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Introduction

Main conclusion of my work [2] has been the following: Any logic be-
longing to J-series (the intuitionistic logic LJ, the minimal logic LM, and the
positive logic LP, each without assuming Peirce’s rule) or to K-series (the clas-
sical logic LK, the minimal logic LN, and the positive logic LQ which are
stronger than LJ, LM and LP by Peirce’s rule, respectively) can be faithfully
interpreted in the primitive logic LO (the sub-logic of the intuitionistic logic
LJ having the logical constants, implication and universal quantification, only).
I call here any logic $L$ a sub-logic of another logic $L^{*}$ if and only if every
logical constant of $L$ is a logical constant of $L^{*}$ and every proposition expres-
sible in terms of the logical constant of $L$ is provable in $L$ if and only if it
is provable in $L^{*}$ .

Faithful interpretation of the intuitionistic logic LJ and the classical logic
LK in the primitive logic LO can be realized by $\mathfrak{R}$ -transform $\mathfrak{A}^{[\Re]}$ of any pro-
position $\mathfrak{A}$ with respect to an n-ary relation R. $\mathfrak{A}^{[\Re]}$ can be defined recursively
as follows ( $\xi$ stands for a sequence of $n$ distinct variables, none of them is
assumed to occur free in $\mathfrak{F}$ and $\mathfrak{G}$):

$\mathfrak{F}^{[\Re]}\equiv(\xi)((\mathfrak{F}\rightarrow \mathfrak{R}(\xi))\rightarrow \mathfrak{R}(\xi))$ for any elementary formula $\mathfrak{F}$ ,

$(\mathfrak{F}\rightarrow \mathfrak{G})^{[\Re]}\equiv(\mathfrak{F}^{[\Re]}\rightarrow \mathfrak{G}^{[\Re]})$ ,

$((t)\mathfrak{F})^{[\Re]}\equiv(t)\mathfrak{F}^{[\Re]}$ ,

$(\mathfrak{F}\wedge \mathfrak{G})^{[\Re]}\equiv(\xi)((\mathfrak{F}^{[\Re]}\rightarrow(\mathfrak{G}^{[\Re]}\rightarrow \mathfrak{R}(\xi)))\rightarrow \mathfrak{R}(\xi))$ ,

$(\mathfrak{F}\vee \mathfrak{G})^{[\Re]}\equiv(\xi)((\mathfrak{F}^{[\Re]}\rightarrow \mathfrak{R}(\xi))\rightarrow((\mathfrak{G}^{[\Re]}\rightarrow \mathfrak{R}(\xi))\rightarrow \mathfrak{R}(\xi)))$ ,

$((\exists t)\mathfrak{F})^{[\Re]}\equiv(\xi)((t)(\mathfrak{F}^{[\Re]}\rightarrow\Re(\xi))\rightarrow \mathfrak{R}(\xi))$ ,

$(-\mathfrak{F})^{[\Re]}\equiv \mathfrak{F}^{[\Re]}\rightarrow(\xi)\mathfrak{R}(\xi)$ .
Now, we can prove the following theorem: $\mathfrak{A}$ is provable in LJ if and

only if $\mathfrak{A}^{[R]}$ is provable in LO, assuming that $R$ is an n-ary relation symbol
having no occurrence in $\mathfrak{A}$ for some $n(n\geqq 1)$ . $\mathfrak{A}$ is provable in LK if and only

if $\mathfrak{A}^{[R]}$ is provable in LO, assuming that $R$ is $a$ O-ary relation symbol $i$ . $e$ . pro-
position symbol having no occurrence in $\mathfrak{A}$ .
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In my paper [2], I have stated this theorem in weaker form, namely, only
for sufficiently large $n$ for LJ. Moreover, the proof in [2] has been incom-
plete for J-series logics, because two erroneous formulas (erroneous in case of
J-series logics) has been employed in the proofl).

Main purpose of the present paper is to give theorems in stronger form
for J- and K-series logics in general together with their corrected complete
proofs.

In my paper [3], $l$ have mentioned that any formal system having just
one primitive notion (a single-word vocabulary) and standing on any one of
J- or K-series logics can be interpreted more simply in a formal system hav-
ing the same vocabulary and standing on the primitive logic LO. In showing
this, I have employed essentially the same erroneous formulas of [2] (erroneous

for J-series logics). In my work [4], I have described a method to reduce
any vocabulary consisting of a finite number of words (primitive notions) to
a single-word vocabulary, expecting that systems having single-word voca-
bularies are easier to deal with according to the conclusion of my work [3].

In reality, however, the merit of these two works seem to fade away in some
cases even when we reformulate them so to avoid fallacious reasonings in
them. In the case of J-series logics, the device of [3] for introducing new
logical constants causes an interesting problem.

In my work [5], I have relied also on the result of my paper [3], so I
have to reformulate it anyway. Essentially, however, the conclusion of [5]

can be kept true. I will remark only a few words on the subject in the pre-
sent paper, because a detailed description of taboo theory is expected to appear
in the nearest future.

(1) Preparations.

The following notations used in my work [2] are also useful in the pre-
sent paper:

$\mathfrak{F}^{\Re}\equiv(\xi)((\mathfrak{F}\rightarrow \mathfrak{R}(\xi))\rightarrow \mathfrak{R}(\xi))$ ,

$\mathfrak{F}\bigwedge_{\Re}\mathfrak{G}\equiv(\xi)((\mathfrak{F}\rightarrow(\mathfrak{G}\rightarrow \mathfrak{R}(\xi)))\rightarrow \mathfrak{R}(\xi))$ ,

1) In $(4.11R)$ of [2] (p. 350), I have mentioned that

$\mathfrak{A}^{R}\bigwedge_{R}\mathfrak{B}^{R}\equiv \mathfrak{A}^{R}\wedge \mathfrak{B}^{R}$
,

$\mathfrak{A}^{R}\vee \mathfrak{B}^{R}\equiv \mathfrak{A}^{R}\vee \mathfrak{B}^{R}R$

$(\exists t)\mathfrak{A}^{R}\equiv R(\exists t)\mathfrak{A}^{R}$

are all provable in LP as well as in LQ. This does not hold generally in LP except
for the first formula if $R$ is an n-ary relation symbol $(n>1)$ . I owe to my young col-
leagues M. Ohta and K. Kawada in finding out this mis-reasoning.
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$\mathfrak{F}\vee \mathfrak{G}\equiv(\xi)((\mathfrak{F}\rightarrow \mathfrak{R}(\xi))\rightarrow((\mathfrak{G}\rightarrow \mathfrak{R}(\xi))\rightarrow \mathfrak{R}(\xi)))\Re$ ’

$(\exists t)\mathfrak{F}(i)\equiv(\xi)((t)(\mathfrak{F}(t)\rightarrow \mathfrak{R}(\xi))\Re\rightarrow \mathfrak{R}(\xi))$ ,

$-\mathfrak{F}\equiv \mathfrak{F}r\rightarrow(\xi)\mathfrak{R}(\xi)$ or $\bigwedge_{\Re}\equiv(\xi)\mathfrak{R}(\xi)$ .

Clearly, $\mathfrak{F}^{[\Re]}$ is $\mathfrak{F}^{\Re}$ for any elementary proposition $\mathfrak{F}$ , $(\mathfrak{F} A \mathfrak{G})^{[\Re]}$ is $\mathfrak{F}^{[\Re]}\bigwedge_{\Re}\mathfrak{G}^{[\Re]}$ ,

$(\mathfrak{F}\vee \mathfrak{G})^{[\Re]}$ is $\mathfrak{F}^{[\Re]}\vee \mathfrak{G}^{[\Re]},$ $((\exists t)\mathfrak{F}(t))^{[\Re]}$ is $(\exists t)\mathfrak{F}(t)^{[\Re]}$ , and $(-\mathfrak{F})^{[\Re]}$ is $-\mathfrak{F}^{[\Re]}\Re$ .
For any proposition $\mathfrak{F}$ , the proposition $\mathfrak{F}^{\Re}$ is called the $\mathfrak{R}$-closure of $\mathfrak{F}$ . In

any logic equivalent to or stronger than the primitive logic LO, any proposition
$\mathfrak{F}$ implies its M-clos $ure\mathfrak{F}^{\Re}$ always. Any proposition $\mathfrak{F}$ is called R-closed if and
only if its R-closure $\mathfrak{F}^{\Re}$ implies $\mathfrak{F}$ itself. Accordingly, any proposition $\mathfrak{F}$ is
equivalent to its R-closure $\mathfrak{F}^{\Re}$ if and only if it is $\mathfrak{R}$ -closed. Hence, we can ex-
press any $R$-closed proposition in the form $\mathfrak{F}^{\Re}$ .

We can also easily see that any elementary formula of the form $R(\xi)$ is
R-closed for any relation symbol $R$ (including the case where the same variable
occurs in different places of $\xi$), that $\mathfrak{F}\rightarrow \mathfrak{G}$ is $\mathfrak{R}$ -closed whenever $\mathfrak{G}$ is $\mathfrak{R}$-closed,
and that $(t)\mathfrak{F}(t)$ is R-closed if $\mathfrak{F}(u)$ is R-closed for any variable $u$ whatever.
Accordingly, propositions of the forms $\mathfrak{F}^{[\Re]},$ $\mathfrak{F}\wedge \mathfrak{G},$

$\mathfrak{F}\vee l\mathfrak{G},$ $(\underline{\exists}t)\mathfrak{F}$, and $-\mathfrak{F}\Re$ (or

$\bigwedge_{\Re})$ are all R-closed. Also, we can see easily that any R-closed proposition is
deducible from $(\xi)\mathfrak{R}(\xi)$ .

Taking -ut as $\mathfrak{A}\rightarrow/\nwarrow$ , the intuitionistic logic LJ can be characterized by
the following inference rules:

F. $\mathfrak{A}$ is deducible from $\mathfrak{A}$ itself.
$I^{*}$ . $\mathfrak{A}\rightarrow \mathfrak{B}$ is deducible if $\mathfrak{B}$ is deducible from $\mathfrak{A}$ .
I. $\mathfrak{A}$ is deducible from $\mathfrak{B}$ and $\mathfrak{B}\rightarrow \mathfrak{A}$ .
$c*$ . $\mathfrak{A}\wedge \mathfrak{B}$ is deducible from $\mathfrak{A}$ and B.
C. $\mathfrak{A}$ as well as $\mathfrak{B}$ is deducible from $\mathfrak{A}$ A $\mathfrak{B}$ .
$D^{*}$ . $\mathfrak{A}\vee \mathfrak{B}$ is deducible from $\mathfrak{A}$ as well as from $\mathfrak{B}$ .
D. $\mathfrak{A}$ is deducible from $\mathfrak{B}\vee \mathfrak{E},$ $\mathfrak{B}\rightarrow \mathfrak{A}$, and $\mathfrak{E}\rightarrow \mathfrak{A}$ .
$U^{*}$ . $(t)\mathfrak{A}(t)$ is deducible if $\mathfrak{A}(u)$ is deducible for any variable $u$ whatever.
U. $\mathfrak{A}(u)$ is deducible from $(t)\mathfrak{A}(t)$ .
$E^{*}$ . $(\exists t)\mathfrak{A}(t)$ is deducible from $\mathfrak{A}(u)$ .
E. $\mathfrak{B}$ is deducible from $(\exists t)\mathfrak{A}(t)$ and $(t)(\mathfrak{A}(t)\rightarrow \mathfrak{B})$ , assuming that $t$ does not

occur in B.
N. $\mathfrak{A}$ is deducible from $)_{\backslash }$ .
The classical logic LK admits further Peirce’s rule:
P. $\mathfrak{A}$ is deducible from $(\mathfrak{A}\rightarrow \mathfrak{B})\rightarrow \mathfrak{A}$ .
The positive logic LP admits the inference rules $F,$ $I^{*},$ $I,$ $c*,$ $C,$ $D^{*},$ $D$,

$U^{*},$ $U,$ $E^{*}$ , and $E$ without assuming the propositional constant A (nor the
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logical constant -). The positive logic LQ admits further the inference rule P.
The minimal logic LM and LN admit the same inference rules of LP and

LQ, respectively, but the propositional constant $/A_{\backslash }$ (hence also the negation
notion) is assumed in them.

In the primitive logic LO, we can prove that the newly defined logical
constants $\bigwedge_{R}$

,
$\vee\Re$

, $(\exists)R$ and
$-\Re$

(or $\bigwedge_{\Re}$) together with the original logical constants

of LO satisfy all the inference rules of LJ for $\mathfrak{R}$ -closed propositions. They
satisfy further the inference rule $P$ for R-closed propositions, if $\mathfrak{R}$ is $a$ O-ary
relation $i$ . $e$ . a proposition.

Speaking more precisely, we can prove that the following inference rules
hold in the primitive logic LO (see my work [2].):

$C^{*}R$ . $\mathfrak{A}\bigwedge_{\Re}\mathfrak{B}$ is deducible from $\mathfrak{A}$ and $\mathfrak{B}$ .
CR. Any $\mathfrak{R}$ -closed $\mathfrak{A}$ is deducible from $\mathfrak{A}\bigwedge_{\Re}\mathfrak{B}$ . Any $\mathfrak{R}$-closed $\mathfrak{B}$ is deducible

from $\mathfrak{A}$ A B.
$D^{*}R$ . $\mathfrak{A}\vee\Re \mathfrak{B}$ is deducible from $\mathfrak{A}$ as well as from B.
DR. Any R-closed $\mathfrak{A}$ is deducible from $B\vee\Re \mathfrak{E},$

$\mathfrak{B}\rightarrow \mathfrak{A}$ , and $\mathfrak{E}\rightarrow \mathfrak{A}$ .
$E^{*}R$ . $(\exists t)\mathfrak{A}(t)\Re$ is deducible from $\mathfrak{A}(u)$ .
ER. Any R-closed $\mathfrak{B}$ is deducible from $(\exists t)\mathfrak{A}(t)\Re$ and $(t)(\mathfrak{A}(t)\rightarrow \mathfrak{B})$ , assuming

that $t$ does not occur in $\mathfrak{B}$ .
NR. Any R-closed $\mathfrak{A}$ is deducible from A $i$ . $e$ . $(\xi)\mathfrak{R}(\xi)$ .
PR. For any $\mathfrak{R}$ -closed $\mathfrak{A}$ and $\mathfrak{B},$ $\mathfrak{A}$ is deducible from $(\mathfrak{A}\rightarrow \mathfrak{B})\rightarrow \mathfrak{A}$ if $R$ is a

O-ary relation $i$ . $e$ . a proposition.
For any inference rule X, let us denote by $X(\wedge, \wedge^{\circ})$ , by $X(\vee, \vee^{o})$ by $X((\exists)$ ,

$\langle\exists\circ$ )), and by $X()_{\backslash },$
$\wedge^{o}$) the inference rule, $P_{OO}^{ossib1y}$ valid or not valid, obtained

on replacing $\wedge,$ $\vee,$ $(\exists)$ , and A of X by $\wedge,$ $\vee,$ $(\exists)$ , and A, respectively. Then,
$C^{*}R$ , CR, $D^{*}R$, DR, $E^{*}R$, ER, and NR point out that $C^{*}(\wedge, \Lambda),$

$C(\wedge, \bigwedge_{\Re})$ ,

$D^{*}(\vee, \vee)lD(\vee, \vee),$$E^{*}((\exists’), (\exists))$ , $E((\exists), (\exists))$ , and $N()_{\backslash },$
$\bigwedge_{\Re}$) hold for R-closed pro-

positions in any logic stronger than or equivalent to LO, if $\mathfrak{R}$ is an n-ary rela-
tion $(n\geqq 0)$ . The inference rule $P$ holds for $\mathfrak{R}$-closed propositions in any logic
stronger than or equivalent to LO, if $\mathfrak{R}$ is $a$ O-ary relation $i$ . $e$ . a proposition.
Also the inference rules $F,$ $I^{*},$ $I,$ $U^{*},$ $U,$ $c*,$ $C,$ $D^{*},$ $D,$ $E^{*}$ , and $E$ hold for $\mathfrak{R}-$

closed propositions in any logic stronger than or equivalent to LP, and the
inference rule $N$ holds for $\mathfrak{R}$ -closed propositions in any logic stronger than or
equivalent to LJ, though it is not always true that $\mathfrak{A}\vee \mathfrak{B},$ $-\mathfrak{A}$ , and $(\exists t)\mathfrak{A}(t)$

are all $\mathfrak{R}$ -closed for any $\mathfrak{R}$ -closed $\mathfrak{A},$
$\mathfrak{B}$, and $\mathfrak{A}(u)$ for any $u$ whatever. (It is

sure that $\mathfrak{A}\rightarrow \mathfrak{B},$ $\mathfrak{A}\wedge \mathfrak{B}$, and $(t)\mathfrak{A}(t)$ are all $\Re$-closed if $\mathfrak{A},$
$\mathfrak{B}$, and $\mathfrak{A}(u)$ for any

$u$ whatever are $\mathfrak{R}$ -closed. It is sure in any logic stronger than or equivalent
to LQ that $\mathfrak{A}\vee \mathfrak{B}$ and $(\exists t)\mathfrak{A}(t)$ are R-closed if $\mathfrak{A},$

$\mathfrak{B}$, and $\mathfrak{A}(u)$ for whatever $u$

are R-closed. $lt$ is not sure even in $LK$ that $-\mathfrak{A}$ is $\mathfrak{R}$-closed for any R-closed $\mathfrak{A}.$)
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We can now prove the following lemma:
LEMMA 1. In any logic stronger than or equivalent to LP, $\mathfrak{A}\wedge \mathfrak{B}$ is equi-

valent to QI
$\bigwedge_{\Re}\mathfrak{B}$ if $\mathfrak{A}$ and $\mathfrak{B}$ are both $\mathfrak{R}$ -closed, $\mathfrak{A}\vee \mathfrak{B}$ is equivalent to $\mathfrak{A}\bigvee_{\Re}\mathfrak{B}i_{J}$

$\mathfrak{A},$ $\mathfrak{B}$, and $\mathfrak{A}\vee \mathfrak{B}$ are all R-closed, and $(\exists t)\mathfrak{A}(t)$ is equivalent to $(\exists t)\mathfrak{A}(t)\Re$ if $(\exists t)\mathfrak{A}(t)$

is $\mathfrak{R}$ -closed. In any logic stronger than or equivalent to $LJ,$ $-\mathfrak{A}$ is equivalent
to $-\mathfrak{A}\Re if-\mathfrak{A}$ is $\mathfrak{R}$ -closed (or, if we assume that $]_{\backslash }$ is $\mathfrak{R}$-closed). Here we

assume that $\mathfrak{R}$ is an n-ary relation $(n\geqq 0)$ .
PROOF. Let $\mathfrak{R}$ be any n-ary relation $(n\geqq 0)$ . Now, let $L$ be any logic

stronger than or equivalent to LP.
At first, let us assume that Qt and $\mathfrak{B}$ are both R-closed. Then, we can

prove easily in $L$ that $\mathfrak{A}\wedge \mathfrak{B}$ is also Sl-closed. Because $\wedge satisfiesc*$ and $C$

as well as
$\bigwedge_{\Re}$ satisfies $C^{*}(\wedge, \wedge)$ and $C(\wedge, \bigwedge_{\Re})$ for R-closed $\mathfrak{A},$

$\mathfrak{B}$, and $\mathfrak{A}\wedge \mathfrak{B}$ the

proposition $\mathfrak{A}\wedge \mathfrak{B}$ is equivalent to $\mathfrak{A}\bigwedge_{\Re}\mathfrak{B}$ in L.
Next, let us assume that $\mathfrak{A},$

$\mathfrak{B}$ , and $\mathfrak{A}\vee \mathfrak{B}$ are all $\mathfrak{R}$ -closed. Then, $\mathfrak{A}\vee \mathfrak{B}$

is equivalent to $\mathfrak{A}\vee \mathfrak{B}$, because I holds in $L,$ $\vee satisfiesD^{*}$ and $D$ , and $\vee\Re$

satisfies $D^{*}(\vee, \vee)$ and $D(\vee, \vee)\Re$ for R-closed propositions $\mathfrak{A},$
$\mathfrak{B}$, and $\mathfrak{A}\vee$ B.

Lastly, let us assume that $(\exists t)\mathfrak{A}(t)$ and $\mathfrak{A}(u)$ for whatever variable $u$ are $\mathfrak{R}-$

closed. Then, $(\exists t)\mathfrak{A}(t)$ is equivalent to $(\exists t)\mathfrak{A}(t)\Re$ ’ because I holds in $L,$ $(\exists)$ satisfies
$E^{*}$ and $E$ , and $(\exists)$ satisfies $E^{*}((\exists), (\exists- ))$ and $E((\exists), (\exists\Re ))$ for any $\mathfrak{A}(u)$ and $\mathfrak{R}-$

closed B.
Now, let $L$ be any logic stronger than or equivalent to LJ and let us

assume that QI and $-\mathfrak{A}$ are $\mathfrak{R}$ -closed (or, $\mathfrak{A}$ and A are R-closed). Then, -ut
is equivalent to $-\mathfrak{A}n$ because $I^{*}$ and I hold in $L$ , A satisfies $N$ , A satisfies
$N()_{\backslash },$

$)_{\Re^{\backslash }}$) for $\mathfrak{R}$-closed proposition $\mathfrak{A}$ .
In any logic stronger than or equivalent to LQ, $\mathfrak{A}\vee \mathfrak{B}$ is $\mathfrak{R}$ -closed if $\mathfrak{A}$ (or

B) is so. This can be shown in my way of practical description (see [6]) as
follows:

$A)$ $\mathfrak{A}^{\Re}\rightarrow \mathfrak{A}$ .
$\in))$ $(\mathfrak{A}\vee \mathfrak{B})^{\Re}\rightarrow \mathfrak{A}\vee \mathfrak{B}/I^{*}$ .
$\in A)$ $(\mathfrak{A}\vee \mathfrak{B})^{\Re}$ i. e. $(\xi)((\mathfrak{A}\vee \mathfrak{B}\rightarrow \mathfrak{R}(\xi)\rightarrow \mathfrak{R}(\xi))$ .
$\in b))$ $(\mathfrak{A}\vee \mathfrak{B}\rightarrow \mathfrak{A})\rightarrow \mathfrak{A}\vee \mathfrak{B}/I^{*}$ .
$\in bA)$ $\mathfrak{A}\vee \mathfrak{B}\rightarrow \mathfrak{A}$ .
$\in bb))$ $\mathfrak{A}^{\Re}i$ . $e$ . $(\xi)((\mathfrak{A}\rightarrow \mathfrak{R}(\xi))\rightarrow \mathfrak{R}(\xi))/I^{*},$ $U^{*}$ .
$\in bbA)$ $\forall\xi:\mathfrak{A}\rightarrow \mathfrak{R}(\xi)$ . (‘ $\forall$ : ’ stands for ‘

$\forall$ ! ‘ in [6].)
$\in bbb))$ $\mathfrak{A}\vee \mathfrak{B}\rightarrow \mathfrak{R}(\xi)/I^{*}$ .
$\in bbbA)$ $\mathfrak{A}\vee \mathfrak{B}$ .
$\in bbbb)$ ut $/\in bA,$ $\in bbbA$ ; I.
$\in bbb\in)$ $\mathfrak{R}(\xi)/\in bbA,$ $\in bbbb$ ; I.
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$\in bbc)$ $(\mathfrak{A}\vee \mathfrak{B}\rightarrow \mathfrak{R}(\xi))\rightarrow \mathfrak{R}(\xi)/\in A$ ; U.
$\in bb\in)$ $\mathfrak{R}(\xi)/\in bbb,$ $\in bbc$ ; I.
$\in bc)$ QI $/A,$ $\in bb$ ; I.
$\in b\in)$ $\mathfrak{A}\vee \mathfrak{B}/\in bc;D^{*}$ .
$\in\in)$ $\mathfrak{A}$ VB $/\in b$ ; P.
Quite similarly, we can prove that, in any logic stronger than or equivalenf

to LQ, $(\exists t)\mathfrak{A}(t)$ is R-closed if $\mathfrak{A}(u)$ is R-closed for any variable $u$ . (We prove
$((\exists t)\mathfrak{A}(t)\rightarrow \mathfrak{A}(u))\rightarrow(\exists t)\mathfrak{A}(i)$ in place of$(A\vee B\rightarrow A)\rightarrow A\vee B$ in the above proof.)

Naturally, in any logic stronger than or equivalent to LM, $-\mathfrak{A}i$ . $e$ . $\mathfrak{A}\rightarrow,A$

is $\mathfrak{R}$-closed if we assume $A^{\Re}\rightarrow/(\backslash \cdot$

Accordingly, we can prove the following lemma:
LEMMA 2. In any logic stronger than or equivalent to LQ, $\mathfrak{A}\wedge \mathfrak{B}$ and $\mathfrak{A}\vee \mathfrak{B}$

are equivalent to $\mathfrak{A}\wedge \mathfrak{B}$ and $\mathfrak{A}\vee\Re \mathfrak{B}$, respectively, if $\mathfrak{A}$ and $\mathfrak{B}$ are both $\mathfrak{R}$-closed,

and $(\exists t)\mathfrak{A}(t)$ is equivalent to $(\exists t)\mathfrak{A}(t)\Re$ if $\mathfrak{A}(u)$ is R-closed for whatever variable $u$ .
In any logic stronger than or equivalent to $LJ,$ $-\mathfrak{A}$ is equivalent to $-\mathfrak{A}$ if we
assume )$\backslash ^{\Re}\rightarrow/$(. Here we assume that $\mathfrak{R}$ is an n-ary relation $(n\geqq 0)$ .

Before stating theorems on reductions of the logics $LJ$ and $LK$ to the pri-
mitive logic LO, I would like to remark here that $LJ$ and LK can be regarded
as Gentzen’s LJ and LK, respectively. In Gentzen’s formalism, any proof is
described in a tree-form proof-figure having its end-sequent at its bottom. Tree-
form proof-figure can be described more exactly by supplying every sequent
an index of it. The following example would give a global image of our
index system.

Namely, any index is a finite (possibly null) sequence of three kinds of
symbols $A,$ $B$ , and $C$, which is occasionally denoted by a small German letters.



390 K. ONO

If $\mathfrak{b}$ is of the form $ac,$ $a$ is called equal to or less than $\mathfrak{b}$ according as $c$ is a
null sequence or not. The ordering ‘ less than ’ of indices is evidently a par-
tial order.

I will call any non-empty set $T$ of indices a tree if and only if $T$ satisfies
the following conditions:

Tl. For any index of the forms $cA,$ $cB$ , or $cC$ in $T,$ $c$ is a member of $T$

unless $cA,$ $cB$ , or $cC$ is the minimum index of T.
T2. For any $c$ in $T$, either $c$ is a maximal index of $T$ , or $T$ contains $cA$

but no $cB$ nor $cC$, or $T$ contains $cB$ and $cC$ but no $cA$ .
It follows easily from Tl that there is a minimum index (usually a null

sequence) in every tree T.
Any set $\Pi[T]$ of sequents, each supplied by an index of a tree $T$, is called

a (Gentzen-type) proof-figure if and only if $\Pi[T]$ satisfy the following condi-
tions ( $[c]$ denotes the sequent of $II[T]$ which is supplied by the index c):

$\Pi$ Tl. If $c$ is an maximal index of $T$, the sequent $[c]$ is fundamental
(sequent of the form $\mathfrak{M}\leftarrow \mathfrak{M}$).

II T2. $[c]$ is deducible from $[cA]$ if $c$ and $cA$ belong to T. $[c]$ is dedubible
from $[cB]$ and $[cC]$ if $c,$ $cB$ , and $cC$ belong to T.

If $\mathfrak{a}$ is the minimum index of $T$ and $\Pi[T]$ is a proof-figure, $\Pi[T]$ is called
a (Gentze-type) proof of the sequent $[\mathfrak{a}]$ . If $c$ is an index of $T$ of a proof-
figure $\Pi[T]$ , the set of all the sequents $[\mathfrak{d}]$ supplied by indices $\mathfrak{d}$ equal to or
greater than $c$ can be regarded as a proof of $[c]$ . The set of all the indices
$\mathfrak{d}$ of $T$ equal to or greater than $c$ is denoted by $T[c]$ and is occasionally called
a sub-tree of the tree T. Naturally, $T(c)$ is a tree, and the proof of $[c]$ is de-
noted by $\Pi[T(c)]$ .

Now, I will prove the following lemma:
LEMMA 3. Let $T$ be any tree containing two indices $\mathfrak{b}$ and $c$ . Then, one of

$T(\mathfrak{b})$ and $T(c)$ is included in the other if they have a common index.
PROOF. Let $T$ be a tree, and let $\mathfrak{b}$ and $c$ be two indices in it. Let us

further assume that $T(b)$ and $T(c)$ have a common index. Then, we can find
out at least one minimal common index $\mathfrak{d}$ of these two sub-trees of T. If $\mathfrak{d}$

were neither equal to $\mathfrak{b}$ nor equal to $c$ , it would be expressed in the forms $\mathfrak{d}^{\prime}A$ ,
$b^{\prime}B$ , or (

$0^{f}C.$ $\mathfrak{d}^{\prime}$ would be less than $\mathfrak{d}$ and $\mathfrak{d}^{\prime}$ would be a common index of $T(\mathfrak{b})$

and $T(c)$ according to Tl. Hence, $\mathfrak{d}$ must be either equal to $\mathfrak{b}$ or equal to $c$ .
Consequently, either $T(\mathfrak{b})$ is included in $T(c)$ or $T(c)$ is included in $T(b)$ .

I will call any inference of the following two kinds
1) $\mathfrak{a}:\Gamma,$ $(\exists t)\mathfrak{F}(t)-\Delta$ , $\mathfrak{a}A$ : $\Gamma,$ $\mathfrak{F}(u)\leftarrow\Delta$ ,

2) $\mathfrak{a}:\Gamma\vdash-\Delta,$ $(t)\mathfrak{F}(t)$ , $\mathfrak{a}A:\Gamma\leftarrow\Delta,$ $\mathfrak{F}(u)$ .
a u-inference depending on its proper variable $u$ .

The following lemma can be checked without difficulty.
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LEMMA 4. Let $\mathfrak{F}\rightarrow \mathfrak{F}^{*}$ be a transformation of propositions satisfying the
following conditions:

$(\mathfrak{F}\rightarrow \mathfrak{G})^{*}\equiv \mathfrak{F}^{*}\rightarrow \mathfrak{G}^{*}$ , $(-\mathfrak{F})^{*}\equiv-\mathfrak{F}^{*}$ ,

$(\mathfrak{F} A \mathfrak{G})^{*}\equiv \mathfrak{F}^{*}\wedge \mathfrak{G}^{*}$ , $((t)\mathfrak{F})^{*}\equiv(t)\mathfrak{F}^{*}$ ,

$(\mathfrak{F}\vee \mathfrak{G})^{*}\equiv \mathfrak{F}^{*}\vee \mathfrak{G}^{*}$ , $((\exists t)\mathfrak{F})^{*}\equiv(\exists t)\mathfrak{F}^{*}$ .
Then, any inference is transformed into a right inference except for u-inferences
with respect to any variable $u$ .

I will call $T(c)$ a u-tree if and only if the last inference of $\Pi[T(c)]$ is a
u-inference of the type from $[cA]$ to $[c]$ . Any proof-figure $\Pi[T](or$ any
proof $\Pi[T]$ of a sequent) is called normal if and only if every free variable
$u$ having a u-tree does not occur outside of $\Pi[T(c)]$ for any u-tree $T(c)$ of it.
Accordingly, in any normal proof-figure, any free variable $u$ in it has at most
one u-tree.

LEMMA 5. If any sequent is provable in Gentzen’s LJ or $LK$, it has a
normal cut-free proof of it.

PROOF. Let $\Gamma\mapsto\Delta$ be any provable sequent in Gentzen’s $LJ$ or $LK$ . Then,
according to Gentzen’s cut-elimination theorem (see [1]), $\Gamma\leftarrow\Delta$ is provable by
a cut-free proof $\Pi[T]$ having $\Gamma_{I}-\Delta$ as $[\mathfrak{a}]$ for the minimum index $\mathfrak{a}$ of T.
If there is a free variable $u$ which occurs outside of $\Pi[T(c)]$ for a u-tree $T(c)$

of $\Pi[T]$ , we transform the figure as follows.
According to Lemma 3, we can find out for any free occurrence of $u$ in

a sequent $[\mathfrak{b}]$ of $\Pi[T]$ the smallest u-tree $T[c]$ in so far as there is a u-tree
containing $\mathfrak{b}$ . Let us denote the function $\mathfrak{b}$ to $c$ by $c=|\mathfrak{b}|$ . Then, $|\mathfrak{b}|$ is surely
less than $\mathfrak{b}$ , because $u$ does not occur in the sequent $[|\mathfrak{b}|]$ .

Now, we replace every free occurrence of $u$ in the sequent [6] by the vari-
able $u_{|b|}$ in so far as $|\mathfrak{b}|$ is defined, where variables of the form $u_{1b1}$ denote
new variables mutually distinguished by their indices $|\mathfrak{b}|$ . The variable $u$ in
$[\mathfrak{b}]$ remains unchanged if $|\mathfrak{b}|$ is not defined.

Let us denote by $\Pi^{*}[T]$ the transformed figure of $\Pi[T]$ . Then, we assert
that $\Pi^{*}[T]$ is a cut-free proof of $[\mathfrak{a}]$ in which the number of variables $w$

occcurring outside of $\Pi^{*}[T(c)]$ for some w-tree $T(c)$ of $\Pi^{*}[T]$ is less than the
number of such kind of free variables in $\prod[T]$ .

To show this, we remark at first that any fundamental sequent is trans-

formed intoafundamental sequent. Next, [a]is invariant by the transformation.
For, $\mathfrak{a}$ is the minimum index of $T$ , so $|()|$ is not defined. Thirdly, any u-
inference from $[cA]$ to $[c]$ is $t\dot{r}ansformed$ into a right u-inference, because $u$

does not occur in $[c]$ . Lastly, any inference from $[cA]$ to $[c]$ or from $[cB]$

and $[cC]$ to $[c]$ other than u-inferences is transformed into a right inference
of the same type according to Lemma 4, because $[c]$ and $[cA]$ (or, $[c],$ $[cB]$ ,



392 K. ONO

and $[cC]$) undergo the same transformation satisfying the conditions of Lemma
4. For, $|c|=|cA|$ (or, $|c|=|cB|=|cC|$ ) holds in these cases.

Now, I will show that neither $u$ nor variables of the form $u_{|bI}$ occur outside
of $\Pi^{*}[T(c)]$ for any u- or $u_{IbI}$ -tree $T(c)$ . For, there is no u-tree in $\Pi^{*}[T(c)]$ ,
and $u_{|b|}$ occurs only in $\Pi^{*}[T(|\mathfrak{b}|)]$ for the $u_{|b|}$ -tree $T(|b|)$ which does not in-
clude any other $u_{|b|}$ -trees.

Since $II[T]$ is assumed to be cut-free and any inference of the proof-figure
$II^{*}[T]$ is of the same type as the corresponding inference of $\Pi[T]$ , the proof-
figure $\Pi^{*}[T]$ is also cut-free.

Thus, we have a cut-free proof $\Pi^{*}[T]$ of $[\mathfrak{a}]$ in which the number of free
variables $w$ occurring outside of $\Pi^{*}[(c)]$ for a w-tree $T(c)$ of $\Pi^{*}[T]$ is less
than the number of such kind of free variables in $\Pi[T]$ . Hence, after a finite
number of steps of the same kind, we can attain a normal cut-free proof of
$[\mathfrak{a}]$ .

(2) Reductions.

THEOREM 1. Any proposition $\mathfrak{A}$ is provable in LJ if and only if its R-
transform $\mathfrak{A}^{[R]}$ is provable in LO for any n-ary relation symbol $R$ which does
not occur in $\mathfrak{A}(n\geqq 1)$ .

PROOF. Let $\mathfrak{A}$ be any proposition and $R$ be any n-ary relation symbol
which does not occur in $\mathfrak{A}(n\geqq 1)$ . Then, any elementary formula of the form
$R(\xi)$ can be expressed in the form $R(\xi^{\prime}, x)$ (including the case where $\xi^{\prime}$ is a
null sequence).

I will show at first that $\mathfrak{A}$ is provable in LJ if $\mathfrak{A}^{[R]}$ is provable in LO.
Namely, let us assume that $\mathfrak{A}^{[R]}$ is provable in LO. Then, $\mathfrak{A}^{[R]}$ must be also
provable in LJ, because LO is a sub-logic of LJ.

Now, I will call any proposition of the form $(\zeta)(\exists x)(R(\xi^{\prime}, x)\equiv \mathfrak{F}(\zeta))$ an $\mathfrak{A}-$

formula if and only if $\mathfrak{F}(\zeta)$ is a sub-formula of $\mathfrak{A}$ and $x$ does not occur in
$\mathfrak{F}(\zeta)$ . ( $\zeta$ denotes a sequence of distinct variables. We call here any formula
a sub-formula for itself and any formula of the form $\mathfrak{H}(t)$ a sub-formula of
$(x)\mathfrak{H}(x)$ as well as of $(\exists x)\mathfrak{H}(x)$ for any variable $t.$)

It should be remarked here that any proposition of the form $(\zeta)(\mathfrak{F}(\zeta)^{R}\rightarrow \mathfrak{F}(\zeta))$

is deducible from $(\zeta)(\exists x)(R(\xi^{\prime}, x)\equiv \mathfrak{F}(\zeta))$ in LJ. We describe the proof in my
way of practical description (see [6]) in the following:

$A)$ $(\zeta)(\exists x)(R(\xi^{\prime}, x)\equiv \mathfrak{F}(\zeta))$ .
$\in))$ $(\zeta)(\mathfrak{F}(\zeta)^{R}\rightarrow \mathfrak{F}(\zeta))/I^{*},$ $U^{*}$ .
$\in A)$ $\forall\zeta:\mathfrak{F}(\zeta)^{R}i$ . $e$ . $(\mu)((\mathfrak{F}(\zeta)\rightarrow R(\mu))\rightarrow R(\mu))$ .
$\in b)$ $(\exists x)(R(\xi^{\prime}, x)\equiv \mathfrak{F}(\zeta))/A;U$ .
$\in c))$ $(x)((R(\xi^{\prime}, x)\equiv \mathfrak{F}(\zeta))\rightarrow \mathfrak{F}(\zeta))/I^{*},$ $U^{*}$ .
$\in cA)$ $\forall x:R(\xi^{\prime}, x)\equiv \mathfrak{F}(\zeta)$ .



Reduction of logics to the primitive logic 393

$\in cb)$ $(\mathfrak{F}(\zeta)\rightarrow R(\xi^{\prime}, x))\rightarrow R(\xi^{\prime}, x)/\in A$ ; U.
$\in cc)$ $\mathfrak{F}(\zeta)\rightarrow R(\xi^{\prime}, x)/\in cA;C$ , Def. of $\equiv$ .
$\in cd)$ $R(\xi^{\prime}, x)/\in cb,$ $\in cc$ ; I.
$\in ce)$ $R(\xi^{J}, x)\rightarrow \mathfrak{F}(\zeta)/\in cA;C$ , Def. of $\equiv$ .
$\in c\in)$ $\mathfrak{F}(\zeta)/\in cd,$ $\in ce$ ; I.
$\in\in)$ $\mathfrak{F}(\zeta)/\in b,$ $\in c;E$ , Assumption that $x$ does not occur in $\mathfrak{F}(\zeta)$ .
For any sub-formula $\mathfrak{B}$ of $\mathfrak{A}$ , we can deduce $\mathfrak{B}^{[R]}\equiv \mathfrak{B}$ from a certain num-

$ber$ of $\mathfrak{A}$ -formulas. Lemma 1 makes it possible to prove this by structural
induction.

Namely, let us assume at first that $\mathfrak{B}$ is an elementary formula of the form
$\mathfrak{F}(\eta)$ . Then, $\mathfrak{F}(\eta)^{[R]}$ is $\mathfrak{F}(\eta)^{R}$, which is surely deducible from $\mathfrak{F}(\eta)$ . Accordingly,
$\mathfrak{B}^{[R]}\equiv \mathfrak{B}i$ . $e$ . $\mathfrak{F}(\eta)^{[R]}\equiv \mathfrak{F}(\eta)$ is deducible from $(\zeta)(\mathfrak{F}(\zeta)^{R}\rightarrow \mathfrak{F}(\zeta))$ , so also from the

$\mathfrak{A}$-formula $(\zeta)(\exists x)(R(\xi^{\prime}, x)\equiv \mathfrak{F}(\zeta))$ .
Next, let us assume that $\mathfrak{B}$ is a composite proposition of the forms $\mathfrak{E}\rightarrow \mathfrak{D}$,

$\mathfrak{E}$ A $\mathfrak{D}$ , or $\mathfrak{E}\vee \mathfrak{D}$ and that $\mathfrak{E}^{[R]}\equiv \mathfrak{E}$ and $\mathfrak{D}^{[R]}\equiv \mathfrak{D}$ are deducible from the sets $\Gamma$

and $\Delta$ of $\mathfrak{A}$-formulas, respectively. Then, $(\mathfrak{E}\rightarrow \mathfrak{D})^{[R]}\equiv(\mathfrak{E}\rightarrow \mathfrak{D})$ is deducible from
the set $\Gamma U\Delta of\mathfrak{A}$-formulas, because $(\mathfrak{E}\rightarrow \mathfrak{D})^{[R]}$ is $\mathfrak{E}^{[R]}\rightarrow \mathfrak{D}^{[R]}$ . $(\mathfrak{E}\wedge \mathfrak{D})^{[R]}\equiv(\mathfrak{E}\wedge \mathfrak{D})$

is also deducible from the set $\Gamma U\Delta$ of $?I$-formulas, because $(\mathfrak{E} A \mathfrak{D})^{[R]}$ is
$\mathfrak{E}^{[R]}\bigwedge_{R}\mathfrak{D}^{[R]}$ which is equivalent to $\mathfrak{E}^{[R]}\wedge \mathfrak{D}^{[R]}$ for the R-closed propositions $\mathfrak{E}^{[R]}$

and $\mathfrak{D}^{[R]}$ according to Lemma 1. $(\mathfrak{E}\vee \mathfrak{D})^{[R]}\equiv(\mathfrak{E}\vee \mathfrak{D})$ is deducible from the set
of QI-formulas

$\Gamma U\Delta\cup\{(\exists x)(R(\xi^{\prime}, x)\equiv \mathfrak{E}\vee \mathfrak{D})\}$ .
For, $(\mathfrak{E}\vee \mathfrak{D})^{[R]}$ is $\mathfrak{E}^{[R]}\vee \mathfrak{D}^{[R]}R$ which is equivalent to $\mathfrak{E}^{[R]}\vee \mathfrak{D}^{[R]}$ for the R-closed

propositions $\mathfrak{E}^{[R]}$ and $\mathfrak{D}^{[R]}$ according to Lemma 1, since it can be deduced from
the above set of $\mathfrak{A}$ -formulas that $\mathfrak{E}^{[R]}\vee \mathfrak{D}^{[R]}i$ . $e$ . $\mathfrak{E}\vee \mathfrak{D}$ is also R-closed. Any-
way, in all of these cases, $\mathfrak{B}^{[R]}\equiv \mathfrak{B}$ is deducible from a certain numder of $\mathfrak{A}-$

formulas.
If we assume that $\mathfrak{B}$ is $-\mathfrak{E}$ and that $\mathfrak{E}^{[R]}\equiv \mathfrak{E}$ is deducible from the set $\Gamma$

of $\mathfrak{A}$-formulas, then $\mathfrak{B}^{[R]}\equiv \mathfrak{B}$ i. e. $(-\mathfrak{E})^{[R]}\equiv-\mathfrak{E}$ is also deducible from the set
of $\mathfrak{A}$-formulas

$\Gamma\cup\{(\exists x)(R(\xi^{\prime}, x)\equiv-\mathfrak{E})\}$ .
For, $(-\mathfrak{E})^{[R]}$ is $-\mathfrak{E}^{[R]}$ which is equivalent to $-\mathfrak{E}^{[R]}$ , hence also to $-\mathfrak{E}$ , under

$R$

the assumption $\Gamma$ according to Lemma 1, since it can be deduced from the
above set of $\mathfrak{A}$-formulas that $-\mathfrak{E}$ is also R-closed.

Now, let us assume that $\mathfrak{B}$ is aformula of the forms $(t)\mathfrak{E}(t)$ or $(\exists t)\mathfrak{E}(t)$ and
that $\mathfrak{E}(u)^{[R]}\equiv \mathfrak{E}(u)$ is deducible from the set $\Gamma(u)$ of $\mathfrak{A}$-formulas of the form
$(\zeta)(\exists x)(R(\xi^{\prime}, x)\equiv \mathfrak{F}(\zeta, u))$ . $Then,$ $((t)\mathfrak{E}(t))^{[R]}\equiv(t)\mathfrak{E}(t)isdeduciblefrom\Gamma,$ $bacause$

$((t)\mathfrak{E}(t))^{[R]}$ is $(t)(\mathfrak{E}(t))^{[R]}$ . Here, $\Gamma$ denotes the set of $\mathfrak{A}$ -formulas $(\zeta)(t)(\exists x)(R(\xi^{\prime}$ ,
$x)\equiv \mathfrak{F}(\zeta, t))$ for every proposition of the form $(\zeta)(\exists x)(R(\xi^{\prime}, x)\equiv \mathfrak{F}(\zeta, u))$ in $\Gamma(u)$ .



394 K. ONO

$((\exists t)\mathfrak{E}(t))^{[R]}\equiv(\exists t)\mathfrak{E}(t)$ is deducible from the set of $\mathfrak{A}$-formulas
$\Gamma U\{(\exists x)(R(\xi^{\prime}, x)\equiv(\exists t)\mathfrak{E}(t))\}$

according to Lemma 1, since $((\exists t)\mathfrak{E}(t))^{[R]}i$ . $e$ . $(\exists t)\mathfrak{E}(t)^{[R]}R$ is equivalent to $(\exists t)\mathfrak{E}(t)R$

under the assumption $\Gamma$ and $(\exists t)\mathfrak{E}(t)R$ is proved to be equivalent to $(\exists t)\mathfrak{E}(t)$ by

assuming that $(\exists t)\mathfrak{E}(t)$ is R-closed, so by assuming $(\exists x)(R(\xi^{\prime}, x)\equiv(\exists t)\mathfrak{E}(t))$ .
Anyway, also in these cases, $\mathfrak{B}^{[R]}\equiv \mathfrak{B}$ is deducible from a certain number of

$\mathfrak{A}$-formulas.
Thus, we have shown that $\mathfrak{A}^{[R]}\equiv \mathfrak{A}$ is deducible from a set $\Sigma$ of $\mathfrak{A}$ -formulas

in LJ. Because $\mathfrak{A}^{[R]}$ is assumed to be provable in LJ, $\mathfrak{A}$ must be deducible
from $\sum$ in LJ. Hence, according to Lemma 5, there must be a normal cut-
free proof $\Pi[T]$ of the sequent $\sum|-\mathfrak{A}$ .

Let us now list up all the free variables $w$ occurring at least once in a
part of the form $R(\xi^{\prime}, w)$ of propositons in $\Pi[T]$ . Then, for any listed variable
$w$ there is one and only one w-tree $T(c)$ , becasue $\Pi[T]$ is a normal cut-free
proof of $\Sigma\leftarrow \mathfrak{A}$ in which $R$ occurs only in propositions of the form $(\zeta)(\exists x)R(\xi^{\prime}$ ,
$x)\equiv \mathfrak{F}(\zeta))$ for $\mathfrak{F}(\zeta)$ containing no $R$ in $\sum$ . Let us denote the function $w$ to $c$ by
$c=|w|$ . Then, for any listed variable $w,$ $T(|w|)$ contains the index $|w|A$ and
$\Pi[T]$ contains an inference of the form

$|w|$ : $\Gamma,$ $(\exists x)(R(\xi^{\prime}, x)\equiv \mathfrak{F}(\eta))\mapsto\Delta$ ,

$|w|A:\Gamma,$ $ R(\xi^{\prime}, w)\equiv \mathfrak{F}(\eta)\mapsto\Delta$ .
Thus, we can associate to every listed free variable $w$ one and only one
formula $\mathfrak{F}(\eta)$ in the sequent $[|w|]$ . I will denote the function $w$ to $\mathfrak{F}(\eta)$ by
$\mathfrak{F}(\eta)=R[w]$ .

Now, we transform $\Pi[T]$ by the following rule: Delete every proposition
in any sequent of $\Pi[T]$ which has any part of the form $R(\xi^{\prime}, x)$ for a bound
variable $x$ , and replace every part of the form $R(x^{\prime}, w)$ of any other proposition
in $\Pi[T]$ for a free variable $w$ ($w$ is surely listed !) by the proposition $R[w]$ .

For the proof-figure $\Pi[T]$ , for any sequent $[\mathfrak{b}]$ for any sequence $\Gamma$ of pro-
positions, and for any proposition $\mathfrak{G}$ in $\Pi[T]$ , let us denote the figure, the
sequent, the sequence of propositions, and the proposition obtained by the above
replacement from $\Pi[T],$ $[\mathfrak{b}],$

$\Gamma$ and $\mathfrak{G}$ by $\Pi^{*}[T],$ $[\mathfrak{b}]^{*},$
$\Gamma^{*}$ , and $\mathfrak{G}^{*}$ , respectively.

Then, I assert that $\Pi^{*}[T]$ is a right proof-figure in LJ.
To show this, I will remark at first that any sequent $[c]$ in $\Pi[T]$ for a

maximal index $c$ of $T$ has no proposition containing a part of the form $R(\xi^{\prime}, x)$

for a bound variable $x$ . For, $[c]$ must be a fundamental sequent of the form
$M-M$ if $c$ is a maximal index of T. Because $\Pi[T]$ is cut-free, there must
be a proposition among the propositions in $\sum-\mathfrak{A}$ having a sub-formula of
the forms $\mathfrak{M}\rightarrow \mathfrak{R},$ $\mathfrak{R}\rightarrow \mathfrak{M}$ , or –M. However, this is impossible for any $\mathfrak{M}$
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having a part of the form $R(\xi^{\prime}, x)$ for a bound variable $x$ , because $\sum$ consists
of propositions of the form $(\zeta)(\exists x)(R(\xi^{\prime}, x)\equiv \mathfrak{F}(\zeta))$ for $\mathfrak{F}(\zeta)$ with no occurrence
of $R$ and the proposition $\mathfrak{A}$ with no occurrence of $R$ . Accordingly, $[c]^{*}$ is
also a fundamental sequent.

It can be easily checked by making use of Lemma 4 that any inference
of the form [6] from $[\mathfrak{b}A]$ as well as any inference of the form $[\mathfrak{b}]$ from $[bB]$

and $[\mathfrak{b}C]$ except for such $\mathfrak{b}$ satisfying $b=|w|$ for any listed variable $w$ is trans-
formed into a right inference $[\mathfrak{b}]^{*}$ from $[\mathfrak{b}A]^{*}$ or $[\mathfrak{b}]^{*}$ from $[\mathfrak{b}B]^{*}$ and $[\mathfrak{b}C]^{*}$

of the same type.
For any listed free variable $w$ , the inference

$|w|$ : $\Gamma,$ $(\exists x)(R(\xi^{\prime}, x)\equiv \mathfrak{F}(\eta))\mapsto\Delta$ ,

$|w|A:\Gamma,$ $ R(\xi^{\prime}, w)\equiv \mathfrak{F}(\eta)-\Delta$

is transformed into
$|w|$ : $\Gamma^{*}\leftarrow\Delta^{*}$ ,

$|w|A:\Gamma^{*},$ $\mathfrak{F}(\eta)\equiv \mathfrak{F}(\eta)-\Delta^{*}$ ,

which forms a right inference in LJ because $\mathfrak{F}(\eta)\equiv \mathfrak{F}(\eta)$ is provable in it.
Consequently, $\Pi^{*}[T]$ is a right proof-figure of the transformed sequent of

$\Sigma|-\mathfrak{A}$ which is surely $|-\mathfrak{A}$ . Thus, $\leftarrow \mathfrak{A}$ is provable in Gentzen’s $LJ$ .
Conversely, let us assume that $\mathfrak{A}$ is provable in LJ. Then, $\mathfrak{A}$ must be pro-

vable by making use of inference rules $F,$ $I^{*},$ $I,$ $U^{*},$ $U,$ $c*,$ $C,$ $D^{*},$ $D,$ $E^{*},$ $E$ ,

and N. Accordingly, $\mathfrak{A}^{[R]}$ must be provable if it is admitted to use $F,$ $I^{*},$ $I$ ,
$U^{*},$ $U,$ $C^{*}R$, CR, $D^{*}R$ , DR, $E^{*}R$, ER, and NR as inference rules for R-trans-
forms of propositions. On the other hand, any inference of this kind is ad-
mitted in LO for R-closed propositions in LO as has been remarked before,

and the R-transforms of propositions are surely R-closed. Hence, $\mathfrak{A}^{CR1}$ is pro-
vable in LO.

THEOREM 2. Any proposition $\mathfrak{A}$ is provable in $LK$ if and only if $\mathfrak{A}^{[R]}$ is
provable in LO for any proposition symbol (O-ary relation symbol) $R$ which does
not occur in $\mathfrak{A}$ .

PROOF. Let $\mathfrak{A}$ be any proposition and $R$ be any proposition symbol which
does not occur in $\mathfrak{A}$ .

I will prove at first that $\mathfrak{A}$ is provable in $LK$ if $\mathfrak{A}^{[R]}$ is provable in LO.
Because $LK$ can be regarded as a logic stronger than LO, the proposition
$\mathfrak{A}^{[R]}$ is provable in LK. On the other hand, we can prove by virtue of Lemma
2 that $\mathfrak{A}^{[R]}$ and $\mathfrak{A}$ are mutually equivalent if we assume $)_{\backslash ^{[R]}}\equiv R$ . However,

we can easily prove this in $LK$ , so $\mathfrak{A}$ is provable in $LK$ .
Next, let us assume conversely that $\mathfrak{A}$ is provable in $LK$ . Then, $\mathfrak{A}$ must

be provable by making use of inference rules $F,$ $I^{*},$ $I,$ $U^{*},$ $U,$ $C^{*},$ $C,$ $D^{*},$ $D,$ $E^{*}$ ,
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$E,$ $N$ , and P. So, $\mathfrak{A}^{[R]}$ must be provable if it is admitted to use $F,$ $I^{*},$ $I,$ $U^{*}$ ,
$U,$ $C^{*}R$ , CR, $D^{*}R$ , DR, $E^{*}R$ , ER, NR, and PR as inference rules for R-trans-
forms of propositions. On the other hand, any inference of this kind is ad-
mitted for R-closed propositions in LO and the R-transforms of propositions
are surely R-closed. Hence, $\mathfrak{A}^{[R]}$ must be provable in LO.

The positive logics LP and LQ can be regarded as sub-logics of $LJ$ and
$LK$ , respectively. Since LJ and $LK$ can be faithfully interpreted in LO as
has been shown in the preceding theorems, we see that the positive logics LP
and LQ can be also interpreted faithfully in LO.

The minimal logics LM and LN can be regarded as the positive logics
LP and LQ, respectively, when we regard A as a proposition constant and
define $-\mathfrak{F}$ by $\mathfrak{F}\rightarrow)_{\backslash }$ . Hence, we can see also that LM and LN can be faith-
fully interpreted in LO.

(3) Remarks.

REMARK 1. If we restrict ourselves to a formal system having the primi-
tive notions $\{\cdots , A_{i}, \}$ ( $A_{i}$ being $n_{i}$-ary relation symbol, $n_{i}\leqq n$) and unify
these primitive notions into an $(n+1)$-ary single relation $R$ by taking

$(x_{1})\cdots(x_{n})(A_{i}(x_{1}, x_{n_{i}})\equiv R(a_{i}, x_{1}, x_{n_{i}}, x_{n}))$ ,

we can give faithful interpretations of logical systems standing on J-series
logics to a logical system standing on the primitive logic LO. In this case,
any elementary proposition of the original system can be regarded as R-closed
and

$\bigwedge_{R},$ $\vee R$
, $(\exists R)$ , and

$-R$
behave exactly as conjunction, disjunction, existential

quantification, and negation of the intuitionistic logic LJ, respectively.
I have adopted this device in my work [2]. Although it was not neces-

sary to introduce the device for reducing J-series logics to LO, we can make
use of this method to adjust the theory of my work [5] for J-series logics.

If we defiine proposition $\mathfrak{F}$ by $\mathfrak{F}\equiv(\xi)R(\xi)$ and define
$\bigwedge_{\mathfrak{F}},$ $\bigvee_{\mathfrak{F}},$

$(\exists \mathfrak{F})$
, and

$-\mathfrak{F}$

in

LO, we can not regard every elementary propostion of the original system R-
closed. Howener,

$\bigwedge_{\mathfrak{F}},$ $\bigvee_{\mathfrak{F}},$ $(\exists \mathfrak{F})$
, and

$-\mathfrak{F}$

behave exactly as conjunction, disjunction,

existential quantification, and negation of the classical logic $LK$ with respect
to propositions constructed from $\mathfrak{F}$-transforms of elementary propositions of
the original system.

REMARK 2. In my work [3], I have described a way of defining logical
constants

$\bigwedge_{R},$ $\vee R(\exists R)$ , and
$-R$

for any formal system having just one primitive

notion $R$ . In fact, we can deflne these logical constants so that they satisfy
the inference rules of LJ. However, I am not yet certain about that these
logical constants really behave just as the corresponding logical constants of
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$LJ$ .
For example, let us suppose a formal system SA having $\in$ as its sole

$0$

primitive notion and standing on the primitive logic LO. If we define $\in,$ $\wedge$ ,
$\vee,$ $(\exists)$ , and A by

$x\in y\equiv x\in_{0}y$ ,

$\mathfrak{A}$ A $\mathfrak{B}\equiv(x)(y)((\mathfrak{A}\rightarrow(\mathfrak{B}\rightarrow x_{0}\in y))\rightarrow x\in y)0$

$\mathfrak{A}\vee \mathfrak{B}\equiv(x)(y)((\mathfrak{A}\rightarrow x\in y)0\rightarrow((\mathfrak{B}\rightarrow x\in y)0\rightarrow x\in y))0$

$(\exists t)\mathfrak{A}(t)\equiv(x)(y)((t)(\mathfrak{A}(t)\rightarrow x\in y)0\rightarrow x\in_{0}y)$ ,

$)_{\backslash }\equiv(x)(y)x\in y0$

we would have a formal system which behave similarly as the formal system
$SJ$ having $\in$ as its sole primitive notion and standing on the intuitionistic
logic $LJ$ . However, SA might be stronger than $SJ$ . It must be an interesting
problem to decide whether SA is really stronger than $SJ$ or not.

On the other hand, we would have a formal system SB which behave
just as the formal system SK having $\in$ as its sole primitive notion and stand-
ing on the classical logic $LK$ , if we define $\in,$ $\wedge,$ $\vee,$ $(\exists)$ , and A by

$x\in y\equiv((x\in y0\rightarrow(u)(v)u\in 0v)\rightarrow(u)(v)u\in 0v)$ ,

$\mathfrak{A}$ A $\mathfrak{B}\equiv((\mathfrak{A}\rightarrow(\mathfrak{B}\rightarrow(u)(v)u\in 0v))\rightarrow(u)(v)u\in_{0}v)$ ,

ut V $\mathfrak{B}\equiv((\mathfrak{A}\rightarrow(u)(v)u\in_{0}v)\rightarrow \mathfrak{B})$ ,

$(\exists t)^{\backslash })\{(t)\equiv((t)(\mathfrak{A}(t)\rightarrow(u)(v)u\in 0v)\rightarrow(u)(v)u\in 0v)$ ,

$/A_{\backslash }\equiv(u)(v)u\in_{0}v$ .

REMARK 3. In my work [4], I have described a way of unifying a finite
number of primitive notions into a single one, deeming that any formal system
having just one primitive notion has certain superiority according to my
work [3]. However, it is still dubious as mentioned in the previous remark
whether such system can boast to have such superiority in establishing formal
theories standing on the intuitionistic predicate logic LJ. The device itself is
naturally valid.
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