{1}^{2}-c_{2})[M]$ ,

which is positive or non-negative according as $T(M)>0$ or $T(M)\geqq 0$ by
Theorem 3.1. Since

$\chi(M;T(M))=\{c_{1}^{2}-c_{2}+\frac{1}{6}(c_{1}^{2}+c_{2})\}[M]=(c_{1}^{2}-c_{2})[M]+2$ ,

$\chi(M;T(M))>2$ or $\geqq 2$ according as $T(M)>0$ or $T(M)\geqq 0$ . Since $H^{i}(M;T(M))$

$=0$ for $i\geqq 2$ by Proposition 2.8, we have
$\dim H^{0}(M;T(M))=\chi(M;T(M))+\dim H^{1}(M;T(M))\geqq\chi(M;T(M))$ .

Hence, $\dim H^{0}(M;T(M))>2$ or $\geqq 2$ according as $T(M)>0$ or $T(M)\geqq 0$ . QED.
In Theorem 3.2, let $E=T(M)$ . Then $\det E=K_{M}^{-1}$ . So part of Theorem

3.3 may be derived from Theorem 3.2. We do not know if $T(M)>0$ implies
$K_{M}<0$ . The assumption $K_{M}$ was needed only to prove $\chi(M)=1$ . Note that
we proved $\dim H^{0}(M;T(M))\geqq 10-2\dim H^{11}(M;C)$ .

\S 4. Positive vector bundles over algebraic threefolds

Some of the results in the preceding section can be extended to algebraic
threefolds. Let $E$ be a holomorphic complex vector bundle over a compact
complex manifold $M$ of dimension 3. Let $g$ be the first Chern class of the
line bundle $L(E^{*})^{-1}$ over $P(E^{*})$ . Let $d_{i}$ be the i-th Chern class of $E$. Then
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the method described in \S 3 gives

$g^{3+r- 1}[P(E^{*})]=(d_{1}^{3}-2d_{1}d_{2}+d_{3})[M]$ ,

where $r$ is the fibre dimension of $E$ . As a consequence, we have
THEOREM 4.1. Let $E$ be a holomorphic complex vector bundle over a 3-dimen $\cdot$

sional compact complex manifold M. Then
(i) If $E>0$ , then $(d_{1}^{3}-2d_{1}d_{2}+d_{3})[M]>0$ ;

(ii) If $E\geqq 0$ , then $(d_{1}^{3}-2d_{1}d_{2}+d_{3})[M]\geqq 0$ .
The proof is similar to that of Theorem 3.1 and hence is omitted.
If $M$ is an algebraic threefold, then Riemann-Roch-Hirzebruch theorem

states

$\chi(M;E)=\{\frac{1}{6}(d_{1}^{3}-3d_{1}d_{2}+3d_{8})+\frac{1}{4}(d_{1}^{2}-2d_{2})c_{1}+\frac{1}{12}(c_{1}^{2}+c_{2})d_{1}+\frac{r}{24}c_{1}c_{2}\}[M]$ .

Although we have been unable to extend Theorem 3.2 to threefolds, we have
the following partial generalization of Theorem 3.3.

THEOREM 4.2. Let $M$ be an algebraic threefold with $K_{M}<0$ . Then
(i) If $T(M)>0$ , then $\dim H^{0}(M;T(M))>5$ ;

(ii) If $T(M)\geqq 0$ , then $\dim H^{0}(M;T(M))\geqq 5$ .
PROOF. We have

$\chi(M;T(M))=(\frac{1}{2}c_{1}^{3}-\frac{19}{24}c_{1}c_{2}+\frac{1}{2}c_{a})[M]$

$=\{\frac{1}{2}(c_{1}^{3}-2c_{1}c_{2}+c_{3})+\frac{5}{24}c_{1}c_{2}\}[M]$ .

By Theorem 4.1, $\chi(M;T(M))>\frac{5}{24}c_{1}c_{2}[M]$ or $\geqq--c_{1}c_{2}[M]2^{5}4$ according as
$T(M)>0$ or $T(M)\geqq 0$ . On the other hand, $K_{M}<0$ implies that the arithmetic

genus $\chi(M)=\frac{1}{24}c_{1}c_{2}[M]$ is equal to 1. Hence, $\chi(M;T(M))>5$ or $\geqq 5$ ac-
cording as $T(M)>0$ or $T(M)\geqq 0$ . By Proposition 2.8, $\dim H^{0}(M;T(M))$

$=\chi(M;T(M))+\dim H^{1}(M;T(M))$ . Hence $\dim H^{0}(M;T(M))>5$ or $\geqq 5$ accord-
ing as $T(M)>0$ or $T(M)\geqq 0$ . QED.

Again, the assumption $K_{M}<0$ was used only to prove that the arithmetic
genus of $M$ is 1.

We conclude this section by remarking that by computation we obtain
the following formula for an algebraic threefold $M$ :

$\chi(M;S^{k}T(M))=(\frac{3k}{40}+\frac{3k^{2}}{16}+\frac{k^{3}}{6}+\frac{k^{4}}{16}+\frac{k^{6}}{120})(c_{1}^{3}+c_{8})[M]$

$-(-1+\frac{43k}{30}+\frac{15k^{2}}{2}+\frac{23k^{8}}{3}+3k^{4}+\frac{2k^{6}}{5})^{\underline{c}_{2^{1_{\frac{c}{4}}\underline{2}}}}[M]$
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$=(\frac{3k}{40}+\frac{3k^{2}}{16}+\frac{k^{a}}{6}+\frac{k^{4}}{16}+\frac{k^{5}}{120})(c_{1}^{3}-2c_{1}c_{2}+c_{8})[M]$

$+(1+\frac{13k}{6}+\frac{3k^{2}}{2}+\frac{k^{3}}{3})\frac{c_{1}c_{2}}{24}[M]$ .
This implies:

$\dim H^{0}(M;S^{k}T(M))>1+\frac{13}{6}k+\frac{3}{2}k^{2}+\frac{1}{3}k^{3}$ if $T(M)>0$ and $K_{M}<0$ .

\S 5. Complete intersections with (semi-) positive tangent bundle2)

Let $M$ be a complete intersection of $\gamma$ hypersurfaces of degree $a_{1},$ $\cdots$ , $a_{r}$

in $P_{n+r}(C)$ with $a_{i}\geqq 2$. We want to determine those $M$ with $T(M)>0$ or
$T(M)\geqq 0$ . Let $H$ denote the (positive) line bundle over $P_{n+r}(C)$ defined by a
hyperplane. Since $T(M)>0$ (resp. $T(M)\geqq 0$) implies $H^{1}(M;T(M))=0$ (resp.
$H^{1}(M;T(M)\otimes H)=0)$ , we want to first compute the cohomology groups
$H^{1}(M;T(M))$ and $H^{1}(M;T(M)\otimes H)$ . We denote by $M^{k}$ the intersection of
the first $k$ hypersurfaces (of degree $a_{1},$ $\cdots$ , $a_{k}$) used in the definition of $M$.
In particular, $M^{0}=P_{n+r}(C)$ and $M^{r}=M$. Let $N^{k}$ denote the normal bundle
of $M^{k}$ in $P_{n+r}(C)$ . We write also $N$ for $N^{r}$ . For $M^{k}$ , the superscript $k$ coin-
cides with its codimension in $P_{n+r}(C)$ . For $N^{k},$ $k$ coincides with its fibre
dimension.

We need the following theorem of Bott, [2]:

$H^{q}(P_{n} ; \Omega^{p}(H^{k}))=0$

except for the following three cases: (1) $p=q$ and $k=0,$ (2) $q=0$ and $k>p$ ,
(3) $q=n$ and $k<p-n$ . ($\Omega^{p}(H^{k})$ denotes the sheaf of germs of holomorphic
p-forms with coefficients in $H^{k}$). Setting $p=1$ and using the Serre duality
theorem and also setting $p=0$, we obtain

THEOREM 5.1. For $P_{n}=P_{n}(C)$ , we have

(i) $H^{i}(P_{n} ; TP_{n}\otimes H^{m})=0$ for $1\leqq i\leqq n-1$ , all $m$ except for the case
$i=n-1$ and $m=-(n+1)$ ;

(ii) $H^{0}(P_{n} ; TP_{n}\otimes H^{m})=0$ for $m\leqq-2$ except for $n=1,$ $m=-2$ ;

(iii) $H^{i}(P_{n} ; H^{m})=0$ for $1\leqq i\leqq n-1$ and all $m$ ;

(iv) $H^{0}(P_{n} ; H^{m})=0$ for $m\leqq-1$ .
REMARK. (ii) and (iv) will also follow from (ii) of Corollary 7.2. (iii)

may be easily obtained from the vanishing theorem of Kodaira. Part of (i),

2) Throughout this paper, we consider only non-singular intersections of non.
singular hypersurfaces.
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i. e., for $n+m\geqq 0$, may be also obtained from (i) of Corollary 7.2.
From Theorem 5.1, we prove
PROPOSITION 5.2. Let $n\geqq 2$ . Then

(i) $H^{i}(M^{k} ; TP_{n+r}\otimes H^{m})=0$ for $1\leqq i\leqq r-k$ and all $m$ ;

(ii) $H^{0}(M^{k} ; TP_{n+r}\otimes H^{m})=0$ for $m\leqq-2$ ;

(iii) $H^{i}(M^{k} ; H^{m})=0$ for $1\leqq i\leqq r-k+1$ and all $m$ ;

(iv) $H^{0}(M^{k} ; H^{m})=0$ for $m\leqq-1$ .
PROOF. The proof is by induction on $k$ . The case $k=0$ is Theorem 5.1.

Assume Proposition 5.2 for $k-1$ . We write $P$ for $P_{n+r}$ .
(i). Since $H^{a_{k}}$ is the normal bundle of $M^{k}$ in $M^{k- 1}$ , we have the follow $\cdot$

ing exact sequence

(1) $-\succ H^{i}(M^{k-1} ; TP\otimes H^{m})\rightarrow H^{i}(M^{k} ; TP\otimes H^{m})$

$\rightarrow H^{i+1}(M^{k- 1} ; TP\otimes H^{m- a_{k}})\rightarrow$ .
From this, we obtain (i).

(ii). In the sequence (1), let $i=0$ and use (i).
(iii). In the same way as (1), we obtain the following exact sequence:

(2) $\rightarrow H^{i}(M^{k-1} ; H^{m})\rightarrow H^{t}(M^{k} ; H^{m})\rightarrow H^{i+1}(M^{k- 1} ; H^{m- a_{k}})\rightarrow$ .
From this, we obtain (iii).

(iv). In the sequence (2), let $i=0$ and use (iii). QED.

From the sequence (1) and (i) of Proposition 5.2, we obtain the following

exact sequence:

(3) $0\rightarrow H^{0}(M^{k-1} ; TP\otimes H^{m- a_{k}})-H^{0}(M^{k- 1} ; TP\otimes H^{m})$

$\rightarrow H^{0}(M^{k} ; TP\otimes H^{m})-0$ .
Hence,

PROPOSITION 5.3.
$\dim H^{0}(M;TP_{n+\tau}\otimes H^{m})\leqq\dim H^{0}\langle P_{n+r}$ ; $TP_{n+r}\otimes H^{m}$) for all $m$ .

From the sequence (2) and (iii) of Proposition 5.2, we obtain the following
exact sequence:

(4) $0\rightarrow H^{0}(M^{k- 1} ; H^{m- a_{k}})\rightarrow H^{0}(M^{k- 1} ; H^{m})$

$\rightarrow H^{0}(M^{k} ; H^{m})\rightarrow 0$ for all $m$ .
Hence,

PROPOSITION 5.4.
$\dim H^{0}(M^{k} ; H^{m})=\dim H^{0}(M^{k- 1} ; H^{m})-\dim H^{0}(M^{k- 1} ; H^{m- a_{k}})$ .

From the exact sequence
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$0\rightarrow H^{a_{k}}\rightarrow N^{k}\rightarrow N^{k- 1}\rightarrow 0$

and from (iii) of Proposition 5.2, we obtain the following exact sequence

$0\rightarrow H^{0}(M;H^{a_{k}+m})\rightarrow H^{0}(M;N^{k}\otimes H^{m})\rightarrow H^{0}(M_{f}\cdot N^{k- 1}\otimes H^{m})\rightarrow 0$ .

Hence,

$\dim H^{0}(M;N^{k}\otimes H^{m})=\dim H^{0}(M;N^{k- 1}\otimes H^{m})+\dim H^{0}(M;H^{a_{k}+m})$ ,

which implies
PROPOSITION 5.5.

$\dim H^{0}(M;N\otimes H^{m})=\sum_{i=1}^{r}H^{0}(M;H^{a_{i}+m})$ for all $m$ .

If we denote by $M\cap H$ a hyperplane section of $M$ and if $W$ is a holo-
morphic vector bundle over $M$, then we have the following exact sequence:

$0\rightarrow H^{0}(M;W\otimes H^{m- 1})\rightarrow H^{0}(M;W\otimes H^{m})$

$\rightarrow H^{0}(M_{\cap}H;W\otimes H^{m})\rightarrow H^{1}(M;W\otimes H^{m- 1})$

which is valid for any closed complex submanifold $M$ in $P_{n+r}(C)$ . Hence,
PROPOSITION 5.6. If $M$ is a closed complex submanifold of $P_{n+r}(C)$ , and if

$W$ is a holomorphic vector bundle over $M$, then

$\dim H^{0}(M;W\otimes H^{m- 1})\leqq\dim H^{0}(M;W\otimes H^{m})$ for all $m$ .

The following proposition is useful in computing $\dim H^{0}(P_{n} ; TP_{n}\otimes H^{m})$ .
PROPOSITION 5.7. Let $P_{n}=P_{n}(C)$ . For $n+m\geqq 1$ , we have

$\dim H^{0}(P_{n} ; TP_{n}\otimes H^{m})=\dim H^{0}(P_{n- 1} ; TP_{n- 1}\otimes H^{m})$

$+\dim H^{0}(P_{n} ; TP_{n}\otimes H^{m- 1})+\dim H^{0}(P_{n- 1} ; H^{m+1})$ .
PROOF. Since $P_{n-1}$ is a hyperplane in $P_{n}$ with normal bundle $H$ and since

$H^{1}(P_{n} ; TP_{n}\otimes H^{m-1})=0$ for $n+m\geqq 1$ by (i) of Theorem 5.1, we have the fol-
lowing exact sequence:

$0\rightarrow H^{0}(P_{n} ; TP_{n}\otimes H^{m- 1})\rightarrow H^{0}(P_{n} ; TP_{n}\otimes H^{m})$

$\rightarrow H^{0}(P_{n- 1} ; TP_{n}\otimes H^{m})\rightarrow 0$ .
On the other hand, from the exact sequence

$0\rightarrow TP_{n- 1}\rightarrow(TP_{n})|_{p_{n- 1}}\rightarrow H|_{p_{n- 1}}\rightarrow 0$

and from $H^{1}(P_{n-1} ; TP_{n-1}\otimes H^{m})=0$ (see (i) of Theorem 5.1), we obtain the
following exact sequence:

$0\rightarrow H^{0}(P_{n- 1} ; TP_{n- 1}\otimes H^{m})\rightarrow H^{0}(P_{n- 1} ; TP_{n}\otimes H^{m})$

$\rightarrow H^{0}(P_{n- 1} ; H^{m+1})-0$ .
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From these two cohomology exact sequences, we obtain the desired formula.
QED.

From Proposition 5.7, we can compute $\dim H^{0}(P_{n} ; TP_{n}\otimes H^{m})$ inductively.
In particular, we have

PROPOSITION 5.8. Let $P_{n}=P_{n}(C)$ . Then

(i) $\dim H^{0}(P_{n} ; TP_{n})=n(n+2)$ ;

(ii) $\dim H^{0}(P_{n} ; TP_{n}\otimes H)=\frac{1}{2}n(n+1)(n+3)$ ;

(iii) $\dim H^{0}(P_{n} ; TP_{n}\otimes H^{-1})=n+1$ ;

(iv) $\dim H^{0}(P_{n} ; TP_{n}\otimes H^{m})=0$ for $m\leqq-2$ and $n\geqq 2$ .
PROOF. (i). $H^{0}(P_{n} ; TP_{n})$ is the space of holomorphic vector fields on $P_{n}$

and it is a well known fact that it is of dimension $n(n+2)$ .
(ii). In Proposition 5.7, let $m=1$ . Then use (i) and the formula

$\dim H^{0}(P_{n-1} ; H^{2})=\frac{1}{2}n(n+1)$ , which can be found on p. 165 in [6]. Then

$\dim H^{0}(P_{n} ; TP_{n}\otimes H)=\dim H^{0}(P_{n- 1} ; TP_{n- 1}\otimes H)+--n(3n+5)21$ .
Hence,

$\dim H^{0}(P_{n} ; TP_{n}\otimes H)=\sum_{k=1}^{n}\frac{1}{2}k(3k+5)=\frac{1}{2}n(n+1)(n+3)$ .

(iii). In Proposition 5.7, let $m=0$ . Then use (i) and the formula
$\dim H^{0}(P_{n- 1} ; H)=n$ .

(iv). Although this is stated in (ii) of Theorem 5.1, we give here a direct
proof. In Proposition 5.7, let $m=-1$ and use (iii). Then $H^{0}(P_{n}, TP_{n}\otimes H^{-2})=0$ .
The rest follows from Proposition 5.6. QED.

From the exact sequence

$0\rightarrow TM\rightarrow(TP_{n+r})|_{M}\rightarrow N\rightarrow 0$ ,

we obtain the following exact sequence:

(4) $0\rightarrow H^{0}(M;TM\otimes H^{m})\rightarrow H^{0}(M;TP_{n+r}\otimes H^{m})$

$\rightarrow H^{0}(M;N\otimes H^{m})\rightarrow H^{1}(M;TM\otimes H^{m})\rightarrow$ .
We are no $\backslash V$ in a position to establish the following fact which has $b_{\vee}^{a\simeq}.n$

communicated to us by S. Iitaka.3)

THEOREM 5.9. Let $M$ be a complete intersection of $r$ hypersurfaces of de-
gree $a_{1},$

$\cdots$ , $a_{r}$ in $P_{n+\gamma}(C)$ with $a_{i}\geqq 2$ and $n\geqq 2$ . Then $H^{1}(M;TM)\neq 0$ except

for the case $r=1$ and $a_{1}=2$ (i. e., the case where $M$ is a quadric in $P_{n+1}(C)$).

3) For a hypersurface, this has been proved in [11].
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PROOF. First, we estimate $\dim H^{0}(M;H^{2})$ . In Proposition 5.4, let $m=2$ .
Then $\dim H^{0}(M^{k-1} ; H^{2-a_{k}})=0$ or 1 according as $a_{k}\geqq 2$ or $a_{k}=2$ (see (iv) of
Proposition 5.2). Proposition 5.4 implies therefore the following inequalities:

$\dim H^{0}(M^{k} ; H^{2})\geqq\dim H^{0}(M^{k- 1} ; H^{2})-1$ for $k=1,$ $\cdots$ , $r$ .

By telescoping these inequalities, we obtain

$\dim H^{0}(M;H^{2})\geqq\dim H^{0}(P_{+}$. ; $H^{2})-r=\frac{1}{2}(n+r+2)(n+r+1)-r$ .

We used here the formula $\dim H^{0}(P_{s} ; H^{m})=\left(\begin{array}{l}s+m\\m\end{array}\right)$ , (see p. 165 [6]). This

inequality together with Propositions 5.5 and 5.6 implies

$\dim H^{0}(M;N)\geqq\frac{1}{2}r(n+r+2)(n+r+1)-r^{2}$ .

On the other hand, from (i) of Proposition 5.8, we have

$\dim H^{0}(P_{n+r} ; TP_{n+r})=(n+r)(n+r+2)$ .
It is now easy to verify $\dim H^{0}(M;N)>\dim H^{0}(P_{n+r} ; TP_{n+\tau})$ for $r\geqq 2$ . From
the exact sequence (4) for $m=0$ , we may conclude $H^{1}(M;TM)\neq 0$ for $r\geqq 2$ .

Assume now $r=1$ and $a_{1}\geqq 3$ . In this case, $M=M^{1}$ and $N=H^{\alpha_{1}}$ . From
Proposition 5.4, we obtain

$\dim H^{0}(M;N)=\dim H^{0}(M^{1} ; H^{a_{1}})=\dim H^{0}(P_{n+1} ; H^{a_{1}})-1$

$=\left(\begin{array}{l}n+1+a_{1}\\a_{1}\end{array}\right)-1$ .

It is now easy to verify that $\dim H^{0}(M;N)>\dim H^{0}(P_{n+1} ; TP_{n+1})$ . From the
exact sequence (4) for $m=0$ , we can again conclude $H^{1}(M;TM)\neq 0$ for $a_{1}\geqq 3$ .

From the results so far obtained, it is not difficult to show

$\dim H^{1}(M;TM)=\left(\begin{array}{l}n+1+a_{1}\\a_{1}\end{array}\right)-1-(n+1)(n+3)$

for a hypersurface $M$ of degree $a_{1}$ . But this is already known, [11]. QED.
We want to find now $M$ with $H^{1}(M;TM\otimes H)=0$ . We begin with an

estimate of $\dim H^{0}(M;H^{3})$ . From Proposition 5.4, we obtain

$\dim H^{0}(M^{k} ; H^{3})=\dim H^{0}(M^{k-1} ; H^{3})-\dim H^{0}(M^{k- 1} ; H^{8- a_{k}})$ for $k=1,$ $r$ .

Since $3-a_{k}\leqq 1$ , Proposition 5.6 implies

$\dim H^{0}(M^{k} ; H^{3})\geqq\dim H^{0}(M^{k- 1} ; H^{8})-\dim H^{0}(M^{k- 1} ; H)$ for $k=1,$ $r$ .
By telescoping these inequalities, we obtain

$\dim H^{0}(M;H^{3})\geqq\dim H^{0}(P_{n+r} ; H^{3})-\sum_{k=1}^{r}\dim H^{0}(M^{k- 1} ; H)$ .
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If we set $m=1$ in Proposition 5.4 and use (iv) of Proposition 5.2, then we
obtain

$\dim H^{0}(M^{k} ; H)=\dim H^{0}(M^{k-1} ; H)$ for $k=1,$ $\cdots$ , $r$ ,

and hence

$\dim H^{0}(M^{k} ; H)=\dim H^{0}(P_{n+r} ; H)=n+r+1$ .
Hence,

$\dim H^{0}(M;H^{3})\geqq\dim H^{0}(P_{n+r} ; H^{3})-r(n+r+1)$

$=\frac{1}{6}(n+r+3)(n+r+2)(n+r+1)-r(n+r+1)$ .

From Propositions 5.5 and 5.6, we obtain

$\dim H^{0}(M;N\otimes H)\geqq r\cdot\dim H^{0}(M;H^{3})$

$\geqq\frac{r}{6}(n+r+3)(n+r+2)(n+r+1)-r^{2}(n+r+1)$ .

On the other hand, from (ii) of Proposition 5.8, we have

$\dim H^{0}(P_{n+r} ; TP_{n+r}\otimes H)=_{2}^{1}--(n+r)(n+r+1)(n+r+3)$ .

It is easy to verify that $\dim H^{0}(M;N\otimes H)>\dim H^{0}(P_{n+\tau} ; TP_{n+r}\otimes H)$ for
$r\geqq 3$ . From the exact sequence (4) for $m=1$ , we may conclude that
$H^{1}(M;TM\otimes H)\neq 0$ for $r\geqq 3$ .

We consider the case $r=2$ and $a_{1}\geqq 2,$ $a_{2}\geqq 3$ . Using Proposition 5.4 twice,

we obtain

$\dim H^{0}(M^{2} ; H^{\$})=\dim H^{0}(P_{n+2} ; H^{3})-\dim H^{0}(P_{n+2} ; H^{a- a_{1}})$

$-\dim H^{0}(P_{n+2} ; H^{a- a_{2}})+\dim H^{0}(P_{n+2} ; H^{8- a_{1}- a_{2}})$

$\geqq\frac{1}{6}(n+5)(n+4)(n+3)-(n+3)-1$ .

To estimate $\dim H^{0}(M;H^{4})$ , we compute $\dim H^{0}(M;H^{2})$ using Proposition 5.4
twice and obtain

$\dim H^{0}(M^{2} ; H^{2})=\dim H^{0}(P_{n+2} ; H^{2})-\dim H^{0}(P_{n+2} ; H^{2- a_{1}})$

$-\dim H^{0}(P_{n+2} ; H^{2- a_{2}})+\dim H^{0}(P_{n+2} ; H^{2- a_{1}-a_{2}})$

$\leqq\frac{1}{2}(n+4)(n+3)$ .

Now we estimate $\dim H^{0}(M_{j}H^{4})$ as follows:
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$\dim H^{0}(M^{2} ; H^{4})=\dim H^{0}(P_{n+z} ; H^{4})-\dim H^{0}(P_{n+z} ; H^{4- a_{1}})$

$-\dim H^{0}(P_{n+z} ; H^{4- a_{2}})+\dim H^{0}(P_{n+2} ; H^{4-\alpha_{1}- a_{2}})$

$\geqq\frac{1}{24}(n+6)(n+5)(n+4)(n+3)-\frac{1}{2}(n+4)(n+3)-(n+3)$ .

From Propositionswe 5.5 and 5.6, obtain

$\dim H^{0}(M_{j}N\otimes H)=\dim H^{0}(M;H^{a_{1+1}})+\dim H^{0}(M;H^{a_{2+1}})$

$\geqq\dim H^{0}(M;H^{3})+\dim H^{0}(M;H^{4})$

$\geqq\frac{1}{24}(n+10)(n+5)(n+4)(n+3)-\frac{1}{2}(n+8)(n+3)-1$ .
On the other hand, by (ii) of Proposition 5.8, we have

$\dim H^{0}(P_{n+2} ; TP_{n+2}\otimes H)=_{2}^{1}--(n+2)(n+3)(n+5)$ .

It is now easy to verify that $\dim H^{0}(M;N\otimes H)>\dim H^{0}(P_{n+2} ; TP_{n+2}\otimes H)$ .
We consider now the case $r=1,$ $i$ . $e.$ , the case where $M$ is a hypersurface

of degree $a$ in $P_{n+1}(C)$ . From Proposition 5.4, we obtain

$\dim H^{0}(M;N\otimes H)=\dim H^{0}(M^{1} ; H^{\alpha+1})$

$=\dim H^{0}(P_{n+1} ; H^{a\{\cdot 1})-\dim H^{0}(P_{n+1} ; H)$

$=\left(\begin{array}{l}n+a+2\\a+1\end{array}\right)-(n+2)$ .

On the other hand, from (ii) of Proposition 5.8, we have

$\dim H^{0}(P_{n+1} ; TP_{n+1}\otimes H)=-2-(n+1)(n+2)(n+4)1$ .

It is easy to verify that $\dim H^{0}(M;N\otimes H)>\dim H^{0}(P_{n+1} ; TP_{n+1}\otimes H)$ in the
following two cases: (1) $a\geqq 4$ , (2) $a=3$ and $n\geqq 5$ . It follows that $H^{1}(M$ ;
$TM\otimes H)\neq 0$ in these two cases.

We summarize what we have proved in the following
THEOREM 5.10. Let $M$ be a complete intersection of $r$ hypersurfaces of

degree $a_{1},$ $a_{r}$ in $P_{n+r}(C)$ with $a_{i}\geqq 2$ and $n\geqq 2$ . Then $H^{1}(M;TM\otimes H)\neq 0$

except for the following cases: (1) $\gamma=1$ and $a_{1}=2,$ ($i$ . $e.$ , quadrics), (2) $r=1$ ,
$a_{1}=3$ and $n\leqq 4$, (i. e., cubics of dimension $\leqq 4$), (3) $r=2$ and $a_{1}=a_{2}=2$, (i. e.,
intersection of two quadrics).

Although we know that $H^{1}(M;TM\otimes H)=0$ for a quadric $M$, we do not
know if the same is actually true for the cases (2) and (3).

THEOREM 5.11. Let $M$ be a complete intersection of $\gamma$ hypersurfaces of
degree $a_{1},$ $\cdots$ , $a_{r}$ in $P_{n+r}(C)$ with $a_{i}\geqq 2$ and $n\geqq 2$ . Then
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(i) Its tangent bundle $T(M)$ is not positive except possibly for the case
$r=1,$ $a_{1}=2$ ;

(ii) Its tangent bundle $T(M)$ is not semi-positive except for the case $r=1$ ,
$a_{1}=2$ and possibly for the case $r=2,$ $a_{1}=a_{2}=2$ .

PROOF. (i). This follows from Corollary 2.5 and Theorem 5.9. But we
do not know if a quadric has positive tangent bundle.

(ii). We combine Corollary 2.5 and Theorem 5.10. The only thing we
have to prove is that a cubic of dimension $\leqq 4$ does not have semi-positive
tangent bundle. Let $M$ be a cubic of dimension $n$ in $P_{n+1}(C)$ . Let $h$ be the
first Chern class of $H$. Let $c_{i}$ denote the i-th Chern class of $M$. A simple
calculation shows the following:

$c_{1}^{2}-c_{2}=-2h^{2}$ for $n=2$ ,

$c_{1}^{3}-2c_{1}c_{2}+c_{3}=-10h^{3}$ for $n=3$ ,

$c_{1}^{4}-3c_{1}^{2}c_{2}+2c_{1}c_{3}+c_{2}^{2}-c_{4}=-42h^{4}$ for $n=4$ .

From Theorems 3.1 and 4.1 we may conclude that $T(M)$ is not semi-positive
for $n=2$ or $n=3$ . In the same way as we proved Theorems 3.1 and 4.1, we
can prove that if $E$ is a holomorphic vector bundle over an algebraic mani-
fold $M$ of dimension 4, then

$(d_{1}^{4}-3d_{1}^{2}d_{2}+2d_{1}d_{a}+d_{2}^{2}-d_{4})[M]>0$ or $\geqq 0$

according as $E$ is positive or semi-positive, where $d_{i}$ denotes the i-th Chern
class of $E$ . QED.

A similar calculation eliminates the case $r=2,$ $a_{1}=a_{2}=2$ for $n\leqq 4$ in (ii).

We have been unable to perform the calculation for dimension $n$ . We shall
see in \S 6 that a quadric has semi-positive tangent bundle.

\S 6. Hermitian vector bundles

In this section we shall show that a holomorphic vector bundle is nega-
tive or semi-negative if it admits a hermitian metric with negative or semi-
negative curvature (in the sense to be made precise below).

Let $E$ be a hermitian vector bundle over a complex manifold $M,$ $i$ . $e.$ , a
holomorphic vector bundle over $M$ with hermitian fibre metric $h$ . We follow
notations in \S 10 of Chapter IX, [8]. Taking local holomorphic sections
$s_{1},$ $s_{r}$ which form a basis for each fibre, we define

$h_{\alpha\overline{\beta}}=h(s_{\alpha},\overline{s}_{\beta})$ $\alpha,$ $\beta=1,$ $r$ .
We start with the following trivial analogue of the existence of normal co-
ordinate systems.
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PROPOSITION 6.1. Given a point $0\in M$, there exist local holomorphic sections
$s_{1}$ , $\cdot$ . , $s_{r}$ around $0$ such that

$h_{\alpha\overline{\beta}}=\delta_{\alpha\beta}$ and $dh_{\alpha\overline{\beta}}=0$ at $0$ .
PROOF. Choose local holomorphic sections $t_{1},$ $\cdots$ , $t_{r}$ around $0$ which are

orthonormal at $0$ . We set

$s_{\alpha}=\sum a_{\alpha}^{\beta}t_{\beta}$ ( $a_{\alpha}^{\beta}$ : holomorphic)

and try to find $(a_{\alpha}^{\beta})$ such that $a_{\alpha}^{\beta}=\delta_{\alpha}^{\beta}$ at $0$ and $s_{1}$ , , $s_{r}$ satisfy the required
second condition. If we set

$g_{\alpha\overline{\beta}}=h(t_{\alpha},\overline{t}_{\beta})$ ,

then
$h_{a\overline{\beta}}=h(s_{\alpha},\overline{s}_{\beta})=\sum a_{\alpha}^{\gamma}g_{\gamma\overline{\delta}}\overline{a}_{\beta}^{\delta}$ ,

or in matrix form
$H={}^{t}A\cdot G\cdot\overline{A}$ .

We want to find $A$ such that $A=I$ at $0$ and $dH=0$ at $0$ . Since
$\partial H=\partial^{t}A\cdot G\cdot\overline{A}+{}^{t}A\cdot\partial G\cdot\overline{A}$ ,

it suffices to set

$a_{\alpha}^{\beta}=\delta_{\alpha}^{\beta}-\sum(\frac{\partial g_{\alpha}\beta}{\partial z^{j}})_{0}\cdot z^{j}$ ,

where $z^{1},$ $\cdots$ , $z^{n}$ is a local coordinate system with origin $0$ . QED.
The Christoffel symbols of the hermitian connection are given by

$\Gamma_{i}^{a_{\beta}}=\sum h^{\alpha\overline{\gamma}}\frac{\partial h_{\beta\overline{T}}}{\partial z^{i}}$
$\alpha,$ $\beta=1,$ $r$ ; $i=1,$ $\cdots$ $n$ ,

and the components of the curvature are given by

$K_{\beta i\overline{j}}^{\alpha}=-\partial\Gamma_{i\beta}^{\alpha}/\partial\overline{z}^{j}=-\sum h^{\alpha\overline{\gamma}}\frac{\partial^{2}h_{\overline{\beta T}}}{\partial z^{i}\overline{z}^{j}}+\sum h^{\alpha\overline{\delta}}h^{\epsilon\overline{\gamma}}\frac{\partial h_{\overline{\beta T}}}{\partial z^{i}}\frac{\partial h_{\epsilon\overline{\delta}}}{\partial\overline{z}^{j}}$

We set
$K_{\alpha\overline{\beta i}j}-=-K_{\overline{\beta}aiJ^{-=-\sum h_{r\overline{\beta}}K_{\alpha}^{\tau_{i\overline{j}}}}}$ .

Then

$K_{\alpha\overline{\beta}i\overline{j}}=\frac{\partial^{2}h_{\alpha}}{\partial z^{i}\partial\overline{z}}\overline{\beta}_{j}--\sum h^{\epsilon\gamma}\frac{\partial h_{\alpha\overline{\gamma}}}{\partial z^{i}}\frac{\partial h_{\epsilon\overline{\beta}}}{\partial\overline{z}^{j}}$

The Ricci curvature is defined by

$K_{i\overline{j}}=\sum K_{\alpha}^{\alpha_{ij^{-}}}(=-\sum h^{a\overline{\beta}}K_{\alpha\overline{\beta}i\overline{j}})$ .
Then

$K_{i\overline{j}}=-\frac{\partial^{2}\log\det(h_{\alpha\overline{\beta}})}{\partial z^{i}\partial\overline{z}^{j}}$ .



518 S. KOBAYASHI and T. OCHIAI

The hermitian vector bundle $E$ is said to have positive (resp. semi-positive,
negative or semi-negative) curvature if

$-\Sigma K_{\alpha\beta_{i\overline{f}}}\xi^{\alpha}\overline{\xi}^{\beta}u^{i}\overline{u}^{j}>0$ (resp. $\geqq 0,$ $<0$ or $\leqq 0$)

for all nonzero $\xi$ and nonzero $u$ . The hermitian vector bundle $E$ is said to
have positive (resp. semi-positive, negative, or semi-negative) Ricci curvature if

$\sum K_{t\overline{j}}u^{i}\overline{u}^{j}>0$ (resp. $\geqq 0,$ $<0$ or $\leqq 0$)

for all nonzero $u$ . If $E$ has positive (resp. semi-positive, negative or semi-
negative) curvature, it has positive (resp. semi-positive, negative or semi-
negative) Ricci curvature. For a hermitian line bundle, its curvature has
the same sign as its Ricci curvature.

PROPOSITION 6.2. A hermitian vector bundle $E$ has positive (resp. semi-
positive) curvature if and only if its dual hermitian vector bundle $E^{*}$ has nega-
tive (resp. semi-negative) curvature. Similarly, for the Ricci curvature.

PROOF. Given a point $0$ in the base manifold $M$, we choose holomorphic
sections $s_{1},$ $\cdots$ , $s_{r}$ as in Proposition 6.1. Let $s^{1},$ $\cdots$ , $s^{r}$ be the dual system of
cross sections of the dual hermitian vector bundle $E^{*}$ . If we denote the
induced hermitian metric in $E^{*}$ by the same letter $h$ and set

$h^{a\overline{\beta}}=h(s^{\alpha},\overline{s}^{\beta})$ ,

then $(h^{\alpha\overline{\beta}})$ is the inverse matrix of $(h_{o\overline{\beta}})$ . Differentiating the identity $\sum h^{\alpha\beta^{-}}h_{\gamma\overline{\beta}}$

$=\delta_{\gamma}^{a}$ , we obtain

$\sum\frac{\partial^{2}h^{\alpha}\overline{\beta}}{\partial z^{i}\partial\overline{z}^{j}}h_{r\overline{\beta}}+\sum h^{\alpha\overline{\beta}}\frac{\partial^{2}h_{\gamma\beta^{\prime}}}{\partial z^{i}\partial\overline{z}^{j}}+\sum\frac{\partial h^{\alpha\overline{\beta}}\partial h_{r\overline{\beta}}}{\partial z^{i}\partial\overline{z}^{j}}+\sum\frac{\partial h^{\alpha\overline{\beta}}}{\partial\overline{z}^{j}}\frac{\partial h_{r\overline{\beta}}}{\partial z^{i}}$

From the properties of $s_{1}$ , $\cdot$ .. , $s_{r}$ (see Proposition 6.1), we obtain

$\frac{\partial^{2}h^{\alpha\overline{\gamma}}}{\partial z^{i}\partial\overline{z}^{j}}+\frac{\partial^{2}h_{\gamma\overline{\alpha}}}{\partial z^{i}\partial\overline{z}^{j}}=0$ at $0$ .
From the formula for the components of the curvature tensor, we see that
$\partial^{2}h_{\alpha\overline{\beta}}/\partial z^{i}\partial\overline{z}^{j}$ coincides with $K_{\alpha\overline{\beta}i\overline{j}}$ at $0$ . Similarly, $\partial^{2}h^{\alpha\beta^{-}}/\partial z^{i}\partial\overline{z}^{j}$ coincides with
the curvature tensor of $E^{*}$ . The proof for the Ricci curvature is similar.

QED.
In \S \S 1 and 2, we associated to each holomorphic vector bundle $E$ a line

bundle $L(E)$ over $P(E)$ .
PROPOSITION 6.3. If $E$ is a hermitian vector bundle with negative curva-

ture (resp. semi-negative curvature), then the line bundle $L(E)$ over $P(E)$ with
the induced hermitian metric has negative (resp. semi-negative) curvature.

PROOF. The naturally induced hermitian metric $\tilde{h}$ in $L(E)$ may be des-
cribed as follows. Since $L(E)$ minus its zero section is naturally isomorphic
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to $E$ minus its zero section, every nonzero element $X$ of $L(E)$ may be ident-
ified with an element of $E$, and

$\tilde{h}(X, X)=h(X, X)$ .
Fixing a point $0$ in the base manifold $M$, we choose holomorphic sections
$s_{1},$ $\cdots$ , $s_{r}$ in a neighborhood of $0$ with the properties stated in Proposition
6.1. Then we may write

$h(X, X)=\sum h_{\alpha\overline{\beta}}\xi^{\alpha}\overline{\xi}^{\beta}$ for $X=\Sigma\xi^{\alpha}s_{\alpha}$ .

We shall compute the Ricci tensor of the line bundle $L(E)$ at an arbitrarily
fixed point of $P(E)$ which lies over $0\in M$. This point is represented by a
unit vector $X_{0}\in E$ . Applying a unitary transformation to $s_{1},$

$\cdots$ , $s_{r}$ , we may
assume that $X_{0}=s_{r}(0)$ . We take $z^{1}$ , $\cdot$ .. , $z^{n},$ $\xi^{1}$ , $\cdot$ .. , $\xi^{r- 1}$ as a local coordinate
system around $[X_{0}]$ in $P(E),$ $[X_{0}]$ denotes the point of $P(E)$ represented by
$X_{0}$ . Then the components of the Ricci tensor of $L(E)$ at $[X_{0}]$ are given by

$\left(\begin{array}{l}-\underline{\partial 1o}_{\partial^{\frac{gh(X,X)}{z^{i}\partial\overline{z}^{j}}-\frac{\partial 1ogh(X,X)}{\partial z^{i}\partial\overline{\xi}^{\beta}}}}\\-\frac{\partial^{z}logh(X,X)}{\partial\xi^{\alpha}\partial\overline{z}^{j}}-\frac{\partial^{2}logh(X,X)}{\partial\xi^{\alpha}\partial\overline{\xi}^{\beta}}\end{array}\right)=\left(\begin{array}{ll}-\frac{\partial^{2}h_{\alpha\beta}}{\partial z^{i}\partial\overline{z}^{j}} & 0\\0 & -\delta_{\beta}^{\alpha}\end{array}\right)$

where $i,$ $j=1$ , $\cdot$ .. , $n$ and $\alpha,$ $\beta=1$ , $\cdot$ .. , $r-1$ . It is clear that this matrix is
negative (semi-) definite if the curvature of $E$ is $(semi_{1}-)$ negative. QED.

REMARK. If $E$ has (semi-) positive curvature, its dual $E*$ has (semi-)

negative curvature by Proposition 6.2 and hence the line bundle $L(E^{*})$ over
$P(E^{*})$ has (semi-) negative curvature by Proposition 6.3 and its dual $L(E^{*})^{-1}$

$=L(E^{*})^{*}$ has (semi-) positive curvature. But $L(E)$ itself does not have (semi-)

positive curvature.
From Proposition 6.3, we obtain immediately the following
THEOREM 6.4. A hermitian vector bundle $E$ with negative (resp. semi-nega-

tive, positive, or semi-positive) curvature is negative (resp. semi-negative, positive,
or semi-positive).

We do not know if the converse is true, $e$ . $g.$ , if a negative vector bundle
$E$ admits a hermitian metric with negative curvature. For a line bundle $E$,
by definition $E$ is negative (resp. positive) if and only if it admits a hermi-
tian metric with negative (resp. positive) curvature. It is, however, not clear
if a semi-negative (resp. semi-positive) line bundle admits a hermitian metric
with semi-negative (resp. semi-positive) curvature.
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\S 7. The tangent bundle of $P_{n}(C)$

We shall apply Theorem 2.3 to the tangent bundle of $P_{n}(C)$ . As we know
the curvature of $P_{n}(C)$ explicitly, we can obtain sharper results than those
we can from Corollaries 2.4 to 2.7. We continue to denote by $H$ the positive
line bundle over $P_{n}(C)$ defined by a hyperplane in $P_{n}(C)$ .

PROPOSITION 7.1. Let $TP$ and $T^{*}P$ denote the tangent and cotangent bundles
of $P=P_{n}(C)$ . Then the line bundle $L(T^{*}P)^{-p}\cdot\pi^{*}H^{m}$ over $P(T^{*}P)$ is positive
if $p+m\geqq 1$ and $p\geqq 1$ , where $\pi;P(T^{*}P)\rightarrow P$ is the projection.

PROOF. For the Fubini-Study metric on $P_{n}(C)$ with holomorphic sectional
curvature $c$, the curvature tensor is given by

$K_{i\overline{j}k\overline{l}}=-\frac{c}{2}(h_{i\overline{j}}h_{kl}-+h_{\iota\overline{\iota}}h_{kj^{-}})$ .

Given a point $0$ in $P_{n}(C)$ , we may always choose a local coordinate system
around $0$ so that the metric tensor $h_{i\overline{j}}$ coincides with $\delta_{ij}$ at $0$ . Then the
curvature of the cotangent bundle is given by

$-2-(\delta_{ij}\delta_{kl}+\delta_{il}\delta_{kj})c$ .
Note that the sign changes when we pass from $TP$ to $T^{*}P$. The matrix
representing the Ricci curvature of $L(T^{*}P)$ in the proof of Proposition 6.3
reduces in this case to the following:

$(^{--}c2^{-(\delta+\delta_{in}\delta_{jn})0}0^{ij})_{i,j=_{=^{1\cdots,.n_{n-1}}}},\cdot.,\cdot$

The Ricci curvature of $L(T^{*}P)^{-1}$ is obtained from that of $L(T^{*}P)$ by chang-
ing its sign. On the other hand, the Ricci curvature of $P$ at $0$ (which is

nothing but the Ricci curvature of $K_{P}^{-1}=H^{n+1}$) is given by $K_{i\overline{j}}=--2-(n+1)\delta_{ij}c$ .
Hence, the Ricci curvature of $H$ is given by

$-\frac{1}{n+1}K_{ij^{-}}=\frac{c}{2}\delta_{ij}$ .
Consequently, the Ricci curvature of $L(T^{*}P)^{-p}\cdot\pi^{*}H^{m}$ can be expressed by
the following matrix:

$(p\frac{c}{2}(\delta_{ij}+\delta_{in}\delta_{jn})0p\delta_{\alpha}0_{\beta})+(m\frac{c}{2}\delta_{ij}0$ $00)$ ,

which is clearly positive if $m+p\geqq 1$ and $p\geqq 1$ . QED.
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COROLLARY 7.2. Let $P_{n}=P_{n}(C)$ . Then

(i) $H^{i}(P_{n} ; S^{k}TP_{n}\otimes H^{m})=0$ for $n+k+m\geqq 1$ ;

(ii) $H^{0}(P_{n} ; S^{k}TP_{n}\otimes H^{m})=0$ for $k(n+1)+mn<0$ and $k=0,1,2,$ $\cdots$

PROOF. (i). This is immediate from Theorem 2.3 and Proposition 7.1.
(ii). By Theorem 2.1, $H^{0}(P_{n} ; S^{k}TP_{n}\otimes H^{m})=H^{0}(P(T^{*}P_{n});L(T^{*}P_{n})^{-k}\cdot\pi^{*}H^{m})$ .

We consider the matrix representing the Ricci curvature of the line bundle
$L(T^{*}P_{n})^{-k}\cdot\pi^{*}H^{m}$ . From the matrix given at the end of the proof of Proposi-

tion 7.1, we see that its trace is equal to $-2-(k(n+1)+mn)+k(n-1)c$ . If we
take $c$ sufficiently large, this trace is negative when $k(n+1)+mn$ is negative.
Now (ii) follows from the following fact, [9]: A hermitian line bundle over
a compact complex manifold admits no holomorphic section other than the
zero section if its Ricci curvature has negative trace. QED.

COROLLARY 7.3. Let $M$ be an n-dimensional closed complex submanifold
of $P_{n+r}(C)$ such that its canonical line bundle $K_{M}$ satisfies

$K_{M}^{-1}\cdot H^{m+k- 2}\geqq 0$ , $(k\geqq 0)$ .
Then

$H^{i}(M;S^{k}TP_{n+r}\otimes H^{m})=0$ for $i\geqq 1$ .
PROOF. This follows from Theorem 2.3, Proposition 7.1 and $\det(T^{*}P_{n+r})$

$=H^{-(n+r+1)}$ . QED.
COROLLARY 7.4. Let $M$ be a complete intersection of $r$ hypersurfaces of

degree $a_{1},$ $\cdots$ , $a_{r}$ in $P_{n+\tau}(C)$ . If $n+r+m+k-1\geqq\Sigma a_{i}$ and $k\geqq 0$ , then

$H^{i}(M;S^{k}TP_{n’\vdash r}\otimes H^{m})=0$ for $i\geqq 1$ .
PROOF. Since $K_{M}^{-1}=H^{n+r+1-\Sigma a_{i}}$ , this follows from Corollary 7.3. QED.

\S 8. Kaehler manifolds with positive holomorphic bisectional curvature

Let $M$ be a Kaehler manifold. Its tangent bundle $T(M)$ is a hermitian
vector bundle in a natural manner. This hermitian vector bundle has positive
curvature in the sense defined in \S 6 if and only if $M$ has positive holomor-
phic bisectional curvature, (see [4] for the concept of holomorphic bisectional
curvature). The following results are known, [1], [3], [4].

THEOREM 8.1. Let $M$ be a compact Kaehler manifold of dimension $n$ with
positive holomorphic bisectional curvature. Then

(i) $\dim H^{11}(M;C)=1$ ;
(ii) If $M^{\prime}$ and $M^{\prime\prime}$ are closed complex submanifolds of $M$ such that $\dim M^{\prime}$

$+\dim M^{\prime\prime}\geqq\dim M$, then $M^{\gamma}\cap M^{\prime\prime}$ is non-empty.
If $M$ has positive holomorphic bisectional curvature, then it has positive
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Ricci tensor so that the canonical line bundle $K_{M}$ is negative. In \S 3, we
proved that an algebraic surface $M$ with $T(M)>0$ and $K_{M}<0$ satisfies

$c_{2}[M]=2+\dim H^{11}(M;C)$ ,

$(c_{1}^{2}+c_{2})[M]=12$ ,

$\dim H^{0}(M;T(M))=x(M;T(M))=(c_{1}^{2}-c_{2})[M]+2$ .
If we combine this with (i) of Theorem 8.1, we obtain

PROPOSITION 8.2. If $M$ is a 2-dimensional compact Kaehler manifold with
positive holomorphic bisectional curvature, then

$\dim H^{p,q}(M;C)=\delta_{pq}$ , $c_{1}^{2}[M]=9$ , $c_{2}[M]=3$, $\dim H^{0}(M;T(M))=8$ .
Using the classification of algebraic surfaces and (ii) of Theorem 8.1,

Andreotti and Frankel [3] have shown that a 2-dimensional compact Kaehler
manifold with positive holomorphic bisectional curvature is biholomorphic
with $P_{2}(C)$ .

In Theorem 5.11 we could not decide whether a quadric has actually
positive tangent bundle or not. Making use of (ii) of Theorem 8.1, we can
prove

PROPOSITION 8.3. Let $M$ be a quadric in $P_{n+1}(C)$ . If $n(=\dim M)$ is even,
then $M$ cannot admit a Kaehler metric with positive holomorphic bisectional
curvature.

PROOF. Set $2m=n+2$ and let $z^{1},$ $z^{2},$ $\cdots$ , $z^{2m}$ be a homogeneous coordinate
system in $P_{n+1}(C)$ . We may assume that a quadric $M$ is defined by

$M$ : $z^{1}z^{m+1}+z^{2}z^{m+2}+$ $+z^{m}z^{2m}=0$ .
Let $M^{\prime}$ and $M^{\prime\prime}$ be the $(m-1)$ -dimensional subspaces of $P_{n+1}(C)$ defined by

$M^{\prime}$ : $z^{1}=$ $=z^{m}=0$ ;

$M^{\prime\prime}$ : $z^{m+1}=$ $=z^{2m}=0$ .
Clearly, both $M^{\prime}$ and $M^{\prime\prime}$ are contained in $M$ and

$\dim M^{\prime}+\dim M^{\prime\prime}=\dim M$ , $ M^{\prime}\cap M^{\prime/}=\emptyset$ .
Our assertion now follows from (ii) of Theorem 8.1. QED.

\S 9. Almost positive hermitian vector bundles

Let $E$ be a hermitian vector bundle over $M$. As we saw in \S 6, $L(E)$ is
a hermitian line bundle over $P(E)$ in a natural manner. If the curvature of
$L(E)$ is negative semi-definite everywhere on $P(E)$ and negative definite
almost everywhere on $P(E)$ (in the measure theoretic sense), then we call $E$
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an almost negative hermitian vector bundle. We say that $E$ is almost positive
if its dual hermitian vector bundle $E*$ is almost negative. We shall explain
these concepts in terms of the curvature $K_{\alpha\overline{\beta}tj^{-}}$ of $E$. To each element
$X=\sum\xi^{i}s_{i}$ of $E$ with unit length, we associate a quadratic form $Q_{X}$ as
follows:

$Q_{X}=-\Sigma K_{\alpha\overline{\beta}ij}-\xi^{\alpha}\overline{\xi}^{\beta}dz^{i}d\overline{z}^{j}$ .
If we regard $X$ as a point of $P(E)$ , then we associate to each point $X$ of
$P(E)$ a quadratic form $Q_{X}$ . According to the definitions given in \S 6, $E$ has
positive (resp. semi-positive, negative, or semi-negative) curvature if and
only if $Q_{X}$ is positive definite (resp. positive semi-definite, negative definite,

or negative semi-definite) everywhere on $P(E)$ . From the proof of Proposi-
tion 6.3, we see that $E$ is almost negative (resp. almost positive) if and only
if $Q_{X}$ is negative semi-definite (resp. positive semi-definite) everywhere on
$P(E)$ and negative definite (resp. positive definite) almost everywhere on $P(E)$ .

For example, the tangent bundle $T(M)$ of a hermitian symmetric space
of compact type is almost positive. It is not difficult to see that $Q_{X}$ is posi-
tive definite when (and only when) $X$ is off the walls of the Weyl chambers.

It is also an easy matter to verify that the vanishing theorem of Kodaira
can be generalized as follows:

If $X$ is a compact complex manifold with canonical line bundle $K$ and if $F$

is a line bundle over $X$ such that $FK^{-1}$ is almost positive with respect to a suit-
able hermitian metric, then

$H^{i}(X;F)=0$ for $i\geqq 1$ .
Similarly, for Nakano’s vanishing theorem. It is now clear that all the

results in \S 2 remain true when we replace “ positive ” or ” negative ” by
“ almost positive” or “ almost negative”.

In particular, from Corollary 2.5, we obtain the following result:
THEOREM 9.1. Let $M$ be a compact hermitian manifold with almost positive

curvature, $e.g.$ , a hermitian symmetric space of compact type. Let $F$ be a line
bundle over $M$ with $F\geqq 0$ . Then

$H^{i}(M;S^{k}T\otimes F)=0$ for $i\geqq 1$ and $k=0,1,2,$ $\cdots$

This shows also a limitation of the power of Corollary 2.5 in attacking
the problem of Kaehler manifolds with positive holomorphic bisectional
curvature. On the other hand, Theorem 8.1 seems to rely more heavily on
positivity of curvature as Proposition 8.3 testifies.

University of California, Berkeley
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Remarks (added on May 22, 1970)

In a recent paper, Griffiths (Hermitian differential geometry, Chern classes,

and positive vector bundles, Volume in honor of K. Kodaira) studies several
notions of positivity of vector bundles. Whereas we take $L(E)<0$ as our
definition of E $<0$ , he takes the curvature-negativity as his definition of $E<0$ .
Theorem 6.4 in the present paper is therefore equivalent to the implication
(1.8) in his paper. (His L corresponds to our $L(E)^{-1}$). Our definition seems
to be more consistent with the definition of ampleness for vector bundles
which is being used by algebraic geometers (see, for instance, R. Hartshorne,
Ample vector bundles, Publ. I.H.E.S. 29 (1966), 319-350) and, as pointed out in
the introduction, it fits well with the function theoretic definition by Grauert.
Contrary to Griffiths’ statement on p. 188, the algebraic (and also function
theoretic) notion of positivity yields precise vanishing theorems. Actually,
Corollary 2.4, (ii) in the present paper implies Griffiths’ Theorem G; he assumes
that E is generated by its sections while we assume E $\geqq 0$ . In the case when
E is the tangent bundle of a compact complex manifold M, his assumption
that E is generated by its sections amounts to saying that M is a homo-
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geneous compact complex manifold. But we are mainly interested in the non-
homogeneous compact K\"ahler manifolds with positive curvature.

In a recent note, S. Kleiman (Ample vector bundles on algebraic surfaces,

Proc. Amer. Math. Soc., 21 (1969), 673-676) proved Theorem 3.1, (i) in a more
general situation.
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