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Introduction

W. Browder proved in his paper [2] that a simply connected finite CW-
complex of dimension 4% (&= 1) has the same homotopy type as a closed
differentiable manifold” under the following conditions:

(1) Poincaré duality holds,

(2) there exists an oriented vector bundle & such that 7T(&), the Thom

space, has a spherical fundamental class,

(3) the Hirzebruch formula in the dual Pontrjagin classes of & gives the

index.

In this paper we shall apply the above theorem to obtain the homotopy
type classification of closed differentiable manifolds M which are simply con-
nected and have homology groups H'(M)=H‘M)=H3M)=Z2Z, H(M)=0
i#0,4,8 This result is previously obtained by J. Eells and N. Kuiper in [3]
Their method makes use of the existence of certain non-degenerate functions
so that it is quite different from our method. They also obtained some infor-
mations on Pontrjagin classes, for instance a counter example of homotopy
type invariance of Pontrjagin numbers, and examples of closed differentiable
manifolds which have the same homotopy type but are not diffeomorphic.
These results can be proved more intuitively by our method. Moreover, we
shall give a counter example to the problem (2) about combinatorial and dif-
ferentiable structures on manifolds proposed by C.T.C. Wall in A. M. S. Sum-
mer Topology Institute, Seattle, 1963, [4].

Let X, be a CW-complex Sﬂ;es. If 7:S7"—S* is the Hopf fibering X, is

the quaternion projective plane. Now we fix the orientation of S* and deter-
mine the orientation of (E%, S7) such that the generator of H3(ES®, S7) repre-
sented by (F%, S7) is equal to A*j=(ei\Uel) where i:(E% ST)— (X, SY) is the
characteristic map of the cell e?, j is the inclusion homomorphism H®¥(X,, S*)
— H8X,) and ej is the generator of H*(X,) represented by the oriented S*.
Let (f) denote the homotopy class of a map f:S7—S*.

Since 7,(S*) is the direct sum Z(h)+Z,,(z) where 2(h)+(z) =[1,, i,] we have

1) <“closed” means compact and unbounded.
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(f)=a)+b(r) by some integers a and b (mod12). Let us determine the
orientation of X, such that the generator of H3(X,) represented by e% is equal
to j - f*1(E8 S7) where (E® S7) is the oriented generator of H:FE® S7) as
above. In this case we say that the oriented complex X, has type (q, b).
Now our purpose is to obtain necessary and sufficient conditions for a and b
under which X, satisfies (1), (2), and (3) and to obtain relations among a, b,
a’, b’ such that X, has the same homotopy type as X,. If X, has type
(a, b) it is clear that the cup product e%\Je% is ae} where ¢} denotes the
oriented generator of H'(X,) determined as above.

Hence it is easy to see that Poincaré duality holds in X, if and only if
a==+1.

In section 1 we consider the homotopy type of X;. For our purpose it is
sufficient to consider X, of types (—1,b) or '(1,, b) and we obtain the well
known result that the number of the different homotopy types of these com-
plexes is six.

In section 2 we concern with the problem: which pair of classes of H*(X;)
and H®(X,) are realizable as the pair of Pontrjagin classes of a vector bundle
over X;. It is known that a class of H*(X;) is realizable as the first Pontr-
jagin class of a certain vector bundle over X, if and only if it is divisible by
2. Therefore we are interested only in the second Pontrjagin class. In section
3 we shall obtain vector bundles over X, of type (1, ) which satisfy the con-
dition (2) and it shall be shown that there exists a vector bundle over X
which satisfies the conditions (2) and (3) if and only if b is congruent to 0 or
1 mod 4.

REMARK. The same argument holds in the case of a CW-complex which
is like the Caley projective plane.

1. Homotopy type

Let X, and X, be complexes of type (a, b) and (¢, d) respectively. Then
we have
LEMMA 1.1. There exists a map F:X,— X, such that F*(el)=me} and

am(m—1)

F*(ed)=se% if and only if am=sc and ~+mb = sd mod 12.

ProOOF. Let F,:S*—S* be a map with degree m and let F,:7m(S*
—m,(S*) be the induced homomorphism by F,,. Since we have

Frnsl (SN = Frala()+0(2)) = aFrps(W)+b Fpa(7)

- _‘ﬂ%i[i“ iy ]+m(h)+bm(z)
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= a(m(m—1) (0" () am(hy+-bme)

am(m D

= (@m(m—D+am)i)+( +bm)(@)

-amz(hH—( am(7121 D —|—bm>(r)

= sc(h)+sd(z) = s(c(W)+d(z)) = 5(g)

it is easy to see that F,, has an extention F:X;— X, such that F*(e})=me%
and F*(e8)= seb.

Suppose that X, has the same homotopy type as X,. Then there exists
a map F:X;— X, such that F*(e = e} and F*(ef)= +e%. Hence from lem-
ma 1.1 we have

LEmMMA 1.2. X, has the same homotopy type with X, if and only if

1) a=c, b=d 2) a=c, b=c+d
@) a=—c¢, b=—d @ a=-—¢, b=—c—d.

Especially all complexes with type (1, b), (1, 1+0b), (—1, —b), (—1, —b—1)
have the same homotopy type, and therefore the number of different homo-
topy types of complexes for which Poincaré duality hold is six.

2. Pontrjagin classes

Let f be a map of S7to S*and let Z; denote the module of integers mod 6.
Consider a correspondence P:f— Z, defined as follows:

Choose a stable vector bundle & over X, such that p,(€) is 2e% where p;(&)
denotes the i-th Pontrjagin class of & Since p,(&) mod 6 is uniquely deter-
mined we put P(f)=<{p,(&), ¢} > mod 6>.

LEMMA 2.1. P depends only on the homotopy class of f and induces a
homomorphism of w,(S*) to Z,.

Proor. It is clear that P is determined by the homotopy class of f. Let
Xy, be a complex which is obtained from X, and X, by identifying S*.

It is easy to prove that there exists a map G: X,;.,— X, ., which satisfies
the conditions

(1) G¥ejg) = errg @ GXeD =26} g=GHD .

where (¢§, ¢§) denote the oriented generators of H%(X; ,)=Z+Z.
Let &;, £, be stable vector bundles over X;and X, respectively such that

2) (,) denotes the Kronecker index and e/ denotes the dual homology class of
the oriented generator of H8(Xj,).
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D) =2et and p,(§,) =2e4 and let &,|S¢, £,|S* denote the restrictions of &,
£, on S* By identifying &,|S* with &,|S* we obtain a stable vector bundle
& over X; , whose p,(§) is 2e%,,. Let y be the induced bundle of & by G.
‘Then from (1), (2) we have that p,() =2¢}., and <{p,(n), e[*&) ={p,(&), el&+ef2)
=€), el >+H<Pa(EL), €8 ). These show that P is a homomorphism.

LEMMA 2.2. P(h)=1 and P(z)=2.

PrOOF. First, since X, is the quaternion projective plane there exists a
stable vector bundle &, over X, such that p,(§,) =2¢; and p,(£,)=7Te8. Hence
we obtain P(h)=1. Secondly, by Lemma 2.1 P(h-+7)= P(h)+P(t)=1-P(z).
‘On the other hand, if we put a=¢c=0b6=1, d=0 and m=—1 in Lemma 1.1
'we have a map F: X,..— X, such that F*(e})= —ei,. and F*(e})=¢e},.. Let
7 be the induced bundle of &, by F. Then it is obvious that p,(y)= —2¢}..
and p,(n)="7e}... If we denote by 7 the inverse bundle of » we have that
0:1(F)=2e},, and p,(7)= —3e}.,. Hence we obtain P(h+7)=3 and therefore
P(r)=2.

By combining Lemma 2.1 and Lemma 2.2 we have

LEMMA 2.3. Let X; be a complex of type (a, b) and let & be a stable vector
bundle over X;. Then p(§)=2me}, p,(&) = (am(Zm—1)+2bm+6n)e} for some
integers m and n. Conversely, a pair of cohomology classes (2me%, (am(2m—1)
+2bm--6n)ed) is realizable as (p,(8), p.(§)) of a certain vector bundle & over X;.

3. Reducibility of Thom complexes

Since it is sufficient for our purpose to consider only X, of type (1, b) we
shall use the notation X, instead of X, in this section. Now the condition (2)
in the introduction is equivalent to that 7(§) is reducible. It is known that
the Thom complex of the stable normal bundle of a differentiable manifold
is reducible. Then we have

LEMMA 3.1. There exists a stable vector bundle &, over X, such that

Q) DpuE)=—2ef and p,(&,) = —3e§
2) T(&,) is reducible.

Proor. X, may be concidered as the quaternion projective plane and it
is sufficient to take &) as the stable normal bundle of the equaternion projec-
tive plane. Suppose m(m+2b—1)=0mod 24. From Lemma 1.1 there exists a
map F:X,— X, such that F*(e)=me; and F*(ef)=me§. Let &2 denote the
induced bundle of &} by F. It is clear that p,(€},) = —2me} and p,(€2,) = —3m2e}.

Let £:T(&%)— T(&Y) be the map induced by F and let [ be the dimension
of &). By Thom isomorphism we know that 7(£%) has a cell decomposition

3) A. Hattori has also obtained this result by another method.
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StU e U @+8 and F*(e) = o', F*¥(e*)=me'**, and F*(e'*®) = m2e*® hold. The
subcomplex S'\J et of T(&L) is T(&% | SY so that T(&%) is T(S?EIS“)&ge‘H and

m

reducibility of 7(&%) is equivalent to ab =0 in 7,.,(7T(£5|S%)). Since F is an
extension of F|T(£1S%) and a=0 we obtain (F|T(£|S9)s(al)=0. Now
consider the following commutative diagram of two exact sequences of the
pairs (T(§|S%), S and (T(§5. | S, SH:

0 — 4o(SH — T (T(EY | SN)) —— m14o(S7) —
ia  [FITEISH% o
0 —— m14o(SH) — T4 TR | SD) — mn(SHH) —

By 7,.,(S") = Z,, and (mi)y(x) =mx, we have

LEMMA 32. If m is prime to 6, F|T(EY | SYs is an isomorphism and we
have a8, =0. If mis odd, a8, =0 holds only when Pi(e"+**) =0 holds in H*(T(EY))>.

ProoF. The first part is clear from that (mi), is an isomorphism. In the
second part it suffices to show j(a?)=0 by the above diagram. If m is odd
the kernel of (mi), is contained in the 3-component. Hence j(a?) is in the
3-component. On the other hand, it is known that the 3-component of 7;,,(S*%)
is determined by @i Therefore j(a%)=0 is equivalent to 2i(e"**)=0.

LEMMA 33. If m=1-2b mod 24 T(&) is reducible.

Proor. If b==2mod3 m is prime to 6 so that Lemma follows from Lem-
ma 3.2. If b=2mod3 m is odd. Then we must consider Pi(e"*) in H*(T(EL)).
First we compute Pi(ef) in H*(X,;). We set Piep)=1[e}. By the formula
PUPLE) = —D(E)2—D,(E) for any vector bundle & over X, we have 2/,
=—4—-1-2b, i.e. Pi(e})=(—1—Db)e}, by considering as & the vector bundle
over X such as p,(&)=2e} and p,(&) =(1+2b)e§. Secondly, let E, p be the total
space and the projection map of &2 and we denote by FE, the set of non-zero
elements of E. Since we may identify H*(E, E,) with H*(T(£%)) we use the
same notations for generators of H*(E, E,) and H*(T(£%)). Then we have

Piet+*) = Pie’ I p*(ep)) = Pi(e)\ pH(ep)+e" I pH(Pi(ed))
= e'\J pF(py (5N p¥(ed)+e'\J (—1—D)p*(ed)
='\J pH(py(ERI\J ed)+e' I (—1—D)p¥(e)
=(—1—2m—>b)('\J p*¥(e})) = (—1—2m—b)e'+8 .

Hence @i(e*+*)=0 is equivalent to m =1+b=1—2b mod 3.
Let 22 be the stable vector bundle over X, with p,(4}) = —2(1—2b-}-24k)e},
Po(AD) = —3(1—2b+24k)%e} and let n be the stable vector bundle obtained by

4) 745(S4) =0 holds for sufficient large .
5) &1, is the Steenrod operation.
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Whitney sum of 2} with y, which satisfies p,(y;) =0 and p,(y;) =6se. If s=0
mod 240 we have J(n) =J(AD+J(rs) =J(A%) where J denotes the stable fibre homo-
topy equivalence class of a fibre bundle. Therefore T(y) is reducible. Let 7
be the inverse stable vector bundle of ». From p,(%)=2(1—2b+24k)e; and
P(7) = (T(L—2b+24k)*—6s)ej the Hirzebruch formula of the index of X for 7
gives the following equality;

45="7.7(1—20+24)*—42s —4(1 —2b+-24k)? = 45(1 —2b+-24k)*—42s .

LEMMA 3.4. The Hirzebruch formula for 7 holds if and only if k=3b or
3b—3mod 7 and also (12k—b)(1—2b-+12k) =0 mod 8.
ProOF. By the above equality we have

45(24k —2b)(2—2b--24F) =0 mod 42 - 240
4.9.5(12k—b)(1—b4-12k)=0 mod 25.32.7.5
(12k—b)1—b+-12E) =0 mod 2¢.7 .

Suppose that there exists a stable vector bundle ¢ over X, which satisfies the
conditions (2) and (3) in the introduction.

Since X, has the same homotopy type as a closed differentiable mani-
fold with the normal stable bundle g we have J(¢)=J(4}) by the proposition
3.4 of [1].

Thus we obtain p,(p) = —2(1—2b+24k)ej for some integer k by J(p|S*)
=J(A}| S*) so that there exists a stable vector bundle y; over X, with p,(v;) =0,
Do(vs) =6se and p=2A2+vy,. From J(p)=J(AD+J(vs) and J(w)=J(A?) we obtain
J(vs) =0 so that s=0 mod 240. Hence ¢ must be a stable vector bundle such
as 7 in the above argument. It is easily obtained that the equation in
3.4 have solutions for =0 or 1 mod4 and no solutions for b=2 or 3mod4.
Tnus we have the following

THEOREM. X, of type (a, b) has the same homotopy type as a closed
differentiable manifold if and only if

a=1 and b=0,1,4,58,9
or
a=—1and b=0,11,8,7,4, 3.

Moveover, we can choose (1,0), (1, 4), (1, 8) as representatives of the homo-
topy types.

COROLLARY (counter examples to Wall’s problem). If b=2,3mod4 there
exist stable vector bundles over X, whose Thom complexes are reducible but X,
has not the same homotopy type as a closed differentiable manifold.

COROLLARY. Let M be a closed differentiable manifold with H'(M)=H*(M)
=HM)=Z, H(M)=0 (i #0, 4, 8) and let ty be the tangent vector bundle of
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M. If M is simply connected there exist integers b, s, k which satisfy
@O Di(ty) =2(1—20+24k)et, p,(ty) = (T(L—2b-+24k)*—6s)e®

@ if b=0mod4 k= 7—2———4]) or 7—277 _4h+4 mod 14
3) if b=1modd k=771 b or 7071 4h 4 mod 1
@ 5= o (1—2b+ 24ky—1).

Conversely, a stable vector bundle over X, which satisfies the above condi-
tions is the stable tangent vector bundle of a closed differentiable manifold of
the same homotopy type as X,.

Department of Mathematics
Chuo University
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