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Recently E. Michael [7] has proved that the topological product of a
normal space with a metric space is not normal in general. As for the prob-
lem to find a necessary and sufficient condition for a topological space $X$ to
possess the property that the product space $X\times Y$ is normal for any metric
space $Y$, K. Morita [13] gave a complete solution by introducing the notion
of P-spaces. Furthermore, in his paper [14] K. Morita has defined the notion
of basic coverings in the product space $X\times Y$ of a normal space $X$ with a
metric space $Y$, and established a necessary and sufficient condition for
$X\times Y$ to be countably paracompact and normal. His theorem reads as fol-
lows.

THEOREM A. The product space $X\times Y$ is countably paracompact and normal
if and only if $X$ is countably paracompact and any basic covering of $X\times Y$

has a special refinement.
On the other hand, H. Tamano [17] has given a result that the product

space $X\times Y$ of a paracompact Hausdorff space $X$ with a metric space $Y$ is
paracompact if and only if $X\times Y$ is countably paracompact. In an unpub-
lished paper [15] K. Morita has pointed out that this result is true although
the proof in [17] is incomplete.

In \S 1 of this paper we shall prove mainly the following two results
which are related to Theorem A.

(1) In the ‘ if ’ part of Theorem $A$ , we can exclude the assumption that
$X$ is countably paracompact (Theorem 1.3).

(2) In case $X$ is countably paracompact, if any basic covering of special
type in $X\times Y$ has a special refinement, then $X\times Y$ is countably paracompact
and normal (Theorem 1.4).

The basic covering of special type in (2) is one obtained from a countable
open covering of $X\times Y$ which contains an open dense subset of $X\times Y$ as its
element.

In \S 2 we investigate the product mappings of two closed mappings.
Concerning the matter, it seems that only few results are known until now.
The following has been obtained by Z. Frolik [2] and K. Morita [10].

(a) The cartesian product of perfect mappings is also perfect.
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(b) The product of two closed mappings is not closed in general.
The main result in \S 2 reads as follows: Let $R$ and $S$ be perfectly

normal $T_{1}$ -spaces, and let $X$ and $Y$ be topological spaces each of which is
not discrete. If $f:R\rightarrow X$ and $g:S\rightarrow Y$ are closed, continuous and onto map-
pings, and if the product mapping $f\times g:R\times S\rightarrow X\times Y$ is also closed, thert
$f^{-1}(x)$ and $g^{-1}(y)$ are both countably compact for every $xeX$ and $y\in Y$ .

In \S 3 we shall be concerned with the product space of paracompact
Hausdorff spaces $X$ and $Y$ . As is well knowr, the product space of para-
compact Hausdorff spaces $X$ and $Y$ is not normal in general. Recently K.
Morita [12] has proved the following theorems.

THEOREM B. Let $X$ be a paracompact normal space which is a countable’
union of locally compact closed subsets, and let $Y$ be a paracompact normal
space. Then the product space $X\times Y$ is paracompact and normal.

THEOREM C. Let $X$ be a metric space or more generally an M-space. Then
in order that the product space $X\times Y$ be normal for any paracompact normal
space $Y$ it is necessary and sufficient that $X$ be a paracompact normal space
which is a countable union of locally compact closed subsets.

He raised an open problem whether Theorem $C$ is true without any
restriction on $X$. For this problem we shall give a negative answer by
showing the following results.

(1) Let $X$ be the image under a closed continuous mapping of a locally
compact and paracompact Hausdorff space, and let $Y$ be a paracompact
Hausdorff space. Then the product space $X\times Y$ is a paracompact Hausdorff
space (Theorem 3.2).

(2) Let $X$ be the image under a closed continuous mapping of a locally
compact and paracompact Hausdorff space. Then $X$ is a paracompact Haus-
dorff space, but is not represented as a countable union of locally compact
closed subspaces in general (cf. Example in \S 3).

The author expresses his hearty thanks to Prof. K. Morita who has been
kind enough to give him various suggestions and advices.

\S 1. On the product space of a normal space with a metric space.

Throughout this section we assume that $X$ is a normal space and $Y$ is a
metric space. Let $\mathfrak{B}=\{\mathfrak{B}_{i}\}$ be an open basis of $Y$ such that (i) $\mathfrak{B}_{i}=\{V_{i\alpha}|\alpha$

$\in\Omega_{i}\}$ is a locally finite open covering of $Y$ for $i=1,2,$ $\cdots$ , and (ii) $\{St(y, \mathfrak{B}_{i})\}$

$i=1,$ 2, } is a basis for neighborhoods at each point $y$ of $Y$ . Let us put

$W(\alpha_{1}, \alpha_{i})=\bigcap_{\nu=1}^{i}V_{\alpha}$. for $\alpha_{1}\in\Omega_{1},$ $\cdots$ , $\alpha_{i}\in\Omega_{i}$ .

According to Morita [14], a covering $\mathfrak{G}$ of the product space $X\times Y$ is said
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to be a basic covering if $\mathfrak{G}$ has the form

$\mathfrak{G}=\{G(\alpha_{1}, \alpha_{i})\times W(\alpha_{1}, \alpha_{i})|\alpha_{\nu}e\Omega_{\nu}, \nu=1, i;i=1,2, \}$

and if $G(\alpha_{1}, \cdots, \alpha_{i})$ are open subsets of $X$ such that

$G(\alpha_{1}, -- , \alpha_{i})\subset G(\alpha_{1}, \alpha_{\iota}, \alpha_{\iota+1})$ for $\alpha_{1}\in\Omega_{1},$ $\cdots$ , $\alpha_{i+1}e\Omega_{i+1}$ .

If, for a basic covering $\mathfrak{G}$ of $X\times Y$ , there exists a family { $F(\alpha_{1}$ , $\cdot$ .. , $\alpha_{i})|$

$\alpha_{\nu}\in\Omega_{\nu},$ $\nu=1$ , $i;i=1,$ 2, } of closed subsets of $X$ such that

$F$( $\alpha_{1},$
$\cdots$ a $i$) $\subset G$ ( $\alpha_{1},$

$\cdots$ a $i$),

(
$Z\{F(\alpha_{1}, \alpha_{i})\times W(\alpha_{1}, \alpha_{i})|\alpha_{\nu}e\Omega_{\nu},$ $11=1,$ $i$ ;

$i=1,2,$ } $=X\times Y$ .
$\mathfrak{G}$ is said to have a special refinement.

The following lemma is due to Morita [14, Theorem 1.2].

LEMMA 1.1. A basic covering of $X\times Y$ has a special refinement if and
only if it is a normal covering.

Let $\mathfrak{M}=\{M_{\lambda}|\lambda e\Lambda\}$ be an open covering of $X\times Y$ . If we put

$M(\alpha_{1}, \alpha_{i})=\cup\{M(\alpha_{1}, \alpha_{i};\lambda)|\lambda e\Lambda\}$

where $M(\alpha_{1}$ , $\cdot$ .. , $\alpha_{i}$ ; $\lambda)$ is the union of all the open subsets $P$ of $X$ such that
$P\times W(\alpha_{1}, \cdots , \alpha_{i})\subset M_{\lambda}$ , then

$\{M(\alpha_{1}, \cdots , \alpha_{i})\times W(\alpha_{1}, \cdots , \alpha_{i})|\alpha_{\nu}e\Omega_{\nu} ; \nu=1, \cdots , i ; i=1, 2, \}$

is a basic covering of $X\times Y$ . We shall denote this basic covering by $\mathfrak{V}(\mathfrak{M})$ .
$B(M)$ has the following property:

$(\#)$ $\bigcup_{i=1}^{\infty}M(\alpha_{1}, \alpha_{i})=X$ $\iota f$ $\bigcap_{i=1}^{\infty}W(\alpha_{1}, \alpha_{r})\neq\phi$

lt should be noted that every basic covering which we consider below satis-
fies the condition $(\#)$ .

The following lemma is essentially due to Morita [14, Theorem 2.2].

LEMMA 1.2. Let $\mathfrak{M}$ be any finite open covering of $X\times Y$ . If $\mathfrak{B}(\mathfrak{R}?)$ has a
special refinement, then $\mathfrak{M}$ is a normal covering of $X\times Y$ .

For any basic covering $\mathfrak{G}=\{G(\alpha_{1}, \cdots \alpha_{i})\times W(\alpha_{1}, \cdots \alpha_{i})|\alpha_{\nu}e\Omega_{\nu},$
$1$) $=1$ ,

$*\cdot$ . , $i;i=1,$ 2, }, let us put

$H_{i}(\mathfrak{G})=U$ { $G(\alpha_{1},$ $\cdots$ , $\alpha_{i})\times W(\alpha_{1},$ $\alpha_{i})|i$ : fixed}.

Since $W(\alpha_{1}, \cdots , \alpha_{i})=U\{W(\alpha_{1}, \cdots , \alpha_{i}, \alpha_{t+1})|\alpha_{i+1}e\Omega_{i+1}\}$ and $G(\alpha_{1}, \alpha_{i})$

$\subset G(\alpha_{1}, \cdots , \alpha_{i}, \alpha_{i+1})$ , we obtain $H_{i}(\mathfrak{G})\subset H_{i+1}(\mathfrak{G})$ for each $i=1,2,$ $\cdots$

Now we shall prove the following
THEOREM 1.3. For the product space $X\times Y$ of a normal space $X$ with a
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metric space $Y$ , the following properties are equivalent.
(1) Any basic covering $\mathfrak{G}$ of $X\times Y$ has a special refinement.
(2) For any basic covering $\mathfrak{G}$ of $X\times Y$ , there exists a countable family of

open subsets $\{O_{i}\}$ of $X\times Y$ such that $\overline{O}_{i}\subset H_{i}(\mathfrak{G}),$ $i=1,2$ , $\cdot$ .. , and $i=1UO_{i}=X\times\infty Y$ .
(3) $X\times Y$ is countably paracompact.
(4) $X\times Y$ is countably paracompact and normal.
In his unpublished paper [15], K. Morita has proved that (3) implies (4).

We shall restate his proof here for completeness.
PROOF. (1) $\rightarrow(2)$ . Let $\mathfrak{G}$ be any basic covering of $X\times Y$ .
Since $\mathfrak{G}$ is normal by Lemma 1.1, there exists a locally finite open cover-

ing $\mathfrak{U}=\{U_{\lambda}|\lambda e\Lambda\}$ such that $\{\overline{U}_{\lambda}|\lambda e\Lambda\}$ is a refinement of $\mathfrak{G}$ . Let $O_{?}$ be
the union of all the elements of $\mathfrak{U}$ whose closure in $X\times Y$ are contained in
some $G(\alpha_{1}$ , $\cdot$ .. , $\alpha_{j})\times W(\alpha_{1}, \cdots , \alpha_{j})e\mathfrak{G}$ , where $j\leqq i$ . Then we have $\overline{O}_{i}\subset H_{i}(\mathfrak{G})$

and $i=1UO_{i}=X\infty\times Y$.
(2) $\rightarrow(3)$ . Let 1I $=\{U_{\eta}\}$ be a countable open covering of $X\times Y$ such that

$U_{i}\subset U_{i+1}(i=1, 2, )$ . Let us put

$G(\alpha_{1}, \cdots , \alpha_{i})=U$ { $P|P\times W(\alpha_{1},$ $\cdots$ , $\alpha_{i})\subset Up,$ $P$ : open}.

Then we can prove that $\mathfrak{B}=\{G(\alpha, \cdots , \alpha_{i})\times W(\alpha_{1}, \cdots , \alpha_{i})|\alpha_{1}e\Omega_{1},$ $\cdots$ , $\alpha_{i}e\Omega_{i}$ ;
$i=1,2,$ } is a basic covering of $X\times Y$ . In fact, it is obvious that
$G(\alpha_{1}, \cdots , \alpha_{i})\subset G(\alpha_{1}, \cdots , \alpha_{i}, \alpha_{i+1})$ for $\alpha_{1}e\Omega_{1},$ $\cdots$ , $\alpha_{i+1}e\Omega_{i+1}$ . Hence we shall
prove that $\mathfrak{B}$ is a covering of $X\times Y$ . Let $(x, y)$ be an arbitrary point of
$X\times Y$. Then $(x, y)$ is contained in some $U_{i}$ . Hence we can find an open set
$P\times W(\alpha_{1}, \alpha_{j})$ of $X\times Y$ such that

$(x, y)eP\times W(\alpha_{1}, \alpha_{j})\subset U_{i}$ .
In case $i\geqq j$ , we have

$(x, y)eG(\alpha_{1}, \alpha_{j}, \alpha_{J+1}, \alpha_{i})\times W(\alpha_{1}, \alpha_{j}, \alpha_{j+1}, \alpha_{i})$

for some $\alpha_{j+1}e\Omega_{j+1},$ $\cdots$ , $\alpha_{i}e\Omega_{i}$ . In case $i<j$ , we have

$(x, y)eG(\alpha_{1}, \alpha_{i})\times W(\alpha_{1}, \alpha_{j})$ ,

because $(x, y)\in U,$ $\subset U_{J}$ . Hence $\mathfrak{B}$ is a basic covering of $X\times Y$. Moreover
from the definition of $\mathfrak{B}$ it follows that $H_{i}(’\backslash s)\subset U_{?}$ . Therefore by (2) there
exists a countable family of open subsets $\{O_{i}\}$ of $X\times Y$ such that $O_{i}\subset\overline{O_{r}}$.

$H_{i}(\mathfrak{B})\subset U_{i}$ and $i=1UO_{?}\infty\cdot=X\times Y$ . Hence $X\times Y$ is countably paracompact by a

theorem of Ishikawa [4].
(3) $\rightarrow(4)$ . We shall first consider the case when the covering dimension

of $Y$ is zero, i. e., $\dim Y=0$ . In this case we can assume that for each $i\mathfrak{B}_{i}$

consists of mutually disjoint open subsets of $Y$. Let $\mathfrak{G}=\{G(\alpha_{1}, \alpha_{i})$
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$\times W$( $\alpha_{1},$ $\cdots$ , a $i$) $|\alpha_{\nu}\in\Omega_{\nu},$ $\nu=1,$ $\cdots$ , $i;i=1,$ 2, } be any basic covering of
$X\times Y$ . Then we have $H_{i}(\mathfrak{G})\subset H_{i+1}(\mathfrak{G})$ and $i=1UH_{t}(\mathfrak{G})\infty=X\times Y$ . Hence by as-
sumption that $X\times Y$ is countably paracompact, there exists a locally finite
open covering $\{U_{t}\}$ of $X\times Y$ such that $\overline{U}_{i}\subset H_{i}(\mathfrak{G}),$ $i=1,2,$ $\cdots$ by Ishikawa [4].

Since $\{W(\alpha_{1}, \cdots , \alpha_{i})|\alpha_{\nu}\in\Omega_{\nu}, \nu=1, \cdots , i\}$ consists of mutually disjoint open
subsets of $Y$, we see that $\overline{U}_{i}\cap[G(\alpha_{1}, \cdot.. \alpha_{t})\times W(\alpha_{1}, \cdot.. , \alpha_{i})]$ is a closed sub-
set of $\overline{U}_{i}$ (and hence a closed subset of $X\times Y$ ). Hence, if we put

$L(\alpha_{1}, \alpha_{i})=U_{i\cap}[G(\alpha_{1}, \alpha_{i})\times W(\alpha_{1’}\alpha_{i})]$ ,

then $\{L(\alpha_{1}, \cdots , \alpha_{i})|\alpha_{\nu}e\Omega_{\nu}, \nu=1, \cdots , i;i=1, 2, \}$ is a locally finite oenp
covering of $X\times Y$ such that

$\overline{L(\alpha_{1},\cdots,\alpha}_{i})\subset G(\alpha_{1}, \alpha_{i})\times W(\alpha_{1}, \alpha_{i})$ .

Hence by the proof of [14, Theorem 1.2] we see that $\mathfrak{G}$ has a special refine-
ment. Therefore by Lemma 1.2 $X\times Y$ is normal.

Now let $Y$ be any (not necessarily zero-dimensional) metric space. Then,

by [13, Theorem 2.1], there exists a metric space $Y_{0}$ of covering dimension
$\leqq 0$ and a closed continuous mapping $g$ from $Y_{0}$ onto $Y$ such that $g^{-1}(y)$ is
compact for any point $y$ of $Y$. Let us put $f(x, y_{Q})=(x, g(y_{0}))$ for $xeX,$ $y_{0}\in Y_{0}$ .
Then $f$ is a closed continuous mapping from $X\times Y_{0}$ onto $X\times Y$ such that
$f^{-1}(x, y)$ is compact for any point $(x, y)eX\times Y$. By assumption $X\times Y$ is
countably paracompact, and hence $X\times Y_{0}$ is countably paracompact. Since
$X\times Y_{0}$ is normal as shown above, $X\times Y$ is also normal.

(4) $\rightarrow(1)$ . This is due to [14, Theorem 2.1].

Thus we have completed the proof of Theorem 1.3.
In the case when $X$ is countably paracompact and normal, we can prove

the following
THEOREM 1.4. For the product space $X\times Y$ of a countably paracompact

normal space $X$ with a metric space $Y$, the following properties are equivalent.
(1) $X\times Y$ is countably paracompact and normal.
(2) For any countable open covering $\mathfrak{U}$ of $X\times Y$ which contains a dense

open subset of $X\times Y$ as its element, the basic covering $\mathfrak{B}(\mathfrak{U})$ has a special
refinement.

(3) For any nowhere-dense closed subset $Q$ and any countable collection
$\{U_{i}\}$ of open subsets of $X\times Y$ such that $Q\subset\bigcup_{t=1}^{\infty}U_{\uparrow}$ , there exists a countable

collection $\{H_{i}\}$ of open subsets of $X\times Y$ such that $H_{i}\subset U_{i},$ $ Q\subset UHi=1\infty$ and each
$H$, is expressed as $\{(x, y)|f_{i}(x, y)>0\}$ by a continuous function $f_{i}$ : $X\times Y\rightarrow I$

$(=[0,1])$ .
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PROOF. (1) $\rightarrow(2)$ . This is obvious by [14, Theorem 2.1].
(2) $\rightarrow(3)$ . Let $Q$ be any nowhere-dense closed subset of $X\times Y$, and let

$\{U_{i}\}$ be a countable collection of open subsets of $X\times Y$ such that $Q\subset\bigcup_{i=1}^{\infty}U_{i}$ .
If we put $\mathfrak{U}=\{X\times Y-Q, U_{i}|i=1, 2, \}$ , then by assumption B(ll) has a
special refinement. Hence by the same argument as in the proof of [14,

Theorem 2.2] $\mathfrak{U}$ is a normal covering of $X\times Y$. Therefore by [11, Theorem
1.2] $\mathfrak{U}$ admits as its refinement a locally finite open covering $\{P_{\lambda}|\lambda e\Lambda\}$ each
set of which is expressed as $\{(x, y)|\varphi_{\lambda}(x, y)>0\}$ by a continuous function

$\varphi_{\lambda}$ : $X\times Y\rightarrow I$. Let $H_{r}\cdot=U\{P_{\lambda}|P_{\lambda}\subset U_{i}\}$ . Then it is obvious that $\{H_{\tau}\cdot\}$ satisfies
the required properties.

(3) $\rightarrow(1)$ . Let $\mathfrak{B}=\{\mathfrak{B}_{i}\}$ be an open basis of $Y$ such that $\mathfrak{B}_{i}=\{V_{i\alpha}|\alpha e\Omega_{\iota}\}$

is a locally finite open covering of $Y$ with $\delta(V_{l\alpha})$ ($=diameter$ of $V_{i\alpha}$) $<1/2^{i}$

for $i=1,2$ , $\cdot$ .. ; then $\{St(y, \mathfrak{B}_{i})|i=1, 2, \}$ is a basis of neighborhoods at each
point $y$ of $Y$. Let us pick up one point $y_{i\alpha}$ from each $V_{i\alpha}$, and let us put
$Y_{i}=\{y_{i\alpha}|\alpha e\Omega_{i}\}$ . Then for each $iY_{i}$ is a closed discrete subspace of $Y$,

and $i^{\infty}U_{=\iota}Y_{i}$ is dense in $Y$. Now let $\mathfrak{M}=\{M_{j}|j=1, 2, \}$ be a countable open

covering of $X\times Y$. Let $G$( $\alpha_{1},$ $\alpha_{i}$ ; j) be the union of all the open subsets

$P$ of $X$ such that $P\times W(\alpha_{1}, \cdots , \alpha_{i})\subset M_{j}$ , where $W(\alpha_{1}, \alpha_{i})=\bigcap_{\nu=1}^{i}V_{\nu\alpha_{\nu}}$ , and
let us put

$G(\alpha_{1}, \alpha_{i})=U_{1}G(\alpha_{1}J=\infty \alpha_{i};j)$ .

Since $X$ is countably paracompact and normal, the product space $X\times Y_{k}$ is
obviously countably paracompact and normal. Hence a basic covering
$\{[G(\alpha_{1}, \alpha_{i})\times W(\alpha_{1}, ’ \alpha_{?}\cdot)]\cap[X\times Y_{h}]|\alpha_{1}e\Omega_{1}, \alpha_{i}e\Omega_{i} ; i=1, 2, \}$ of
$X\times Y_{k}$ has a special refinement. Therefore we can find a family $\{H_{k}(\alpha_{1}$ ,
... , $\alpha_{i}$) $|\alpha_{\nu}e\Omega_{\nu},$ $\nu=1$ , $\cdot$ .. $i;i=1,$ 2, } of open $F_{\sigma}$-subsets of $X$ such that
$H_{k}(\alpha_{1}, \cdots , \alpha_{i})\subset G(\alpha_{1}, \cdots , \alpha_{i})$ and $U\{H_{k}(\alpha_{1}, \cdots \alpha_{t})\times W(\alpha_{1}, \cdots , \alpha_{i})|\alpha_{\nu}e\Omega_{\nu}$ ,

$\nu=1,$ $\cdots$ , $i;i=1,$ 2, } $\supset X\times Y_{k}$ . Let us put

$H(\alpha_{1}, \alpha_{\iota})=UH_{k}(\alpha_{1}k=1\infty \alpha_{i})$ .

Then $H(\alpha_{1}$ , $\cdot$ .. , $\alpha_{i})$ are open $F_{\sigma}$-subsets of $X$, and we see that $H(\alpha_{1}$ , $\cdot$ .. , $\alpha_{i})$

$\subset G$ $(\alpha_{1}, \cdots , \alpha_{i})$ and $U\{H(\alpha_{1}, \cdots , \alpha_{i})\times W(\alpha_{1}, \cdots , \alpha_{i})|\alpha_{\nu}e\Omega_{\nu},$ $\nu=1,$ $\cdots$ , $i$ ;

$i=1,2,$ } $\supset X\times k=1UY_{k}\infty$ . Since $H(\alpha_{1}, , \alpha_{i})$ are open $F_{\sigma}$-subspaces of $X$ , they

are countably paracompact and normal. Hence for each $H(\alpha_{1}, \cdots , \alpha_{i})$ there
exists a countable family $\{H(\alpha_{1}, \cdot.. , \alpha_{i};j)|j=1, 2, \}$ of open $F_{\sigma}$-subsets of
$X$ such that

$H(\alpha_{1}, \cdots \alpha_{l})=U\{H(\alpha_{1}, \alpha_{t};j)|j=1,2, \}$ ,
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$H(\alpha_{1}, ’\alpha_{2}\cdot;j)\subset G(\alpha_{1}, \alpha_{2}\cdot;j)$ .
If we put

$L_{f}=U$ { $H$( $\alpha_{1},$ $\alpha_{i}$ ; $j)\times W(\alpha_{1},$ $\cdots$ , a $i)|\alpha_{\nu}\in\Omega_{\nu}$ . $\nu=1,$ $i;i=1,$ 2, },

$Q=X\times Y-\bigcup_{j=1}^{\infty}L,$ ,

then we see that each $L_{j}$ is contained in $M_{j}$ , and that $L_{j}$ is expressed as
$\{(x, y)|f_{j}(x, y)>0\}$ with a continuous function $f_{j}$ ; $X\times Y\rightarrow I$, and moreover $Q$

is a nowhere-dense subset of $X\times Y$. Hence by assumption there exists a

countable collection $\{H_{j}\}$ of open subsets of $X\times Y$ such that $H_{j}\subset M_{j},$
$UH_{j}\supset Q\infty$

$j=1$

and each $H_{j}$ is expressed as $\{(x, y)|g_{j}(x, y)>0\}$ by a continuous function
$g_{j}$ : $X\times Y\rightarrow I$. Then $\{L_{j}UH_{j}|j=1, 2, \}$ is an open refinement of SWZ each
set of which is expressed as $\{(x, y)|\varphi(x, y)>0\}$ by a continuous function
$\varphi:X\times Y\rightarrow I$. Hence $\mathfrak{M}$ is a normal covering of $X\times Y$ (cf. [13, Theorem 1.2]).

Therefore $X\times Y$ is countably paracompact and normal. This completes the
proof of Theorem 1.4.

Now we shall introduce a notion of countable paracompactness in the
weak sense. A topological space $X$ is said to be countably paracompact in
the weak sense if, for every countable open covering $\mathfrak{U}=\{U_{i}|i=1, 2, \}$ of
$X$, there exists a countable family $\{H. |i=1, 2, \}$ of open subsets of $X$ such

that (i) each $H_{i}$ is contained in some $U_{j}e\mathfrak{U}$ , (ii) $ H=UH_{t}i=1\infty$ is dense in $X$,

and (iii) $\{H_{\iota}|i=1, 2, \}$ is locally finite in $H$.
Concerning the product space of a countably paracompact normal space

with a metric space, we can prove the following theorem by the same argu-
ment as in the proof of Theorem 1.4.

THEOREM 1.5. The product space $X\times Y$ of a countably paracompact normal
space $X$ with a metric space $Y$ is countably paracompact in the weak sense.

We don’t know whether a normal space is countably paracompact in the
weak sense or not. But, as an example of C. H. Dowker [1, p. 221] shows,
a normal space which is countably paracompact in the vreak sense is not
countably paracompact in general.

\S 2. Closed mappings and the product spaces.

Let $R,$ $S,$ $X$ and $Y$ be topological spaces, and let $f$ : $R\rightarrow X$ and $g:S\rightarrow Y$

be closed, continuous and onto mappings. If we put

$h(r, s)=(f(r), g(s))$ for $(r, s)\in R\times S$ ,

then the product mapping $h:R\times S\rightarrow X\times Y$ is not necessarily closed, as
Morita [10] shows. Hence it is desirable to find a necessary and sufficient
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condition for the product mapping $h$ to be closed.
THEOREM 2.1. The product mapping $h$ of closed, continuous and onto map $\cdot$

pings $f$ : $R\rightarrow X$ and $g:S\rightarrow Y$ is closed if and only if, for any point $(x, y)$ of
$X\times Y$ and any open subset $U$ of $R\times S$ such that $f^{-1}(x)\times g^{-1}(y)\subset U$, there
exists open subsets $G\subset R$ and $H\subset S$ such that

$f^{-1}(x)\times g^{-1}(y)\subset G\times H\subset U$ .

To prove Theorem 2.1, we shall use the following lemma (cf. [5, Chap..
3, Theorem 12]).

LEMMA 2.2. A continuous and onto mapping $f:X\rightarrow Y$ is closed if and only
if, for any point $y$ of $Y$ and any open subset $U$ of $X$ such that $f^{-1}(y)\subset U$.
there exists an open neighborhood $V(y)$ of $y$ such that $f^{-1}(V(y))\subset U$.

PROOF OF THEOREM 2.1. Since the ’ only-if’ part is an immediate con-
sequence of lemma 2.2, we shall prove only the ‘ if ‘ part. For this purpose.
it is sufficient to prove that $h(F)$ is closed in $X\times Y$ for any closed subset
$F$ of $R\times S$ . Let $(x_{Q}, y_{0})\in\overline{h(F})$ . Then we can show that

$[f^{-1}(x_{0})\times g^{-1}(y_{0})]\cap F\neq\phi$ ,

which implies that $(x_{0}, y_{0})eh(F)$ . If otherwise, there exist open $subset_{s}$

$G\subset R$ and $H\subset S$ such that

$f^{-1}(x_{0})\times g^{-1}(y_{0})\subset G\times H\subset R\times S-F$

by assumption. Hence we have

$[\{X-f(R-G)\}\times\{Y-g(S-H)\}]\cap h(F)=\phi$ .

Since $\int$ and $g$ are closed mappings, $X-f(R-G)$ and $Y-g(S-H)$ are open
subsets of $R$ and $S$ respectively. From $x_{0}\in X-f(R-G)$ and $y_{0}\in l^{\Gamma}-g(S-H)$ ,

it follows that $(x_{0}, y_{0})\not\in\overline{h(F)}$ , which is a contradiction. This completes the
proof of Theorem 2.1.

Now we shall define a regular point of $X\times Y$ with respect to a product
mapping $h=f\times g:R\times S\rightarrow X\times Y$ of closed, continuous and onto mappings
$f:R\rightarrow X$ and $g:S\rightarrow Y$ . If a point $(x, y)$ of $X\times Y$ satisfies the following con-
dition $(*)$ , we call $(x, y)$ a regular point of $X\times Y$ with respect to a product
mapping $h=f\times g$ :

$(*)$ For any open subset $U$ of $R\times S$ such that $f^{-1}(x)\times g^{-1}(y)\subset U$, there
exist open subsets $G\subset R$ and $H\subset S$ such that

$\Gamma^{-1}(x)\times g^{-]}(y)\subset G\times H\subset U$ .

If $(x, y)$ is not a regular point of $X\times Y$ with respect to a product mapping
$f\times g$ , we call $(x, y)$ an irregular point of $X\times Y$ with respect to $f\times g$ .

By our terminology, we can restate Theorem 2.1 as follows: The product
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mapping $h=f\times g$ of closed, continuous and onto mappings $f$ and $g$ is closed
if and only if every point $(x, y)$ of $X\times Y$ is regular with respect to $f\times g$.

A closed, continuous and onto mapping $f:R\rightarrow X$ is said to be perfect if
$J^{-1}(x)$ is compact for every $xeX$. As is well known, the product mapping
$f\times g$ of perfect mappings $f:R\rightarrow X$ and $g:S\rightarrow Y$ is closed (cf. Morita [10]),

and moreover the cartesian product of perfect mappings is also closed (cf.

Frolik [2]). The former follows immediately from Theorem 2.1.
For two closed, continuous and onto mappings $f:R\rightarrow X$ and $g:S\rightarrow Y$ , we

shall investigate a problem whether, if the product mapping $f\times g$ is closed,
$f$ and $g$ are both perfect or not. Of course, if $X$ and $Y$ are discrete spaces,
then the answer to this problem is obviously negative. Hence we assume
that $X$ and $Y$ are not discrete spaces. In this case we can show in the fol-
lowing example that the answer is also negative.

EXAMPLE. Let $R$ be the space of real numbers with the usual topology,
$X$ the quotient space obtained from $R$ by contracting the set $I_{0}$ of integers
to one point $y_{0},$

$S$ the space $\{\alpha|\alpha\leqq\Omega\}$ of ordinals in which the open sets
are the null set $\phi$ , the whole space $S,$ $\{\alpha\}$ for all $\alpha(<\Omega)$ , and $\{\alpha|\gamma<\alpha\leqq\Omega\}$

for all $\gamma(<\Omega)$ , where $\Omega$ is the first uncountable ordinal.
The space $S$ defined above is a paracompact Hausdorff space, because $S$

is regular and satisfies the Lindelof property. Let $f$ be the natural mapping
of $R$ onto $X$, and $i$ the identity mapping of $S$ onto itself. Then we can
prove that the product mapping $h=f\times i$ is closed, while $f$ is closed and con-
tinuous, but not perfect. $ln$ fact, let $(x, \alpha)$ be any point of $X\times S$ . In case
$(x, \alpha)\neq(y_{0}, \Omega),$ $(x, \alpha)$ is obviously regular with respect to $f\times i$ . In case
$(x, \alpha)=(y_{0}, \Omega)$ , we see that $h^{-1}(x, \alpha)=f^{-1}(x)\times\iota^{-1}(\alpha)=I_{0}\times\{\Omega\}$ . Let $U$ be any
open subset of $R\times S$ such that $I_{0}\times\{\Omega\}\subset U$. Then for each integer $n$ we
can find an ordinal $\gamma(n)$ such that $\gamma(n)<\Omega$ and $V_{n}\times\{\alpha|\gamma(n)<\alpha\}\subset U$, where
$V_{n}$ is a neighborhood of $n$ in $R$ . If we put $\gamma_{0}=\sup_{n}\gamma(n)$ , then we have $\gamma_{0}<\Omega$

and $(U_{n}V_{n})\times\{\alpha|\gamma_{0}<\alpha\}\subset U$. This shows that $(y_{0}, \Omega)$ is regular with respect

to $h=f\times i$ .
In case $R$ and $S$ are perfectly normal spaces, we have the following
THEOREM 2.3. Let $R$ and $S$ be perfectly normal $T_{1}$ -spaces, and let $X$ and

$Y$ be topological spaces each of which is not discrete. If $f:R\rightarrow X$ and $g:S\rightarrow Y$

are closed, continuous and onto mappings, and if the product mapping $f\times g$ is
closed, then $f^{-1}(x)$ and $g^{-1}(y)$ are both countably compact for every $xeX$ and
$y\in Y$ .

PROOF. By assumption $X$ and $Y$ are necessarily $T_{1}$ -spaces. Now suppose
that $f^{-1}(x_{0})$ is not countably compact for some point $x_{0}eX$. Then there
exists an infinite sequence $\{r_{i}\}$ of points of $f^{-1}(x_{0})$ which is discrete and
closed in $R$ . For each $i$ , we can find an open neighborhcod $N(r_{i})$ such that
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$ N(r_{i})\cap N(r_{j})=\phi$ for $i\neq j$ . Let $y_{0}$ be a point of $Y$ which is not isolated.
Then it is obvious that $g^{-1}(y_{0})$ is closed but not open in $Y$ . Since $Y$ is per-

fectly normal, $g^{-1}(y_{0})$ is a $G_{\delta}$-set of $Y$, and hence we can put $g^{-1}(y_{0})=\bigcap_{n=1}^{\infty}G_{n}$ ,

where $G_{n}$ are open in $Y$ .
Now let us put

$W=[R\times S-\bigcup_{1=1}^{\infty}(r_{i}\times S)]U[\bigcup_{i-1}^{\infty}(N(r_{i})\times G_{i})]$ .

Then we have $f^{-1}(x_{0})\times g^{-1}(y_{0})\subset W$ . But we can not find any open subset
$P\times Q$ of $R\times S$ such that

$f^{-1}(x_{0})\times g^{-1}(y_{0})\subset P\times Q\subset W$

In fact, if otherwise, then for each $i$ we have

$ r_{j}\times g^{-1}(yo_{J=1})\subset r_{i}\times Q\subset U(N(r_{j})\times G_{J})\infty$ .

From $r_{i}\in\in N(r_{j})$ for $j\neq i$, it follows that $Q\subset G_{l}$ . Hence we have $g^{-1}(y_{0^{1}}$

$\subset Q\subset\bigcap_{i\Rightarrow 1}^{\infty}G_{i}$ , which shows that $Q=g^{-1}(y_{(I})$ . Th-s contradicts the fact that

$g^{-1}(y_{0})$ is not open in $Y$ . Hence $(x_{0}, y_{0})$ is an irregular point of $R\times S$ with
respect to $f\times g$. This is contradictory to the fact that $f\times g$ is closed. There-
fore $f^{-1}(x)$ is countably compact for every $xeX$. Similarly we can prove
that $g^{-1}(y)$ is also countably compact for every $yeY$ . This completes the
proof of Theorem 2.3.

COROLLARY 2.4. Let $R$ and $S$ be metric spaces, and let $X$ and $Y$ be $top_{0^{\sim}}$

logical spaces each of which is not discrete. In case $f:R\rightarrow X$ and $g:S\rightarrow Y$ are
closed, continuous and onto mappings, the product mapping $f\times g$ is closed if
and only if $f$ and $g$ are both $p^{\gamma}rfect$.

If $Y$ is a single point set, while $X$ contains at least two points, then we
can prove the following

THEOREM 2.5. Let $R$ and $X$ be topological spaces, $S$ a regular $T_{1}$ -space, $Y$

a single point set, $f$ a closed continuous mapping of $R$ onto $X,$ $g$ a mapping of
$S$ to Y. If there exists a point $x_{0}$ of $X$ such that $f^{-1}(x_{0})$ is a $G_{\delta}$-set but not
open in $R$ , and if the product mapping $f\times g$ is closed, then $S$ is countably
compact.

Since this can be proved by the same argument as in the proof of Theo-
rem 2.4, we omit the proof.

In Theorem 2.5, if $X=R$ and $f$ is an identity mapping, then the product
mapping $f\times g$ is identical with the projection of $R\times S$ onto $R$ . But in this
case, Hanai [3] has proved the following result: Let $X$ be a topological
space such that there exists an $F_{\sigma}$-set which is not closed, and let $Y$ be a
topological space. If the projection of the product space $X\times Y$ onto $X$ is
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closed, then $Y1S$ countably compact.

\S 3. On the product of paracompact spaces.

According $\iota O$ Morita [11], for any infinite cardinal number $m$ , a topo-
logical space $X$ is said to be m-paracompact if any open covering of $X$ with
power $\leqq m$ ( $i$ . $e$ . consisting of at most $m$ sets) admits a locally finite open
covering as its refinement.

Now we shall prove the following
THEOREM 3.1. Let $f:R\rightarrow X$ and $g:S\rightarrow Y$ be closed continuous mappings

of paracompact Hausdorff spaces $R$ and $S$ onto topological spaces $X$ and $]^{\nearrow}$

respectively, and let $K$ be the set of irregular points of $X\times Y$ with respect to
the product mapping $h=fXg$ . If the projection $x/=\{x_{\lambda}|\lambda\in\Lambda\}$ of $K$ to $X$ is
closed and discrete in $X$, then the following are valid.

(a) If $R\times S$ is paracompact, so is also $X\times Y$ .
(b) If $R\times S$ is normal, so is also $X\times Y$ .
(c) If $R\times S$ is m-paracompact and normal so is also $X\times Y$ .
PROOF. (a) Since $X$ and $Y$ are the images under closed continuous map-

pings of paracompact Hausdorff spaces $R$ and $S$ respectively, they are also
paracompact Hausdorff spaces. Hence for a closed discrete subset $X^{\prime}$ of $X$,

there is a locally finite collection $\{N_{\lambda}|\lambda\in\Lambda\}$ of open subsets of $X$ such that
$x_{\lambda}eN_{\lambda}$ and $\overline{N}_{\lambda}\cap\overline{N}_{/J}=\phi(\lambda\neq\mu)$ (cf. [8, Theorem 1.3 and Lemma in \S 3]). Let
$\mathfrak{M}=\{M_{\alpha}|\alpha e\Omega\}$ be any open covering of $X\times Y$ . For each point $(x_{\lambda}, y)$ there
exists an open neighborhood $U_{y}(x_{\lambda})\times V(y)$ of $(x_{\lambda}, y)$ such that $U_{y}(x_{\lambda})\times V(y)$

is contained in some $M_{er}$ of $\mathfrak{M}$ and $U_{y}(x_{\lambda})\subset N_{\lambda}$ . Since $Y$ is a paracompact
Hausdorff space, an open covering $\{V(y)|yeY\}$ of $Y$ has a locally finite
partition of unity subordinated to it, $i$ . $e.$ , a family $\{g_{\sigma}^{\lambda}|\sigma e\Gamma\}$ of real valued
continuous functions on $Y$ such that $0\leqq g_{\sigma}^{\lambda}(y)\leqq 1,$

$\sum_{\sigma}g_{\sigma}^{\lambda}(y)=1,$
$ G_{\sigma}^{\lambda}=\{y|g_{\sigma}^{\lambda}(y)>0\}\subset$

some $V(y)$ , and $\{G_{\sigma}^{\lambda}\}$ are locally finite in $Y$ . Hence for a fixed $\lambda$ we can find
a family $\{U_{\sigma}(x_{\lambda})\times G_{\sigma}^{\lambda}|\sigma e\Gamma\}$ of open subsets of $X\times Y$ such that $ U_{\sigma}(x_{\lambda})\times G_{\sigma}^{\lambda}\subset$

some $U_{y}(x_{\lambda})\times V(y)$ and $U_{\sigma}(x_{\lambda})=\{x|f_{\sigma}^{\lambda}(x)>0\}$ , where $f_{\sigma}^{\lambda}$ : $X\rightarrow I$ are continuous
functions such that $f_{\sigma}^{\lambda}(x_{\lambda})=1$ .

Now let us put
$F_{\lambda}(x, y)=\Sigma f_{\sigma}^{\lambda}(x)g_{\sigma}^{\lambda}(y)$ .

$F(x, y)=\sum_{\lambda}F_{\lambda}(x, y)$ .

Then it is easily verified that $F_{\lambda}$ : $X\times Y\rightarrow I$ and $F:X\times Y\rightarrow I$ are continuous
functions, and moreover

$\bigcup_{\sigma}[U_{\sigma}(x_{\lambda})\times G_{\sigma}^{\lambda}]=\{(x, y)|F_{\lambda}(x, y)>0\}$ .



Product spaces and product mappings 177

$F_{\lambda}(x_{\lambda}, y)=1$ for every $ye$ Y.
If we put

$P_{\lambda}=\{(x, y)|F_{\lambda}(x, y)>0\}$ ,

$Q_{\lambda}^{(1)}=\{(x, y)|F_{\lambda}(x, y)\geqq 1/2\}$ ,

$Q_{\lambda}^{(2)}=\{(x, y)|F_{\lambda}(x, y)\geqq 1/3\}$ ,

$A=X\times Y-\bigcup_{\lambda}Q_{\lambda\prime}^{(1)}$

then we have
$Q_{\lambda}^{(1)}\subset Q_{\lambda}^{(2)}\subset P_{\lambda}=U_{\sigma}[U_{\sigma}(x_{\lambda})\times G_{\sigma}^{\lambda}]$ ,

$UQ_{\lambda}^{(1)}=\{(x, y)|F(x, y)\geqq 1/2\}\lambda$ ’

$UQ_{\lambda}^{(2)}=\{(x, y)|F(x, y)\geqq 1/3\}\lambda$ ’

$A=\{(x, y)|F(x, y)<1/2\}$ .

From $h^{-1}(A)=\{(r, s)|F(h(r, s))<1/2\}$ , it follows that $h^{-1}(A)$ is an open $F_{\sigma^{-}}$

subset of $R\times S$ . Hence $h^{-1}(A)$ is paracompact as a subspace of $R\times S$ .
Furthermore we can prove that the partial mapping $h^{*}=h|h^{-1}(A)$ is closed.
In fact, let $F$ be a closed subset of $R\times S$ . Then it is easily verified that
$\overline{h(F})-h(F)$ contains only irregular points of $X\times Y$ with respect to $h$ , that is,
$\overline{h(F)}-h(F)\subset K$. Since $ K_{\cap}A=\phi$ , we have

$h(h^{-1}(A)\cap F)=A\cap h(F)=A\cap\overline{h(F})$ ,

which shows that $A\cap h(F)$ is closed in $A$ . Therefore $A$ is paracompact as a
subspace of $X\times Y$ , because it is the image of a paracompact space $h^{-1}(A)$

under a closed continuous mapping $h^{*}:$ $h^{-1}(A)\rightarrow A$ . Hence an open covering
$\mathfrak{U}=\{A\cap M_{\alpha}|\alpha e\Omega\}$ of $A$ admits a locally finite open refinement $\{G_{\alpha}|\alpha e\Omega\}$

in $A$ . Let us put $L_{\alpha}=G_{\alpha}-U_{\lambda}Q_{\lambda}^{(2)}$ for every $\alpha e\Omega$ . Then $\{L_{\alpha}|\alpha e\Omega\}$ is a

family of open subsets of $X\times Y$ which is locally finite in $X\times Y$ . If we put

$\mathfrak{R}=\{L_{\alpha}, U_{\sigma}(x_{\lambda})\times G_{\sigma}^{\lambda}|\alpha e\Omega, \sigma e\Gamma, \lambda\in\Lambda\}$ ,

then $\mathfrak{R}$ is obviously a locally finite open refinement of M. Hence $X\times Y$ is
paracompact.

(b) Proceeding by the same procedure for a finite open covering
$\mathfrak{M}=\{M_{j}|j=1,2, \cdot , k\}$ , we obtain an open $F_{\sigma}$-subset $h^{-1}(A)$ of $R\times S$ . Since
$R\times S$ is normal, $h^{-1}(A)$ is also normal as a subspace of $R\times S$ . Hence $A$ is
a normal subspace of $X\times Y$ , because it is the image under a closed con-
tinuous mapping $h^{*}(=h|h^{-1}(A))$ of $h^{-1}(A)$ . Therefore an open covering
$\downarrow\lambda=\{A\cap M_{j}|j=1,2, k\}$ of $A$ admits a locally finite open refinement
$\{G_{\alpha}|\alpha\in\Omega\}$ in $A$ such that each $G_{\alpha}$ is expressed as $\{(x, y)|\varphi_{\alpha}(x, y)>0\}$ with
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a continuous function $\varphi_{\alpha}$ : $A\rightarrow I$. Let us put $L_{a}=G_{\alpha}-\bigcup_{\lambda}Q_{\lambda}^{(2)}$ . Then $\{L_{\alpha}|\alpha e\Omega\}$

is a locally finite collection of open subsets of $X\times Y$ each of which is ex-
pressed as $\{(x, y)|\psi_{\alpha}(x, y)>0\}$ with a continuous function $\psi_{\alpha}$ : $X\times Y\rightarrow I$. If
we put

En $=\{L_{\alpha}, U_{\sigma}(x_{\lambda})\times G_{\sigma}^{\lambda}|\alpha e\Omega, \sigma\in\Gamma, \lambda e\Lambda\}$ ,

then $\mathfrak{R}$ is a normal open covering which refines $\mathfrak{M}$ by [13, Theorem 1.2].

Hence $X\times Y$ is normal.
(c) This can be proved by the same argument as in the proof of (b) by

using the following facts.
(i) An open $F_{\sigma}$-subset of an m-paracompact normal space is m-paracom-

pact and normal as a subspace (cf. [11, Theorem 1.5]).
(ii) The image under a closed continuous mapping of an m-paracompact

normal space is also m-paracompact and normal (cf. [11, Theorem 1.4]).
$Thu_{3}$ we have completed the proof of Theorem 3.1.
The problem whether Theorem 3.1 is true without any restriction on

irregular points remains open.
As an application of Theorem 3.1, we can prove the following
THEOREM 3.2. Let $X$ be the image under a closed continuous mapping $f$ of

a locally compact and paracompact Hausdorff space $R$ and let $Y$ be a para-
compact Hausdorff space. Then the product space $X\times Y$ is paracompact.

Since the product space $R\times Y$ of a locally compact and paracompact
Hausdorff space $R$ with a paracompact Hausdorff space $Y$ is paracompact (cf.

Morita [12]), Theorem 3.2 is a direct consequence of Theorem 3.1 and the
following lemma which is due to Morita [9].

LEMMA 3.3. Let $f$ be a closed continuous mapping of a locally compact
and paracompact Hausdorff space $R$ onto another topological space X. If we
denote by $X^{\prime}$ the set of all points $x$ of $X$ such that $f^{-1}(x)$ is not compact, then
$X^{\prime}$ is a closed discrete subset of $X$.

NOTE. In Theorem 3.2, if we denote by $i$ the identity mapping of $Y$

onto itself, then the product mapping $f\times i$ is not closed in general. This is
shown by an example of Morita [10].

In case $X$ is the image under a closed continuous mapping $f$ of a para-
compact Hausdorff space $R$ which is the countable union of locally compact
closed subsets, the problem whether Theorem 3.2 is true remains open. Quite
recently M. Tsuda [18] has proved the following result: Let $X$ be the image
under a closed continuous mapping of a paracompact and perfectly normal
Hausdorff space which is the countable union of locally compact closed sub-
spaces. Then the product space $X\times Y$ is paracompact and normal for any
paracompact and normal space $Y$ .

Now we are in a position to show by an example that the image under
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a closed continuous mapping of a locally compact and paracompact Hausdorff
space is not represented as the countable union of locally compact closed
subspaces in general, while it is a paracompact Hausdorff space.

EXAMPLE. Let $\Omega$ be an index set such that $|\Omega|>\aleph_{0}$ , where $|\Omega|$ is the
cardinal number of $\Omega$ . For each index $\alpha e\Omega$ , let $A_{\alpha}$ be a locally compact
Hausdorff space which does not satisfy the Lindelof property (for example,
let $A_{\alpha}$ be a discrete space whose elements are uncountable), and let $C_{\alpha}$ be
the one-point compactification of $A_{\alpha}$ such that $C_{\alpha}=A_{\alpha}Up_{\alpha}$ . Now let $X$ be
the disjoint union of $C_{\alpha}’ s$ , i. e., $X=U\{C_{\alpha}|\alpha\in\Omega\}$ , and let $Y$ be the quotient
space obtained from $X$ by contracting the set $P=\{p_{\alpha}|\alpha e\Omega\}$ to a single
point $y_{0}$ . If we define $f:X\rightarrow Y$ as the identification mapping, then it is
easily verified that $f$ is a closed, continuous and onto mapping. Since $X$ is a
paracompact space, $Y$ is also a paracompact Hausdorff space. But we can
prove that $Y$ is not represented as the countable union of locally compact
closed subspaces, while $X$ is locally compact.

In fact, assume that $Y$ is the countable union $ i=1UK_{i}\infty$ of locally compact

closed subspaces, and let $\{K_{t(k)}|k=1, 2, \}$ be the subfamily of $\{K_{i}\}$ such
that $y_{0}eK_{i(k)}$ for each $k$ . Let us put $L_{k}=f^{-1}(K_{i(k)})$ and $g_{k}=f|L_{k}$ for every
$k$ . Then $g_{k}$ : $L_{k}\rightarrow K_{i(k)}$ is closed and continuous. Hence $\mathfrak{B}g_{k}^{-1}(y)(=the$ bound-
ary of the set $g_{k}^{-1}(y))$ is compact for every $yeK_{i(k)}$ by K. Morita [9, Theorem
2], because $L_{k}$ is locally compact and paracompact, and $K_{i(k)}$ is locally com-
pact. Therefore $\mathfrak{B}g_{k}^{-1}(y_{0})$ is compact in $L_{k}$ . On the other hand we have

$\mathfrak{B}g_{k}^{-I}(y_{0})=P\cap\overline{(L_{k}-P})$

$=\cup\{(L_{k}-P)\cap C_{\alpha\cap}P|\alpha e\Omega\}$

$=U$ { $\overline{(L_{k}-P)\cap C_{\alpha\cap}}p_{\alpha}|$ a $ e\Omega$ }.
Hence, if we put

$\Gamma_{k}=\{\alpha\in\Omega|p_{\alpha}\in\overline{(L_{k}-P)\cap C_{\alpha}}\}$ ,

$\Gamma_{k}$ is a finite set, and so we have $|_{k=J}U\Gamma_{k}\infty|\leqq\aleph_{0}$ . Thus from assumption that

$|\Omega|>\aleph_{0}$ , it follows that $\Omega-U_{-}\Gamma_{k}k1\infty$ is not empty. For any ae $\Omega-\bigcup_{k=1}^{\infty}\Gamma_{k}$ we
have

$p_{\alpha}\not\in\overline{(L_{k}-P)\cap C_{\alpha}}$ for every $k=1,2,$ $\cdots$

This implies that, if $\alpha\not\in\Omega_{-U}^{\infty}\Gamma_{k}k-1$ then

$p_{\alpha}\not\in\overline{(f^{-1}(K_{i})-P)\cap C}_{\alpha}$ for every $i=1,2,$ $\cdots$

Since $x_{i=1}^{\infty}=Uf^{-\grave{A}}(K_{i})$ and $(f^{-1}(K_{i})-P)$ A $C_{\alpha}=f^{-1}(K_{i})\cap C_{\alpha}-p_{\alpha}$ , we see that
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$A_{\alpha}=C_{\alpha}-p_{\alpha}=U_{-}\iota_{-1}^{\infty}\{\overline{f^{-1}(K_{i})\cap C_{a}-p_{\alpha}}\}$ for $\alpha\not\in\Omega-U^{\infty}\Gamma_{k}k=1$

Hence for each $\alpha\not\in\Omega-U\Gamma_{k}k=1\infty A_{\alpha}$ is an $F_{\sigma}$ -set of a compact space $C_{\alpha}$ , and so
satisfies the Lindel\"of property. This is a contradiction. Thus we have com-
pleted the proof.

By Theorem 3.2 and the example cited above, we see that the following
is not valid: Let $X$ be a paracompact Hausdorff space. If the product space
$X\times Y$ is paracompact for any paracompact Hausdorff space $Y$ , then $X$ is the
countable union of locally compact closed subsets.

This gives a negative answer for an open problem raised by K. Morita
[12].

Finally we shall state a slight generalization of Theorem 3.1 which can
be proved by a similar way as in the proof of Theorem 3.1.

THEOREM 3.4. Let $f:R\rightarrow X$ and $g:S\rightarrow Y$ be closed continuous mappings
of paracompact Hausdorff spaces $R$ and $S$ onto topological spaces $X$ and $Y$

respectively, and let $K$ be the set of irregular points of $X\times Y$ with respect to
$f\times g$ . If $K\subset(\bigcup_{\alpha}a_{\alpha}\times Y)U(X\times\bigcup_{\gamma}b_{\gamma})$

, where $\{a_{\alpha}|\alpha\in\Omega\}\subset X$ and $\{b_{\gamma}|\gamma\in\Gamma\}\subset Y$

are closed and discrete, then the following are valid.
(a) If $R\times S$ is paracompact, so is also $X\times Y$.
(b) If $R\times S$ is normal, so is also $X\times Y$ .
(c) If $R\times S$ is m-paracompact and normal, so is also $X\times Y$.
As an application of Theorem 3.4, we have the following
COROLLARY 3.5. Let $R$ and $S$ be paracompact Hausdorff spaces, $\{A_{\alpha}|\alpha e\Omega\}$

an $I^{\prime f}\{B_{\gamma}|\gamma e\Gamma\}$ discrete collections of closed subsets of $R$ and $S$ respectively,
$X$ the quotient space obtained from $R$ by contracting each set $A_{\alpha}$ to a single
point $x_{\alpha}$ , and $Y$ the quotient space obtained from $S$ by contracting each set $B_{\gamma}$

to a single point $y_{\gamma}$ . Then the following are valid.
(a) If $R\times S$ is paracompact, so is also $X\times Y$ .
(b) If $R\times S$ is normal, so is also $X\times Y$.
(c) If $R\times S$ is m-paracompact and normal, so is also $X\times Y$.
PROOF. Let $f:R\rightarrow X$ and $g:S\rightarrow Y$ be identification mappings. Then it

is easily verified that $f$ and $g$ are closed, continuous and onto mappings.
Hence this corollary is an immediate consequence of Theorem 3.4.
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