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§1. Introduction.

Let X be a Banach space and let {7(£); £=0} be a family of (nonlinear)
operators from X into itself satisfying the following conditions:
(i) T(@O)=1 (the identity) and T(&+7)=T(&)T(») for & 5 =0.
(ii) For each x & X, T(&)x is strongly continuous in &=0.
(iii) There is a constant @ =0 such that

ITEx—TE)y|= e |x—yl
for x,ye X and £=0.
We call such a family {7(¢); £ =0} simply nonlinear semi-group of local
type. In particular, if w=0, it is called a nonlinear contraction semi-group.
We define the infinitesimal generator A, of {T(£); £€=0} by

1. Ax=lim 6-3(T(0)—Dx
80+
and the weak nfinitesimal genevator A’ by
1.2 A'x=w-lim ¢-Y(T(0)—Dx,
d—0+

where the notation “ w-lim” means the weak limit in X.

Throughout this paper it is assumed that the dual X* of X is uniformly
convex. Our purpose is to prove the following theorem.

THEOREM 1. Let {T(&); £=0}4o1,5,5,. be a sequence of nonlinear semi-
groups of local type satisfying the stability condition

(L.3) IT®@x—TPE) ] < e [x—y|

for £€=0, k and x,ye X, where w is a non-negative constant independent of
x 9, & and k. Let A® be the weak infinitesimal generator of {T®(&); &=0}
and assume R(I—h, A®)= X for some h, <0, 1/w), and define Ax:li}gn APy,

Suppose that

(@) D(A) (the domain of A) is dense in X,

(b) RT=h,A)= X for some h,< (0, 1/w),

1) This work was partially supported by National Science Foundation Grant
GP-8555.
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where R(I—h,A) denotes the strong closure of the range R(I—h,A).

Then the strong closure A of A, which is not necessarily single-valued,
generates a nonlinear semi-group {T(€); £ =0} of local type (in sense of Theorem
2); and for each xe X

(1.4 TEx = likm T®(E)x for £=0,

and the convergence is uniform with respect to & in every finite interval.

REMARKS. 1°. A multi-valued operator T is called to be the strong closure
of A if G(T)=G(A), where the notation G(-) denotes the graph of operator;
and we write 7= A.

2°. U {T®(E); £=0} (B=1,2,3,-.-) are linear semi-groups (in this case,
each A" becomes the infinitesimal generator and R(/—h,A®)—= X holds auto-
matically), then A is single-valued; and the theorem is a special case of
Trotter’s theorem (see [97).

3°. If we omit the condition (a), then A generates a nonlinear semi-group
{T(€); £=0} of local type defined on D(A) and (1.4) holds on D(A).

4°. 1t is easy to see that

(A®x— APy, Fx—y)) Zw|x—y|? for x,ye D(A®),

where F is the duality map from X into X*, i.e., A®—w][ is dissipative; and
hence the condition R(J—h A®)= X shows that A®—w] is m-dissipative.?
Conversely if A®—w][ is single-valued m-dissipative with dense domain, then
A% is the weak infinitesimal generator of a nonlinear semi-group {T®(§); £=0}
of local type with (1.3) (see T. Kato [2] and S. Oharu [8]).

5°. In the previous paper [6] we discussed the case of R(/—h,A)=X
under slightly different conditions.

We use the recent results on nonlinear semi-groups generated by multi-
valued m-dissipative operators, obtained by Y. Kdomura [4,5], T. Kato [3],
and M. G. Crandall and A. Pazy [1]. In §2 we shall explain a part of their
results related to ours. The proof of Theorem 1 is given in §3.

§2. Generation of nonlinear semi-groups.

A multi-valued operator A with domain D(A) and range R(A) in X is said
to be disstpative if

Re (x'—y/, F(x—y) <0 for any x' e Ax, y' € Ay,

where F is the duality map from X into X*. If A is dissipative and R(/—a,A)

2) See (3.1).
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= X% for some «,> 0, it is called to be m-dissipative.
In this section we shall sketch a construction and some properties of
nonlinear semi-groups generated by multi-valued m-dissipative operators ([1],

(3] [4] and [5]).

Throughout this section let =0 and let A—w/ be m-dissipative. It is
obtained that the set Ax is convex and weakly closed for each x & D(A).
According to Kato we define the canonical restriction A° of A by

2.1 A’x={y"; ¥ € Ax and [y'[=inf [||x’]|; x’ & Ax]}
for xeD(A). Since X is reflexive and Ax is weakly closed, A°x == @ for x& D(A);
so that A° is a multi-valued dissipative operator with D(A% = D(A). In par-
ticular if X is strictly convex, then A° is single-valued.
From the dissipativity of A—wl we get
[x—y—a(x’—y)| = 1 —aw)|x—y]
for x' = Ax, ¥ € Ay and a € (0, 1/w); and hence for each a =0, 1/w) (I—aA)?
exists as a single-valued operator defined on X and
(2.2) [T—ad) ' x—(T—aA) | =Q—aw) | x—|
for x,ye X. If we put

]n:(lﬂn_lA)ﬁl and An:n([n”_])
for n > o, then

(2.3 Apxe Al x for xe X,
2n—w

(2.4) l—n'w

Re (Anx—Any! F(x-y)) é a)(l'—n_lw)_l “x_yHZ
for x, v X,
(2.5) [Anx| < A—nlw) || Ax]] ~ for xe D(A),
where || Ax||=inf {||x’||; ' € Ax} (we note that |x’|| =] Ax|| for all x’ € A%),
and
(2.6) lim J,x=x for xe D(A).

n—oe

It follows from that each A, generates a nonlinear semi-group {7,(&);
£=0} of local type satisfying

@7 IT@r—Tu@yl = exp (25, )]x—]
for x,ye X and £=0, and

3) It is known that R(/—a,A)= X implies R(I—aA)=X for all «>0, if A is
dissipative.
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for each xe X, T, (&)x = C}([0, o0); X)¥ and
(d/d&)Ty(&)x = A Tn(§)x for £=0

2.8)

(for example, see the proof of Theorem 4.1 in [6]).
Notice that

(2.9 1AL Ta)x]| = e || Apxll < e¥d, |l Ax|

for x = D(A) and £=0, where ¢, =w(l—n"'w)™! and d,=1—n"'w)™".

Let x € D(A) and let z,,(&) = T, (&)x—T,(&)x. We shall now estimate z,,,(£).
Note that ¢,<2w and d,<2 for n>2w. In the following let m and n be
integers such that m, n>2w. From

(2.10) lema@I = [ 1 AnTo(@)x— AnTu(e)xlde
< 4e*7)) Azl
(2.1 2=t = 07| An Tl - | A T
(Ao b Yeraxg

for =0, where uy,,() =/ To(px—JnTn(p)x; and hence
(2.12) Uma(I = (*nia%- ml_w> el Ax ||+l zmaC1l -

Since Re (A, Tu()x— AT, Finn())) = @lun(p]? by [(23),
_£_ Re (AnTn<77)X_“Ame<77)x: F(Zmn<7]))—F(umn(7])))+w”umn(ﬁ)ﬂz

< 47| Ax I F@ma0)) — F(UmaODI + @l ttmn(p|1?
hence

I2an@I = [/ dp)zmamldy

=2 [ "Re (AT t— An T, Fenrein ®
(2.13) X
< 80 || Ax | | "I Fmn(m) —Fata(p)ldn

3
+20 [ |y -

It follows from [2.12) and [2.13) that

4) CY([0, co0) ; X) denotes the set of all strongly continuously differentiable X-valued
functions on [0, o).
5) See T. Kato [2; Lemma 1.3].
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a1 = 862 | Axl| | Py — Ftmar)

tao( 5ty ) el AxlEe o [ ety
Consequently for any fixed >0 we have
(@l = Knn(®+40 [ Nzmaplidy
for £ [0, 8], where
Knal) = 8P| Ax | [ " | F e~ Pl

1 1 2
o T ) e B Ax g
From this integral inequality we get
(2.14) [2mn@l £ VEma(B)e*®  for £<[0, 1.

Since F' is uniformly continuous on any bounded set of X (see [2; Lemma
1.27), (2.10) and [2.11) show that K,,(8) —0 as m, n—oco. Therefore it follows

from that
(2.15) lim | T,(&)x—T,(&x|| =0 uniformly in &< [0, 8].

By [2.7), the above [2.15)] holds good for each x & D(A).
Now we define {T(¢); £=0} by

(2.16) TEx=1lim T,(&)x for £=0 and x< D(A).

[t is clear that {7T(&); £=0} is a nonlinear semi-group of local type defined
on D(A) such that
IT&)x—TE)y|| < e | x—||

for x,y e D(A) and €=0. The following results are due to T. Kato [3]

THEOREM 2. (I) The above {T(&); £=0} is a unique semi-group of local
type satisfying the following conditions;

(@) for each x = D(A), T(§)x is strongly absolutely continuous on every finite
nterval,

(b) for each x e D(A) (= D(A), TE)x e D(A) for all £=0 and

(d/dETE)x € AT(E)x(C AT(E)x) for a.e. &,

where (d/d&)T(E)x denotes the strong derivative of T(E)x.
(D In particular if X is uniformly convex, then
() for each x & D(A)

D*T(E)x = AT(E)x for all £€=0
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and A'T(E)x is strongly right-hand continuous in £=0, where D*T(E)x denotes
the strong right-hand derivative of T(E)x,

(d) for each x< D(A) the strong derivative (d/d&)T(E)x= A"T(E)x exists
and is strongly continuous except at a countable number of values &.

REMARKS. 1°. In case of w=0 (i.e., A is m-dissipative), the above results
have been given by T. Kato [3] (in this case, of course, {7T(£);£=0} is a
nonlinear contraction semi-group). And his results can be extended to our
case (i.e., A—wl (w=0) is m-dissipative).

2°. In (D), if A is single-valued (so that A°=A), then it is known that
A is the weak infinitesimal generator of {7(§); £=0} and for each x e D(A)
AT(&)x is weakly continuous in £=0 (see T. Kato [2] and S. Oharu [8]).

§3. Proof of Theorem 1.
For x,y € D(A®)Re (A®Px— A®y, F(x—Y))
:;if)r.l. ETPEx—x]—E[T®E) y—y], Fe—y) = o|x—y|*;
this shows that A®—w][ are dissipative. Moreover it follows from the as-

sumption R(J—h;A®)=X that RI—a,(A®P—wl))=X for each k, where «ay
= h,(1—h,w)"t. Thus we have

3D A® —w] are m-dissipative.

Fix k. From the arguments in § 2, for each n > w

J® = (I—n"1AM)-1 exists and
(.2)

1P x—JPy| =(A—=n"*o)x—y|  for x,yeX,
and if we put
(3.3) AP =n(J®—1) (= A®JP, because A® is single-valued),
then
A% is the infinitesimal generator of a nonlinear semi-group
(3.4 {TP(&); €= 0} of local type such that |T(E)x—TP(©&)y|
3

<exp (”ﬁﬁj) lx—y| for x,ye X and £=0;
and for each xem
3.5) T®Ex=1lim T¥(Ex  for £=0.
Let x € D(A®) and put '
zon() = TPx—TR0x  for 5=0,

where m and n are integers such that m, n > 2w.

From [2.10), and [2.14)
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(3.6 Izl < 4| A®x|ly  for =0,
1

@37) e —uimml =

eZ(u’o” A(k)x“
n—w

for =0, where u® (n)=JPTLMN)x—]PTEM)x, and

(38) 8@ = VERB e for 10,6,

where

39) K6) =87 | 4% " | Py —Fluss oy
o ) P IABS

(We note that || A%x|| = ||A®x| because A® is single-valued.)

From the above estimations we have the following

Lemma 1. Let B>0. For each x = D(A) the convergence is uniform
with respect to k and &[0, §].

Proor. Let x € D(A). Since li;n A®x = Ax, there exist k, and M >0 such

that x € D(A®) and |A®x| < M for k=Fk, It follows from (3.6) and (3.7) that
the set

_ {Zar)(,?)’ u(k)@?) ne [0 ‘3], k=k, and m, n> 2w}

is bounded. Since F is uniformly continuous on B, for every &>0 there is
d=20.>0 such that z, u= B and |z—u| <4 imply |F&)—F(u)| <2 *Ke?, where
K=(8e**2MpB)-*. Choose an integer N (=N.) such that N>2w and 2(N—w) *e**? M
< min (3, ¢/+/8wp).

Let m,n> N. By 3.7

lzg2t) —uBmmll <2AN—w)*e*PM <6
for = [0, 8] and k=k,, so that

| Fzra(m)—F(uma(m)|| <271 Ke*
for = [0, 8] and k=%, Hence

8e™P|| A®x]| j' 1F G ma(m) — F(uma(p) d

< Be™PMP2- Ke* =¢%/2,
and

4m(~v = _|_f7 bl )ze“"’ﬂﬂA(’“)xHZﬁ

< 40)( ez“’ﬂM> B=e/2.

Consequently K(8) <¢e* for k= k, Therefore it follows from (3.8) that
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(3.10 sup | T®Ex—TPE)x| Le*fe  for n,m>N.
£CT0,81,kZkg

Q.E.D.
Since A®—w]I are dissipative (see (3.1)), the limit operator A—wl is also
dissipative. Combining this and R(I—#h,A)= X (the assumption (b)) we have
the following
LEMMA 2. For each n>w

(I—n"*A)"' has a unique extension [, defined on X

G.11)
such that || J,x—J v < (A—n"'w)Mx—y| for x,ye X,

and

(3.12) A—wl is m-dissipative and J,=I—n"1A)".

Proor. At first we remark that
(13 RUI—n'A)=X for all n>w (see S. Oharu [7; Lemma 47).
From the dissipativity of A—wI, for each n>w (—n"*A)"! exists and
[T=nA) x—T—nA) Y| =(A—n"'w) |x—y|

for x,ye RU—n"*A). Thus (3.11) follows from (3.13).
We shall now prove (3.12). Let m, n>w. For xe R(I—m'A)

I—n*AT—m A x =1—m/n)I—m A x+(m/n)x,
so that
I—m A x={T—n*A)"{d—m/n)T—m*A) 'x+(m/n)x}
i.e.,

Jnx = Jo{Q—m/ 1) Jux+(m/m)x}
for xe RI—m™*A). From R(I—m'A)=X we have

(3.1% Jux = AQ—m/n) [ x-+(m/n)x} for all x= X.
Consequently

(3.15) R(J) = R(Jn)

(3.16) n(x—J7;'x) = m(x—J;'x) for xeD,

where D is the set R(J,) independent of n> w and J;! are multi-valued map-
pings defined by J;'x={y;J.y=x} (see S. Oharu [7; Lemma 6]).
Define A by

3.17) Ax = n(x—J71x) for xeD.

It is easy to see that AD A (. e., D > D(A) and Ax > Ax for xe D(A)) and the
graph G(A) of A is closed. Hence G(A)DG(A). Moreover G(A)CG(A). In
fact, let ye‘/le. There is ¥’ € X such that x=/,x and y=n(x—x’). Since
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R{—n"TA)= X, there exists a sequence {x,} in D(A) such that (/—n"tA)x, —x’
as k-—oo. Hence

Xp=J(I—n"tAx,— . x' =x, and

Axy—n(x—x)=y.
“Thus G(ﬁ):G(A) ie, A=A (the strong closure of A). And then we get
Jn=U—n""A),

Finally we shall prove that A—wl is m-dissipative. For x’ = Ax and
< Ay there exist {x,} and {v,} in D(A) such that x, —x, Ax,—x and y,—,
Ay, —y’. Since Re(A—wDx,—(A—wl)yy, F(x,—y) =<0, it follows from the
continuity of F' that
Re (7' —wx)—(y'—wy), F(x—y)) =0.

‘This shows that A—wI is dissipative. From R(J—n"'A)=X for n> » we have
R(I—a(A—wl)=X for a>0. Thus A—wl is m-dissipative. Q.E.D.
REMARK. The above lemma is also true for multi-valued operators; i.e,
if A—wl is multi-valued dissipative and if R(I—h,A)= X for some h,< (0, 1/w),
then RT—hA)=X for all he (0, 1/w), and (3.11) and (3.12) hold good.
By Lemma 2 and Theorem 2, A generates a nonlinear semi-group {7(&);
£=0}% of local type; and for each x & X

(3.18) T(&)x = lim T,(&)x

uniformly with respect to & in every finite interval, where {T,(&); £€=0} is a
nonlinear semi-group of local type generated by A,=n(/,—I) and

(319) IT@r Tyl sexp (| “%, )lx—l

_lw

for x,ye X and £=0.
We shall show

{3.20) lim [®x =[x for xe X and n.
k
In fact, for y=({UI—n"1A)x
|y =Tyl = | [Py —J o (I—n~t A®)x]|
=(—-n" o) y—UI—n"AP)x|
=n"'1—n"1w) | A®x—Ax| -0 as k—oco.
‘Then (3.20) follows from R(I—n-'A)= X (see (3.13)). Hence
(3.21) lim APx=A,x for x= X and n.
k

6) From the assumption (a) (D(A) is dense in X), {T(¢); & =0} is defined on X.
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Since each A, is Lipschitz continuous uniformly in x e X (see [2.4), we have
(3.22) R(I—hA,)=X  for sufficiently small 2>0.

(This is really true for h e (0, 1/w)—n-1).)
Consequently, by Theorem 2.3 in [6], for each n we have

(3.23) Sup IT2E)x—Tw(&)x[ —0 (as k—o0)

for any >0 and x e X.
We can now prove the convergence [1.4). Let 8>0 be arbitrarily fixed,

and let xe D(A). From Lemma 1 and [3.18), for each ¢ >0 there is an integer
N (= N,) such that

03?% N T®Ex—TPE)x| < e/2 for >N and %,

sup (| T.(5)x—T(E)x|| <e/2 for n>N.

0=£sp

Thus for n > N and k&
sup [T®()x—T(E)x|| < 8+02?5% | TAP(E)x—Ta(&)x]l -

0=¢=p

Going k—co, it follows from (3.23) that
(3.2%) sup | T®(E)x—TE)x|| —0 as k—oo.,
=£=p

0=£=

Finally, by the stability condition and D(A)=X, holds good for
every x X. This completes the proof of Theorem 1.

Georgetown University, Washington, D.C.
and
Waseda University, Tokyo
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