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Fractional powers of operators, IV
Potential operators

By Hikosaburo KOMATSU
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A closed linear operator A in a Banach space X is said to be non-negative
if (0, o0) is contained in the resolvent set of —A and if A(A+A)~! is uniformly
bounded for 0 <2< oco. This is a short supplement to the third paper of the
author’s series on fractional powers of non-negative operators A and mainly
concerned with the potential operator associated with A, which is by definition
the inverse A-! of the restriction A. of A to the closure R(A).

A typical result is the Abel and the Cesaro (the Cauchy) convergence of
the integral formula

A:‘x:‘f Tx ds
0
when —A is the infinitesimal generator of a bounded continuous (analytic

resp.) semi-group T;. A related integral formula of A% with Rea <0 is also
investigated.

§1. Potential operators.

Suppose that —A generates a bounded continuous semi-group 7; in a
Banach space X. Then for 2> 0 we have

1.1) (A+A)x= ‘f ooe"“Tsx ds, xeX.
0
Letting 1—0, we may expect that
(1.2) Az = “Toxds, xeD(AY).
0

Of course, this is not true in general, for A need not be even one-to-one.
Yosida proves, however, that A has a densely defined inverse A-! if
and only if

a3 AQ+A)y'x—0 as 1—0

for all x= X and that if this is the case, then the potential operator A-! is
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expressed as

(1.4 A'x=1lim { e*Tuxds, xeDA™.

250 Jo
In other words, holds in the sense of Abel. The purpose of this paper
is to obtain more results in this direction.

In spite of Yosida’s definition, we define the potential operator associated
with a non-negative operator A to be the inverse A~ of its restriction A_ to
R(A). We know that A_ is one-to-one by the Abelian ergodic theorem
of [3).

THEOREM 1.1. Let A be a non-negative operator. If there is a sequence of
positive numbers 2;—0 such that

1.5 y=w-lim (1;,+A)~'x
J—roo

exists, then x € D(AZY) and y= A-'x.
Conversely, if x< D(AZY), then

(1.6) AZlx= s;lim A+A)1x.
-0

PrROOE. Suppose that limit (1.5) exists for some 1;—0. Then, 2;(4;+A)'x
converges to zero strongly. Hence it follows from the Abelian ergodic theorem
(Theorem 1.1 of [3]) that x belongs to R(A) and hence so does y. Since A is
closed and AQA;+A)'x =x—2;(A;+A)'x converges to x, we have ye D(A.)
=D(A)N RCA) and x= A_y.

Conversely suppose that x= A_y belongs to D(Az!). Then applying the
Abelian ergodic theorem to y, we have

Q+A) " x=QA+A) Ay

=y—AA+A)y—>y as 1—0.

This completes the proof.

Remark that the theorem is also a special case of Theorem 3.1 of [1].

When — A generates a bounded continuous semi-group 73, (1.6) is written

Atz =slim "M Tyx ds
—00 0
Q.7
= (A)f Tx ds.
0

The following theorem shows that the integral converges in the sense of
Cesaro also.

THEOREM 1.2. Let —A be the infinitesimal generator of a bounded con-
tinuous semi-group T, and let o be a positive number.
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If there is a sequence t;—oo such that
. t
1.8 y=w-lim t;° j (t;—s)°Tyx ds
j-yoo 0
exists, then x € D(AZY) and y= A='x.

Conversely, if x e D(AZY), then
A'x=s-lim t'“j t(t—s)"TSx ds
0

t—oo

1.9
=(C, a)j:oTsx ds.

PrROOF. According to [3], we use the notation

Iéﬂ)x - F(O‘)"lj‘ ﬁ(t_s)q—lTsx dS .
0
Then,
o[ (1= Tyx ds = I+ Dt Iiex
0

Therefore, if limit (1.8) exists, I'(o+1)t-°-*I{#+*x converges to zero. This im-
plies by the Cesaro ergodic theorem (Theorem 1.4 of [3]) that x belongs to
R(A). Since R(A) is invariant under T}, y is also contained in R(A).

Now, applying [3], Lemma 1.2, we have ['(¢+1)t-?I{"*x = D(A) and

A (o +D)ioIe P x) = x—[ e+ Dt IPx .

The Cesaro ergodic theorem shows that the second term converges to zero as
t—oco. Thus, we have ye D(A.) and A_y=zx.
Conversely suppose that x=A_y. Then

Io+Dte Ity =y—T(e-+Di Iy

converges to y, for y is in R(A).
THEOREM 1.3. Let —A be the infinitesimal generator of a bounded analytic
semi-group T;.
If there is a sequence t;— oo such that
. t,
(1.10) y=w-lim f T.x ds
j—oo 0
exists, then x € D(AZY) and y= A-'x.
If xe D(AZY), then

.11 Aztx=slim | T ds.
0

t—o0

ProOOF. Write

Ia=| : T.x ds
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as in [3] Suppose that limit [1.10) exists. Then t;'/;;x converges to zero.
Thus, by the mean ergodic theorem, x and y are contained in R(A). As is
well known (see Lemma 1.2 of [3]), I;;x € D(A) and we have

AI;J.x:x——thxﬁx
by the simple ergodic theorem (Theorem 1.5 of [3]. Thus it follows that

ye D(A)) and A.y=x.
In the same way, we have for x=A.y = D(AZY)

ILix=y—T,y—y as t—oo.

§2. Negative powers.

When T, decays exponentially, is generalized as
(2.1) A2x=1T"(— a)'lj ws*“’lTsx ds, re X,
0

for Re a <0 (see [1], Proposition 11.1). We discuss, in this section, the sum-
mability of in the case where T, is only uniformly bounded.

First, we prepare three propositions in order to prove the Abel sum-
mability in the case where A is a non-negative operator.

The first one is given in as Proposition 6.7 without proof ((u+ A)§ in
should be (¢4 A)%).

PrROPOSITION 2.1. Let A be a non-negative operator, let Re a <0 and let
w@>0.

If xe R(A), then (A(p+A)Y5*x € D(A%) and we have

2.2) AS(A(pt A 5%x = (pt A)ix .
If x = D(A%), then
(2.3) AZ(A(p+A) 7 x = (Al + A) )y “AZx
=(p+A)x.

Proor. First we note that
2.9 (pA)s= p A%

holds for any non-negative operator A and any subscript * ([1], Theorem 10.1).
Since (A(u+A)Np= Ar(u-+Agp)"* (see [1] for the notation), we have

(A(p+ A 5% = (Ag(p+AR) 5"
= (e (e + AR
= p* (e +ARH "
= p* (e +ARDE -
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The last equality follows from the remark prior to Proposition 4.10 of [1].
We have also
A% = (A3
in the same way.
On the other hand, it follows that

(u+ AR =+ Ap) Di%= p*(u(p+ Ap) 3"
= p* (A (e ARD 3"
Since we have (u+ A)%x = (u+Ag)?x for x = R(A), the proposition reduces to
[1], Proposition 6.3, where A and « are replaced by Az' and —a respectively.
PRroOPOSITION 2.2. If A is a non-negative operator and Re a <0, then for

each x € R(A) (AQ+A))y*x converges strongly to x as 2>0 tends to zero.
PrOOF. In view of [1], Proposition 6.2 we have

(AQA+A) D% = x+ad(A+ A7 x4 -

25) oaletd E !a—H’l—lL QA+

S [ Coam ey an(e A Aok A)xde,

where n is an integer with n+14+Rea>0. Since (A(A+A)"")™x converges
strongly to zero as A—0 by the Abelian ergodic theorem and since

2
f g~Rea-1(3_ r)Rea+n -1
0

is uniformly integrable, the right hand side converges strongly to x as 1—0.

The following proposition is a generalization of the Abelian ergodic
theorem.

PrOPOSITION 2.3. Let A be a non-negative operator and let Rea <0. If
X =x,+x, with x,& N(A) and x, € R(A), then A~*(A+A)*x converges strongly to
X, as A>0 tends to zero.

Conversely, if there is a sequence A;—0 such that A;%(A;+A)%x converges
weakly, then x belongs to N(A)+R(A).

PrOOF. We note that for 41> 0

(2.6) A=A+ A)E = (AA+A) )"

and that z(z+2A(A+A4)"*)"' is uniformly bounded for 0< 4, z <oco. Thus in
view of [1], Theorem 8.1 (or [2], Proposition 2.4) we have

2.7) A=A+ A)2x|| < CI(AA+ A)~Y)mx | -Rea/m| || -+Rearm

with a constant C independent of 0 < 1< co when m is an integer greater than
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—Re a.

If x,= N(A), we have easily 2-*(1+ A)%x, = x, by the definition of fractional
powers. On the other hand, if x, € R(4), (A(A+A)-)"x, converges strongly to
zero as 1—0 as the Abelian ergodic theorem shows. Hence it follows from
that 1-%(A-+A)%x, converges strongly to zero.

implies also that A -*(A+A)* is uniformly bounded. On the other
hand, proves that (A(A+A)~%)7¢ is also uniformly bounded.

Now, suppose that A;%(4;4-A)%*x converges weakly to x, as a sequence
2;—0. According to [T], Proposition 6.3, we have

A9+ A)ex = %A+ A)2 (A4 A)**x &€ D(A7%%)
and
AT%225 %A+ A)x = 279 (AR A) )79 254 (A;+ A)*2x .
Since the right hand side converges to zero, we have x,c N(A7%4%) = N(A).
Let x,=x—x, Then 4;9(4,+A)%x, converges weakly to zero. We have

by [2],
A4+ A) D% —x,

= ey b T G A A Ay (e ) de

where m is an integer greater than —Re a. As is easily shown, the integrand
is in R(A). Therefore x, belongs to R(A).

THEOREM 24. Let A be a non-negative operator and let Re @ < 0. If there
is a sequence of positive numbers 2;—0 such that

2.8 y=w-lim (4;+ A)%x
Jroo
exists, then x € D(A%) and y= A%x.
If x e D(A%), then
2.9 A%x = s;lim (A+A)x.
=0
Proor. (2.9) follows easily from Propositions 2.1 and 2.2. Suppose that
limit (2.8) exists. Then x belongs to R(A) by Proposition 2.3 and hence so

does y. If n is an integer greater than —Re a and g >0, then (A(pu+A)")"x
e D(A%), so that we have

A A(p+ A x = s-lim (2,4 A2 (A(p+A))"x
jooo
= (A(p+ A" w-lim (4 A)x
j—oroo
=(A(p+A)D"y.
Now let g tend to zero. Then (A(u+A)")"x and (A(p+A)")"y converge to
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x and y respectively. Since A% is a closed operator, x belongs to D(A?%) and
Ax=y.

COROLLARY 2.5. Let —A be the infinitesimal generator of a bounded con-
tinuous semi-group T, and let Re a < 0.

If there is a sequence of positive numbers 2;—0 such that

— 3 _A__ « -2;8o-a-1
(2.10) y= W]_l)gn T— ‘fo e~ *i’s Y Tx ds
exists, then x € D(A%) and y= A%x.

Conversely, if x & D(A%), then

. l (o)
Ay I ~ASe-a-1
A_x_sxljgn I—a) joe 8 T'x ds

@.11)
- T(}‘T) @ s T ds.

However, the Cesaro summability of does not hold in general. We
consider the case where a=—2 and ¢=1. We have

r(l‘—S)sTsx ds=—2IPx+tIPx.

0

Now substitute A%y for x and apply [3], Lemma 1.2. Then we have
t‘lf:(t——s)sTsx ds=Q14+T,—2tI)y.

If y= R(A), then t~'I,y converges strongly to zero as {—co. However, T,y
does not converge in general.

Lastly we quote Theorem 6.3 of for the sake of completeness.

THEOREM 2.6. Let —A be theinfinitesimal generator of a bounded analytic
semi-group T, and let Re a <0.

If there is a sequence t;— oo such that

—_ 4 ___1— g —-a-1
(2.12) Y= “Zji,m =) jo s Tyx ds
exists, then x € D(A%*) and y= A%x.
If x = D(A%), then
Xy — a1t ‘_1___ t -a-1
(2.13) Asx = stlloron r—waJ, s 1Tx ds.

University of Tokyo
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