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Fractional powers of operators, III
Negative powers

By Hikosaburo KOMATSU
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This is a continuation of the author’s work on fractional powers of opera-
tors A in a Banach space X whose resolvent (1+A)~' exists for 2>0 and
satisfies |A(A-+A)"Y| < M < o0, 0 < A<oo. This part deals with fractional powers
A% of exponent o with negative real part, and their relationship with inter-
polation spaces of X and the range R(A™). A unified discussion of mean
ergodic theorems is also given, which may be regarded as the theory of A~°.

We use the same notations as in [2] and [3] throughout this paper. In
particular, A stands for a closed linear operator in a Banach space X such
that (0, co) is contained in the resolvent set of —A and that

2@+ =M, 0<2<oo.

Such an operator A will be called non-negative. The negatives of the infin-
itesimal generators of bounded continuous semi-groups are non-negative.

When we discussed the basic properties of fractional powers A%, a =C, of
non-negative operators A in [27], the following generalization of abelian ergodic
theorem played an important role:

(A+A)-*x has the asymptotic expansion
AFA)x=2"1x— 2 2x, 4 - (=D " x40 ™Y as A—oo
(=2t x—Ax_y+ oo (=D o(AY)  as 1—0)

if and only if xe D(A" and A"x< D(A) (x=x,+A"x_, with x, = N(A) and
x-n € D(A™ N R(A), respectively).

Also important were the subspaces D’ (and R°) of X composed of elements
x for which the remainder in the above expansion has the order O(1-""1)
(O(2°-1) and x, =0, respectively).

In view of the above theorem, D’ seems to give an interpolation space.
Actually we proved in that D coincides with the mean interpolation space
S(co0, 0/m, X; o0, 6/m—1, D(A™) of Lions-Peetre [6] if ¢ is not an integer and
m is an integer greater then ¢ >0. We also obtained a related characteriza-
tion of elements x in the interpolation space Dy =S(p, o/m, X; p, 6/m—1, D(A™))
for 1<p=<oo or p=oco— in terms of (A-+A)"™x. ((A+A)"™x is more convenient
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to include the case where ¢ is an integer.) When —A generates a bounded
continuous or analytic semi-group T}, we had another characterization in terms
of 1—-Ty)™x or A™T,x. (Note that the equivalence of these characterizations
has applications to the theory of approximation. See and [97)

The main purpose of this paper is to give analogous results for the mean
interpolation spaces of X and R(A™) and discuss fractional powers A% in the
case where Re a < 0. Techniques are similar to the ones used in [3]

In §1 we prove various mean ergodic theorems, i.e., the abelian ergodic
theorem for non-negative operators, the Cesaro ergodic theorem for bounded
continuous semi-groups, and the simple ergodic theorem for bounded analytic
semi-groups.

In §2 we introduce the spaces RZ(A) and investigate their fundamental
properties. RZ(A), 0 >0, 1< p=<oco, is defined to be the space of all xe X
such that 1-7*"(14 A) ™x € L?(X) with integer m > o, where L?(X) is the L?
space of X-valued functions relative to the measure di/A.

Fractional powers A% for Re a <0 is defined in § 3 for non-negative opera-
tors A and their integral representation is given.

It is shown in §4 that RZ(A) coincides with the interpolation space
S, o/m, X; p, 0/m—1, RCA™) of X and the range R(A™). Further, we discuss
the relationship among the spaces RZ, the domain D(A%) and the range R(AI%.

The cases in which —A generates a bounded continuous semi-group and
a bounded analytic semi-group are treated in §§5 and 6 respectively. We
introduce spaces Qg and Pj respectively and then show their coincidence with
R?. Another integral representation of negative powers is given in each of
the cases.

Some of the results of this paper have been obtained by K. Masuda
independently. He gives also interesting applications.

§1. Mean ergodic theorems.

THEOREM 1.1. Let A be a non-negative operator. Then N(A)+R(A) is a
closed subspace of X and decomposed as the dirvect sum of Banach spaces N(A)
and R(A). If x=x,+x, with x,& N(A) and x, € R(A), then (AQA+AH™x con-
verges strongly to x, as 2A—0 for any positive integer m. Conversely, if
Q24+ A))™x converges weakly for a positive integer m and for a sequence
2;—0, then x belongs to N(A)+R(A).

If X is reflexive, the subspace N(A)-+R(A) coincides with X.

Proor. If x,e N(A), clearly (AA+A))™x,=x, for any 2 and m. Next
let x,= Ay < R(A). Then (AA+A)H)™x, = A(AQ+A) AR+ A)"")""'y converges
strongly to zero as 1—0. Since (A(A+A)")™ is uniformly bounded, the Banach-
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Steinhaus theorem shows that (A(2-+A)~!)™x, converges to zero also for x,e R(A).
Consequently N(A) N R(A) ={0}, and if x = x,+x, is in N(A)+R(A), AA+A)"H"x
tends to x, as 1 —0.

Suppose that (2;(2;4A)")™x converges weakly to x, as 2;—0. Then x,
belongs to N(A). In fact, (A;(4;+A))™x is in D(A), and we have A(1,(4;
+A) D™ = A,(AR;+A) DA+ A) D™y —0. Since A is closed, it follows
that x, € N(A).

Let x;,=x—x, Then (1;(4;+A)"")™x, converges weakly to zero. Since
x1= A4+ A+ AR+ A) e = (A4 A) )™ x, 4 Ay; for some y; = D(A), x,
belongs to R(A).

Thus, ((A+A)"H™x converges strongly if and only if x = N(A)+R(A). The
Banach-Steinhaus argument proves that N(A)--R(A) is a closed subspace.

If X is reflexive, we can choose a weakly convergent sequence (2;(;
+A)-H™x for every x =« X. This completes the proof.

When — A is the infinitesimal generator of a bounded continuous semi-
group T,=exp (—tA), we have

QA+ A" = (m—1) 11 j CAmgm-1g-2T x df |
0

Therefore, turns out to be a generalization of the abelian ergodic
theorem for bounded continuous semi-groups [1]

To formulate the standard mean ergodic theorem, we introduce the fol-
lowing notations:

t
(1.1 Ix= j Twxds,

1.2) Iox =Ty (t—sy1Txds  for 6>0.
0

LEMMA 1.2. If o=1 and t>0, then I{®x is contained in D(A) for each
xe X and we have

(1.3) x="Tx+AlLx, oc=1
and
1.4 ')t x=1Yx+ Al x, g>1.

Proor. (1.3) is well-known. See [1]or [5] for a proof. The latter gives
a proof under the most general conditions on 7, and X. Multiplying both
sides of (1.3) by I'(c—1)-*(s—t)°~% and integrating them over (0, s), we have
(1.3) with ¢t replaced by s. Since A is closed, A commutes with the integration.

LEMMA 13. Let 0<o<landt>0. Then I{?”x belongs to C%(A) for each
x and
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bl Px)=sup ho|| =TI (x|
h

=2l'(e+D*M| x| .

PrOOF. Suppose h<t. Then we have

Id=TI"x || =1"(o)

J 9Tz ds |
=@M x|(f t—sy-do

+ ;«t”s)““(t +h—s)7ds+ :+h(t—\—h—s)"‘1ds>

=2["(c+1)*M| x||h°.
When h>=t, we have similarly
|I—THI@x| < 2T+ 1) M| x|t

THEOREM 14. Let —A be the infinitesimal generator of a bounded con-
tinuous semi-group T, and let m be a positive integer. If x = x,+x,& N(A)+R(A),
then (I'(c+Dt-?I@)™x converges strongly to x, as t—oo. Conversely, if there
1S a sequence t;— oo such that (F(a—}—l)t;"]é‘]’.’)mx converges weakly, then x belongs
to N(A)+R(A).

Proor. First let o0=1. Then t9J and t-°"AI® are both uniformly

bounded by the definition of /{® and Lemma 1.2. Thus the same argument
as in the proof of Theorem 1.1 works.

Next let 0 <o < 1. It follows from Lemma 1.3 above and Propositions 4.7

and 11.2 of [2] that I{®x < D(A9? for each x € X and there exists a constant
C such that

AP x| = Ce* x|, t>0.
Therefore, if x,= Ay = R(A), we have
(t—qlgg)ynxl — (t—cr[;a)>m—1t-eri/2I£a)A{‘_—a/2y —0

by the additivity of fractional powers. Since (¢-“I{)™ is uniformly bounded,
(t-I@®)™x, converges strongly to zero for each x,< R(A). It is clear that
Lo+t T ™x, = x, for x,& N(A).

Conversely suppose that (F(a+1)t;”[5;>)mx converges weakly to x, as a
sequence {;—oo. Then we have A7%(t;7] E?)mx:t;"”(t; syt ot AL ﬁ;’x—»O.
This implies x, = N(A%?). Since we have N(A%) = N(A) for Rea >0 from
Theorems 7.1 and 8.1 of [2], x, belongs to N(A). To prove that x,=x—ux, is
in R(A), it suffices to note that

X, = (0+Dt;o I+ (a+Dize ALY x,
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This completes the proof.

When 6 =m =1, is exactly the mean ergodic theorem with
continuous parameter. Since ¢ is an arbitrary positive number, we can replace
the arithmetic mean by the Cesaro mean of arbitrary order > —1. If T, is a
bounded analytic semi-group, we have a stronger result.

THEOREM 1.5. Suppose that — A generates a bounded analytic semi-group
T,. If x=x,+x, belongs to N(A)+R(A), then T.,x converges strongly to x, as
t—oo. Conversely, if there is a sequence t;— oo such that Ty x converges weakly,
then x belongs to N(A)+R(A).

ProoF. Since tAT, is uniformly bounded for ¢ > 0, it follows that T,x,—0
for x, € R(A) and hence for x, € R(A). Clearly we have T,x,= x, for x,& N(A).

Conversely suppose that T, x converges to x, weakly. Since AT, x—0, we
have x, = N(4). Let x,=x—x, Then thxl:xI—AItjx1 converges weakly to
zero. Hence we have x, = R(A), completing the proof.

An analogous theorem has been given in [4] when the parameter is dis-
crete.

This theorem shows, in particular, that if A is an operator of type
(w, M(0)) with w <7/2 in a reflexive Banach space X, then every solution x(f)
of the parabolic equation
(15) A= —Ax)
converges strongly to an equilibrium state x, which satisfies Ax,=0 as t tends
to infinity, for, every weak solution x(f) of (1.5) is written x(¢) = T,_, x(t,).

§2. Spaces Rj.

As in we denote by L?(X) the Banach space of all X-valued measur-
able functions f(4) on (0, co) such that

112 =(J 1/ 13d2) " <o, it 1=p<on,

ilflIch,v):OS)zlgwllf(l) lx<oco, if p=oco or co—,
and
JAH—0 as A1—0 or oo, if p=oco—.

DEFINITION 2.1. Let ¢ be a positive number, let m be an integer with
0<o<m, and let 1< p=<co. Then, Rf,=Rj;,.(A) denotes the space of all
x € X such that 21-2(AA+A)"H"x c L*(X).

It is easy to see that Rg, is a Banach space with the norm

Ay I lrg = I 2l x+1 277 (AA+A) ) x |7 x, -
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R3.,; coincides with R“ in [27], though topologies are different.

As in [2] we denote by Ay the restriction of A to D(Ag)= D(A) N R(A).
Usually we regard A, as an operator in the Banach space R(A). Then A is
one-to-one and has dense range in R(A) by the ergodic [Theorem 1.1

THEOREM 2.2. Both Ag and Ag' are non-negative in R(A), and we have

2.2) Rg,m(A) = R§,u(Ag) = D,m(AR")
with the same norms.

Proor. This is essentially the same as Theorem 3.2 of [2]. We note
that for every x e Rg,, there is a sequence 4;—0 such that (4;(4,4+4)")"x—0

and hence x belongs to R(A) by Theorem 1.1. Also we make use of the fol-
lowing identities :

2.3 A+Ap) " =+ Dz
(2.4) AQA+AR) " = A (A +AR)1, 0<i<<oo.
Consequently the following two propositions and a theorem follow directly

from the results in §1 of [3].

PROPOSITION 2.3. If 1integers m and n are greater than o, then RS, and
R, are the same spaces with equivalent norms.

DEFINITION 2.4. R7= R9(A) is defined to be the Banach space Ry, with
the least integer m greater than o.

ProposITION 25. If p>0, A(u+A)"' is a one-to-one conlinuous mapping
of Ry onto Ry™. If p<oco—, we have for every x € Rj,.

2.5 A(p+A)"'x—x (Rg) as p—0.

THEOREM 2.6. We have REC R if o >1 or if o=t and p=q. The injec-
tion is continuous, and when q =co—, R% is dense in RY.

PrROPOSITION 2.7. If p>0, then A(u+A)~' is non-negative and
2.6) Ry(A) = Ry(A(+A).

Proor. It is proved in Proposition 6.2 of [2] that A(u+A)* is a non-
negative operator. Note that

2.7 (Alp+A) g = Ar(p+Ap)™
and that implies
2.8 Ap(p+Ap) " = p (' + 4D

Thus we have by [Proposition 2.5 of
R(A) = Dy(Ar") = Dg(p~ '+ Ar")
= Ry(Ar(p+Ap) ™) = Ry(A(u+A)") .




Fractional powers of operators 211

§3. Negative powers.

Suppose that a complex number «, a real number ¢ and an integer m
satisfy 0 >Rea=—o > —m. If x< R?, then the integral

I'(m)

G Aty =TT e 50 A5 A+ A) )™ xd A

converges absolutely. Since x € R(A), (A-+A)™! in the integrand may be re-

placed by (A+Ag)~'. Thus it follows from and the definition of positive
powers in [3] that

(3.2 A% x=(Ar);%%, x& R{(A)=Di(Az).

In particular, A%,x does not depend on m or on ¢ as far as x € R?, and the
operator A%, with the domain R¢ has the smallest closed extension which does
not depend on ¢ = —Re a.

DEFINITION 3.1. The fractional power A% for Re a < 0 is defined to be the
smallest closed extension of A%, for a ¢ = —Re «.

THEOREM 3.2. If Rea <0, we have

33 A =(Ap)2 = (AR"):",
and if a s a negative integer —m,
3.4) A% = Az™.

Proor. The first identity of (3.3) is clear from the definition and Theorem
2.2. The second identity follows from (3.2). Since Az' has dense domain in
R(A), Proposition 2.2 of [3] implies (3.4).

Proposition 4.10 of [27] shows therefore that Definition 3.1 is consistent
with the definition of A% in [2].

The following theorem shows that the negative power A¢ is equal to the
integral (3.1) interpreted as an improper integral.

THEOREM 3.3. Let 0> Re a > —m with an integer m. If thereis a sequence
g;—0 such that

(3.5) y=wlim F(_agl(l”& —5) :,za-l(,z<z+A)-l)mm,z

exists, then x e D(A%) and y= A%x.
If x e D(A%), then

[2 APV - F(m) * a-1 -1\m
(3.6) Atx=s-lim —p e s Lx A+ A)mxdA

possibly except for the case in which Im a +0 and Re a is an integer.
PrOOF. Suppose that weak limit (3.5) exists. Then
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—az| 2+ Ay
&

= —ag;*[ 21— AQ@-+A) ) xd2
€5

= x_yj —>O ,
where y; € R(A). Hence x belongs to R(A). Thus employing and

and changing variable by p¢=2"!, we obtain

¢!
y=welim gy [ et A e A

Thus Theorem 2.10 of proves that x is in D((Az"):i% = D(A% and that
y=A%x.

The converse is proved in the same way.

If xe Rs, we denote by ¢;°(x) the second term of with m the least
integer greater than o.

ProroOSITION 3.4. If 0> Rea > —oa, there is a constant Cla, —a, p) such

that
3.7 | A2x|| = Cla, —0, P)gp°(x)"Re®?| x ||0+Re®/e | x & Rg.

Proof is the same as that of Proposition 2.4 of [3].

THEOREM 3.5. Let 0>Rea > —o0. Then xR if and only if x<= D(A%)
and A% x = Rg*Re®,

PROOF. Since R9(A)= D3(Az') and A% = (Ag")~¢, this is reduced to Theorem
2.6 of [3].

In the same way the following two results are derived from Theorem 2.7
and Proposition 2.8 of [3] respectively.

THEOREM 3.6. If the domain D(A%) contains (is contained in) RpR* for a
Re a <0, then D(A%) contains (is contained in) RyR** for all Re a <O0.

ProposITION 3.7. For each Rea <0

3.8 RiRe*(AYC D(A%) C R-Re4(A).
As for the additivity of fractional powers we have
3.9 A2 AB = A8 | Rea <0, Re 3 <0

by Theorem 7.1 of [2]. We remark also the following.
PROPOSITION 3.8. If m is a positive integer, then

(3.10) RPM(A) C R(A™) C R%(A).

Proor. The first inclusion is derived from Proposition 2.8 of [3], as we
have
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R(A) = DI"(Ar) C D((Az")™) = R(A%) C R(A™).
To prove the second inclusion let x =A™y = R(A™). Then
@A+ A = 2R+ A) A+ Ay
=01™.

THEOREM 3.9. Let 0>Rea>—m with m an integer. Then for each
x=A™y e R(A™) we have

3.11) A%x = ATt% .

PrOOF. Since R(A™) C R7(A), x € R(A™) is contained in D(A%). Substitute
A™y for x in expression (3.6). Then we obtain by (2.1) of [3]

I'm
IT'm+a)'(—a)

= APtoy.

A%x =

| a1 A4 A))™ydA
0

Since A% is the smallest closed extension of its restriction to R(A™) D RP(A),
we could start with (3.10) for the definition of negative powers.

§4. Interpolation spaces of X and R(A™).

When B is a closed linear operator in X, we define the norm in the range
by
@ I %l = inf |71+ 1«

This is equal to the quotient norm in D(B)/N(B) which is identified with R(B).
Since N(B) is a closed subspace of the Banach space D(B), R(B) forms a
Banach space. If B is one-to-one, the norm in R(B) defined above is the same
as that in D(B™Y).

The integral powers A™ of non-negative operators A are closed, as A
have non-void resolvent sets. Thus we can discuss interpolation spaces of X
and R(A™).

In case X is reflexive, X is decomposed as N(A)+R(A). Hence it follows
that R(A™), R(AZ) and D((Az)™) are the same spaces with the same norms.
On the other hand, if X is not reflexive, R(A™) can be strictly larger than
R(A%). The following theorem shows, however, that their interpolation spaces
turn out to be the same.

According to Peetre [8] we denote by (X, Y ), the mean space S(p, 4, X;
p, 6—1,Y) of Banach spaces X and Y contained in a Hausdorff vector space
[6], where 0<f <1 and 1<p=<oo. We admit also p=-co—.

THEOREM 4.1. Let m be a positive integer. We have
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(4.2) RIm(A) = (X, R(A™))s,p = (RCA), R(AE Do

with equivalent norms for 0<0<1 and 1< p=< oo or p=co—.
PrOOF. Since we have RIm(A)= Di™(Az") by Theorem 2.2, Theorem 3.1 of
[3] shows that

RY™(A) = (R(A), D(AF™e,p = (R(A), R(AE o, -

The definition of mean spaces trivially implies (X, R(A™)s,, = (R(A),
R(A™) ,, and Proposition 3.8 states that R(A™) is, e.g. of class K;,(R(A),
R(A%"). Thus it follows from the reiteration theorem of Lions-Peetre [6]
that R9"(A)= (X, R(A™)s,p-

The domain D(A-®) is naturally connected with the range R(A%).

THEOREM 4.2. Let Rea>0. If X is reflexive, we have

4.3) RRe*(A) C D(A=") = R(A%) C RR%(A) .
If D(A) is dense, we have at least
4.4 RRe2(A) = D(Az%) C R(A%) C RRe*(A).

PrOOF. Let X be reflexive. Then D(A) is dense and X is decomposed as
N(A)+R(A). Thus Az“ coincides with Ay® of [2], and A% vanishes on N(A)
and coincides with A2 on R(A). In particular, we have R(A%)= R(A§). Since
(A9 = A;* by Theorem 7.3 of [2], we obtain (4.3). Actually (4.3) holds if
D(A4) is dense and X = N(A)+R(A).

Let D(A) be dense. By the same reasoning as above we get D(AZ%)
= D(A7%) = R(A}) C R(A%). If x= A% < R(A%), then we have by Proposition
2.4 of [3]

1@+ A)-H"x| = 2| A$A+A) ™yl
£ ZnC [ AT Ay R | (A A) Ty Rem
= (C,ARe% for m >Re«.

THEOREM 4.3. Let A be a non-negative operator of type (w, M()). Then
4.5) R3(A%) = R3°(A4), I<a<rm/w, ag>0.

Proor. If m is an integer greater than o, we have R3(A%) = (X, R(AT*)o/m,p-
Hence (4.4) together with the reiteration theorem gives (4.5).

§5. Infinitesimal generators of bounded continuous semi-groups.

In this section we assume that —A is the infinitesimal generator of a
bounded continuous semi-group T,: T, =exp (—tA).
DEFINITION 5.1. Let 0 <o <m with m an integer, and let 1< p<oco. We
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denote by Q4,.,= Q%.(A) the space of all x = X such that t°(t-'[)"x e L?(X).
¢ m 15 @ Banach space with the norm

6.1 | x ||Qg,m = xlx+l @ )" 2P -
PrROPOSITION 5.2. If x < Q3,,, then x belongs to D(A%) for 0>Rea> —o
and
G.2) Aty =t (e ryrx at
Ka+m,m 0 ’
where
(5.3) Kaimm=| Tprame(] gty
0

Proor. The right-hand side of (5.2) converges absolutely and represents
an analytic function of « for 0> Rea > —o.

Let x=A"ye R(A™). Then x belongs to Q¢,,, because [x= A"[]y=
(1—T,)™y. Proposition 4.2 of [3] shows

1 « —a—-174-1 m
K j ey dt
1 “ —a-m-1/1__ m 4
K | 1 A—Ty™y dt
= Agtmy .

In view of Theorem 3.9 we obtain (5.2).

Next let x<Qg,,. It follows from Theorem 1.4 that x = R(A). Hence
x; =(AA+A)"H™x € R(A™) converges strongly to x as 4 tends to zero. The
integral (5.2) with x replaced by x; is equal to A%x; and converges strongly
to integral (5.2). Since A% is closed, x belongs to D(A%) and (5.2) holds.
THEOREM 05.3. Qf,, coincides with Ry with an equivalent norm.

Proor. Let x = Q4,,. Then foreach 2>0 (AX+A)")™x belongs to Qg4m.
In fact noting (1.3), we have

H t;a+m(t-l[[/>2m(A(Z+A)—l)mx H
S A=TO™ [ - 1A+ - 7@ ™ x|

In particular, (AA-+A)"H™x is in D(AZ™)= D(Az™). Since A is one-to-one on
R(A) to which (1+A4)~™x belongs, it follows from [Proposition 5.2 that

@+ A =c CpmeA L) A A) Y di
0
— of At Ay Ly de
Y0

tof QA ATA=Tym - e Ly dt
<1/2
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where ¢ =K, ;.. Hence

2
1272+ A x| <eLmMm = | Pm-o ot Lym x| di 1
]

+eMm@My 2~ ;t“’]] o Iy dt 1t

belongs to L?(R*) with measure di/A.
Now let x € R},,,. If t>0, we have

A7 QA+ A) A — T )™«
= (AQ+A) Y™ - (A4 A) D .

Therefore, (1—T,)™x belongs to RZ%2. Since I,x= Az'(1—T)x for x= R(A), w
obtain from

Imx=A""Q-—-T,)™x

= cf "(AG+ D TPAG A adi)2

+ CJ.:‘(Z(Z—{—A)_I)m(l_Tl)ml'm(l(l—f—A)'l)mx daj/2,

where ¢=I"2m)/I'(m)’. Hence we conclude that °(:-'I,)"x « L?(X) as above.
THEOREM b5.4. Let 0> Re a > —m with m an integer. If thereis a sequence
N;—co such that

— B H 1 Nj -—a-174-1 m
(.4 y=w-lim Kormm _fo eyt )™ x dt

jroo

exists, then x € D(A%) and y= A%x.
PrROOF. We repeat the argument in the proof of [2], Proposition 4.6.
First it follows from (1.4) for ¢=2 that

N
——aNj‘f ]t'“‘l(t‘llt)mx dt
0
N
= —aN§| Trei— ATPymx di
0

- x_yj ’
where y; R(A). Since this converges to zero, x belongs to R(A). Hence
x,=(A(u+A))"x converges to x as p tends to zero. Since x,< R%, we have

Atxy= o T LA A) Y dt
0
. Nj
= (A(p+A)"H™ w-lim c_f tre it )™x dt
0

= (Alp+ A"y .
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v is also in R(A). Thus the right-hand side converges to y as ¢ tends to zero.
Noting that A® is closed, we have x € D(A%) and y= A%x.

Probably the converse statement as in Theorems and holds good
in this case, too.

§ 6. Infinitesimal generators of bounded analytic semi-groups.

In this section we assume that —A generates a bounded analytic semi-
group T;.

DEFINITION 6.1. Let 6 >0 and let 1< p=<co. We denote by Pg= P3(A)
the Banach space of all x € X such that t°T,x € L?(X). The norm is defined by

(6.1) [| x “p;, = xllx+1 T ex |2 x, -

THEOREM 6.2. P¢ is the same space as R§ with an equivalent norm.
Proor. First we prove that PgC Qg,, for m>o. It is easy to see that
(t~*I)™x is written

6.2) @I = [ K5/ T ds/s,
0

and the kernel K, (s) has properties:

6.3 K920, [Kys)ds/s=1,
0

and

6.4) K,.(s) =0(s™) as s—0.

Therefore, if x e P3,

(e = | (/1) 7K (5157 T ds /s

belongs to L?(X).
We note that we have not employed the fact that T, is an analytic semi-
group. Therefore, the inclusion P¢C Qg holds for any bounded semi-group T,.
Next let x e R3,,. If t>0, A™T,x belongs to Rgi=n. In fact, we have

A=T-m( A+ A)H)m AmT
=(AQ+A)" YT, - A °QUA+A)HY"x = L(X).
Since T, maps R(A) into R(A), T.x is in R(A). Hence we have by (3.1)
1Tx =t A" A" T, x

= cf :”(A(z+A)—1)mTt(t,z)az-v(z(z+A)-1)mx i/

ef A AT ) @22 Ay /2.
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It is easy to see that each of these terms is in L?(X).
THEOREM 6.3. Let Rea < 0. If there is a sequence N;— oo such that

— 14 o ]:‘ _ Nj ~—x-1
(6.5) Y= Wﬁhmm I—a jo t T,x dt,

exists, then x € D(A%) and y= A%x. If x e D(A%), then

N

6.6) Alx = s-lim — t-a-1T,x dt .

1 1

i rew s

Proor. First we prove that (6.6) holds for x = P4 when ¢ > —Re a. If

x < Pg, the right-hand side of (6.6) converges absolutely and represents a con-

tinuous operator from Pg to X. When an x& Pj is fixed, it is clearly an

analytic function of a for 0> Re @ > —0¢. Thus it is sufficient to prove (6.6),
say, in the case where x = PL, and 0> Rea > —1. In this case we have

1

@ o 0 @ ° -2
At = -po U fo 2 dzjo e~ T,x dt

1 < o AL
= rEarata ), T, ret

= -T(*}__—a)“s‘o t—“—th.X dt.
Since all integrals converge absolutely, we may change the order of integra-
tion.

Now, the first part of Theorem is proved in the same way as Theorem
54. The only difference is that we use (1.3) instead of (1.4).

To prove the latter part, first we assume that A is bounded. Then Az“
is bounded and, as Theorem 5.4 of [3] shows, is given by

—— “1 .
I'(m+a)

Azex = - Omtmw*AmTLx dt,

where m is an integer greater than —Rew. Since D(A%) coincides with
R(A7%| z=), what we have to prove is that for x € R(A)

N oo
Inx= 5‘0 s“‘"lTsa.’sj0 grratA™ T x dt

converges strongly as N tends to infinity.
We have easily

N T
Inx= fo A™T,x drjo s~EYy—s)ymta-1qs

—{—j OOA’”T X drf Ns’“"(r— sym+a-idg
N r 0
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_ I'—a)'(m-+a)
B I(m)

¥
j rm1A™T, x dr
0

+[ NmAM Ty dof omeip—oyrride.
1 0

The first term converges strongly to I'(—a)l (m+4-a)x. In fact, if m=1,
we have

[PATx dr =(1-Tyx—x
0
from the ergodic When m =1, integration by parts gives
N N
j rmA™IT x dr = »—N"‘AmTNx—l—mj. rm AT x dr .
0 0

That N™A™Tyx converges to zero is proved in the same way as the ergodic
theorem. Hence the induction on m proceeds.
The second term of Jyx converges strongly to zero. For, the integral

jlmp‘mdpjola'““(p—0)m+“‘1do

converges absolutely and (oN)™A™T,yx converges strongly to zero as N tends
to infinity uniformly on (1, oo).

Next assume that A is unbounded. For g >0 we denote by T# the
bounded analytic semi-group generated by the bounded operator —A,=
—pA(p+A)t. According to Theorem 6.8 of we have

D(AZ) = D((A/,)(f) = R((A”);“l Rm) C Ro_oRea(A) .
Thus it suffices to show that for x & R Re
j Cpa (T, — TH)x dt
0

converges absolutely. For this purpose we will prove that
6.7) (T\—T#Hx=0(@"°"") as t—oo for xe Ry

when ¢ >0 is not an integer. (Probably [6.7) holds true also for ¢ an integer.)

Suppose that A is a non-negative operator of type (w, M(#)) with w < x/2.
Then it is easily shown that A, is also of type (w, M(#)). In this case the
semi-group T, (and hence T#) has the integral representation

_ 1 m!¢ —m-
(6.8) Tix= 50 i Pe‘ C+A ™ xdC,

where m is a non-negative integer and I' is the path composed of the ray
from ocoe ® to e¢ %, the portion from ee~® to e¢® of the circle with center at
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the origin, and the ray from ee® to coe’® with ¢ >0 and n/2< 0 < 7—w.

In fact, if m =0, this is well known [1] and integration by parts gives

the representation for m > 0.

Choose the least integer m greater than o¢. Then, we have

(Ti=Tt)x =g M| Xt A AC+ A AC+ A"

XAC+ADT™+EC+AA™C+H AN+ -+ C+AY ™ x dC.

Since ({+A)C+A) T =1—-A(u+A)"TAL+ A" is uniformly bounded on the
sector X = {{: |arg {| <60} and since RZ%(A)= R%(A,), we have

{C+ADTHEC+AA™EC+A) T - +C+ A
=0([C+A)™xN=0(L]*™™)  for xe RS

uniformly on %, similarly to the proof of Theorem 12.3 of [2].

Now, noting that (u+A)*A{+A)*A+A,)"! is uniformly bounded, we

can let ¢—0 in the integral and obtain the desired estimate

(1]

£2]
£3]

(4]
£5]

[6]

[7]
L8]

£o]

I(T,—THx| < Ct-m.f ooet'r cos 00~
0
= CI'(6—m+1)(—cos §)~7tm-1t-7-1,

University of Tokyo
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