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On the basis of a series of Takeuti’s papers [5], [6] and [7], G. Takeutk
and A. Kino developed the theory of recursive functions of ordinals,
defined by proposing schemata, and that of hierarchy of predicates of ordinals,
built on it, and they obtained various remarkable results. We are interested.
in giving a formalism for those functions and in applying it, via arithmeti-
zation, to the investigation of that hierarchy which contributes not only to.
the theory of ordinal numbers but also to the effective and classical descrip--
tive set theory (cf., especially, §§7-9 of [8])).

In the meanwhile, M. Machover presented a formal system of recur-
sive functions of ordinal numbers with infinitely many variables. His concept.
of a ‘general recursive function’ is a natural extension of that in the case of
natural numbers in a certain sense; however, it is rather what we want to-
call ‘classical’ and it differs from ours, even if the number of the variables.
is restricted to be finite. ’

In this paper, we shall introduce partial recursive functions as an exten-
sion of general recursive functions in the sense of Takeuti-Kino and give a.
formal system for them. In much of the symbolism, the notations and ter-
minology, we follow S.C. Kleene or Machover [4]. Let o, be an arbitrary,
but fixed, regular initial ordinal. Throughout this paper, by a function we:
shall always mean a function (or a functional) with a finite number of argu-
ments ranging over ordinals < w; (and with a finite number of function argu-
ments) whose values are also ordinals < w;.

In §1 we define formally calculable functions by establishing a formalism.
of function calculation. Roughly speaking, our system is obtained by adapt-
ing Machover’s system (with infinitistic rules of formation and transformation)

* The author wishes to express his thanks to Professors G. Takeuti and V. Devidé
for their kind help in the preparation of this manuscript. This work was reported
at the Symposium on the Foundations of Mathematics held at Katada, Japan, on
October 17, 1962. Recently, the author knew by Amer. Math. Soc. Not., 10, No. 3
(1963) that the results similar to this paper were independently obtained by A. Lévy,
Transfinite computability.
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to make the formation rules finitary.—Accordingly the transformation rules
are also slightly modified (in particular, a new rule is added). In our system,
the transfinite list of particular symbols is assumed to be given in such a
way that each member of the list biuniquely corresponds to each of ordinals
< w;, in contrast to Machover’s in which the terms, called numerals, are
formed from the symbols 0 and / as the formal expressions for the ordinals.

In §2 we introduce partial recursive functions and show that a partial
recursive function is formally calculable.

In §§3,4 we assume the axiom of constructibility (‘ V=L’, see K. Goédel
and use the results of and [8, §3]. We arithmetize, in § 3, our sys-
tem in the theory of ordinal numbers, and hence we obtain the predicates (of
ordinals), corresponding to the metamathematical concepts such as being a
term, a system of equations, or a deduction from a system of equations, etc.,
as primitive recursive ones. After the arithmetization, we have, in §4, the
normal form theorem for the formally calculable functions, from which it
follows that a formally calculable function is partial recursive.

The advantage of the present treatment of recursive functions is that we
have the same predicates Tz, X, -+ , X, ¥) (08 T2 g0y, v 0y, 2, Xy, -+, Xn, V) AS
Kleene has (cf., e.g., [2]) for the case of number-theoretic functions, via
arithmetization of the formal system, and hence we can develop the theory
of the partial recursive functions and of the hierarchy of predicates analogously
as Kleene did (cf. [2, §§57, 58, 65, 66] and [3]), i.e. for example we have the
recursion theorem, the complete form theorem, etc.

§1. Formal calculation of functions of ordinal numbers.

1.1. First of all, we introduce a system for formal calculation of functions.

The primitive symbols of the system are as follows: —=(equals),” (successor),
sup (the supremum operator), v, -+, v,, -~ (variables for ordinals < wy),
Joo S1, 0, Ju, - (function letters), 0, (or simply 0), 0, ---,0,, -~ for each a <w,
(specified symbols for ordinals).

The terms are defined by induction as follows:

1. For each «, the symbol 0, is a term.

2. A variable is a term.

3. If ris a term, then t’ is a term.

4. If ry, - ,t, ave terms and f is a function letter, then {(r,, -+ ,r,) is a
term.

5. If ry,r, are terms and X 1s a variable, then sup (X, r,, r,) (we write this
as SUPyx«r la) 1S @ term.

6. The only terms are those given by 1-5.

The terms in the strict sense are the expressions defined by restricting
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the basic clause 1 in the definition of the terms to

1*. 0 is a term in the strict sense.

An equation (in the strict sense) and a system of equations (in the strict
sense) are defined analogously as by Kleene®. In particular, we say an equa-
tion to be prime, if it is of the form f(x,,---,x,)=x where f is a function
letter and x,, -+, x,, x are symbols for ordinals. As to the definition of bound
occurrences of variables in a term (in the strict sense) or an equation (in the
strict sense), we refer to [4].

The definitions of ‘ascent’, ‘ supremum of an ascent’ in are adapted
to our case by substituting ‘symbol for ordinal’, ‘ prime equation’ for ‘ num-
eral’, ‘ numerical equation’, respectively. Thus, an ascent of length a(0<a<wy)
is a transfinite sequence of prime equations of the forms:

f(o()v Xy, xn) = x© ’
<1> f(oli xly Ty xn): x(l) b

.....................

where & <a. The supremum of the ascent (1) is the symbol for the least
ordinal which is not smaller than any ordinal for which the symbol is a right-
hand side of a member of the ascent (1). Hereafter we shall write an ascent
(1) as {f(0g, x4, -+, Xp) = X}, briefly.

We have four rules of inferences:

R,. To pass from an equation d to the equation e which results from d by
substituting a symbol for an ovdinal for a free variable.

R,. To pass from an equation d without free variables to the equation e
which results from d by replacing an occurvence of 0y by the symbol 0,.y,.

Rs;. To pass from an equation r=s without free wvariables (the major
premise) and a prime equation h(z,, -+, z,)=z (the minor premise) fo the equa-
tion which results from r =s by replacing an occurrence of h(zy, -+ ,z,) in s by z.

R,. To pass from an equation r =s (the major premise) and an ascent
{h(O¢, 2, -+, zp)= 2®} e, (Whose members are the minor premises) to the equa-
tion which results from r=s by rveplacing an occurvence of the tevm of the form
Supx<o, N(X, z,, -+, 2p), where X is a variable, by the supremum of the ascent.

Now, we can define a deduction of an equation e from a system E of equa-
tions (in the sirict sense) in analogy to [2]®. Here we must remark that our

1) We also use the auxiliary terminology, such as ‘principal function letter’,
“given function letter’ or ‘auxiliary function letter’ of the system E of equations,
taken from [2, §547].

2) We also use the auxiliary terminology, such as ‘principal equation’, ‘ principal
branch’ or ‘contributory deduction’ in the deduction, taken from [2, §54].
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transformation is not finitary; in fact the rule R, is infinitistic. Thus, simi-
larly to [4], we also have deductions (in the tree forms) with infinite branch-
ing (but each branch is finite in height).

¢y, -+, ¢, are partial functions of n,,---,n; variables, respectively. Let

E%::9 be the set of the prime equations gzy, -+, 2,,) =z Where ¢(zy, -+, 2n,)=2
for i=1,2,---,/ and all n;-tuples z,,--+,z,, of ordinals <w, for which ¢; is
defined and z,, -+, z,,, z are the symbols for z,, -+, z,,,2, respectively. If E is
a system of equations, in £ there may occur symbols, say a,, -, a,, for
particular ordinals. In this case, such a system £ may bhe written as
Ela,, -+, a,) exhibiting the occurrences of the constant ordinals.

We say that a partial function ¢ is formally calculable in ¢,, -, ¢, (=0)
with n,, .-+, n; variables, respectively, if we can find a system E of equations
in the strict sense, with f as the principal function letter and g, ---, g; as the

given function letters which are in order of their occurrence in the preas-
signed list of function letters, such that

2 Eld E—fi(x,, -, x,)=ux, if and only if f(x;, -+, x,)=x€EY,

where x,, -+, X,, X are symbols for ordinals. In the above, we say following
Kleene’s terminology that ¢ is formally calculable uniformly in ¢,, -+, ¢, if
we can find a system £ of equations in the strict sense, independently of the
choice of functions ¢,, -+, ¢, except for the number n,,---,n, of the variables,
such that (2) holds for any choice of ¢, ---,¢,. If ¢ is completely defined
and formally calculable (in the case [=0), then ¢ may be called effectively
calculable.

Furthermore, we say that a partial function ¢ is formally calculable in
oy, -+, &, (the constant ordinals) and (uniformly)in ¢, -, ¢, ({=0) if we can
find a system F£(Q@,,--0,,) of equations such that we have (2) reading
“E04, -+, 0,4, in place of ‘E".

1.2. For the present system, the counterparts of Lemmata IIb-Ile® of
Kleene [2, §54] hold good, we see, for example, the counterpart of Lemma
IIb as follows.

LEMMA 1. Let D be a set of equations (finite or infinite), F' be a system
of equations whose left members contain no function letters which occur in D,
and g be a function letter occurring in D. Then D,F—g(y,, - ,y,)=y where
Yi, Up Y arve symbols for ovdinals, only if D—g(y,, - ,yp,) =Y.

The proof is similar to that given by Kleene, and at the induction step
there does not occur any trouble in the case of application of the new rule R,.

We have also the counterpart of Lemma VI of [2, p. 344]:

3) For the counterpart of Lemma Ile of Kleene, we refer to of
Machover [4]
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LEMMA 2. If 2x; -+ x,0(Asy ==+ 84005y, =, Sg), D1, -+, Py, Xy, -+, %) iS formally
calculable uniformly in functions 6, ¢y, -+, ¢, then Ax; -+ xycy -+ C,@(ASy -+
SoO0%(S1y w0 3 Sgs €1y o0 5 Cp)y Py, o0 D1y Xy, oo0 4 X)) 1S formally calculable uniformly in
0*, ‘/’1» Tty ¢L-

In fact, if Ax, - x,@(Asy -+ .00y, ==+, Sg), Doy ooy Pyy Xy, -+, X,) 1S formally
calculable uniformly in 0, ¢4, -+, ¢;, then by the definition there is a system
E(f:g 8, ,g,a, ,a, of equations such that, for any fixed choice of
0, Py, ey Oy, BSOS E(f 2 g, 8y, 0, 81,8y, 00, @) — £(Xy, o+, X,) = x where x,, -+, X, X
are symbols for ordinals, if and only if f(x,, -, x,) = x & E#ran?@é1,dl,a1,09)
Choose p variables, say ¢, --,c, not occurring in £, and denote by
ET(f:g g, -, 8,8y, 85Cy, ,C,p) the system resulting from £ by changing
simultaneously each part h(ry, -+, r;) where his a function letter and r,, ---, r,
are terms to h(ry,---,r5¢y,+,Cp). Let g, -+, 8 be distinct function letters
not occurring in £. Let E*(f:g, &, -, 8,2y, a4 Cy, -, Cp) be the system
consisting of the equations

g1<31, tty Apgy Cyy oty Cp): 23;1(31, R an) ’

..................

gl(ali Tty anl) Ciy *et s Cp): gl(al’ Tty anz)

and of the equations of ET.
Then we have

As1e 8 B* (51,00 yore -y —
ERrgaon ot e grifh B 1f(xy, 0, X,) =X

where x,, .-+, x, and x are symbols for ordinals, if and only if

Eg*g;g;y E* '_f(xly e, Xy 061! Tty Oc;;):x '

for each choice of 6%, ¢y, -, ¢y, ¢y, -+, cp,. The proof of this is parallel to that
in [2, p. 345], and the argument given there can be also applied to our case
with rules R,, R, added.

In particular, we see in course of the proof that the following holds.

E‘sl’ésqﬁ”sh"'ssq,ﬂv""Cv“é{.’.’.g%, E—1(x,, - ,x,)=x,

where x,, -+, x, and x are symbols for ordinals, if and only if
3
2818 0* (8155 8, €15+ €Y b1y * o
E(a;"‘;f]}g(a]l’"'r%q:l()cl"‘foch Eé\l"‘g'l, E L f(xly . xnf 061) 2 OCp) - x;

for each choice of 6%, ¢, -+, ¢, cq, 0, ¢y

As1--8g0* (s1, 7 8¢, €15+, €D) i 1
In the above, E{a1~~~a‘§>g<a1,-~~,3q,ocl.‘-foc,p is the set of the equations g(y,, -, ¥y,

0.y, -+, 0.,)=g which are in £, for each fixed ordinals ¢, -, ¢,



6 T. TucuE

§2. The partial recursive functions and their formal calculability.

2.1. In this section, we use various notations and terminology, which
are given in (in particular, in §1 of [8]., without further notice. We
slightly modify the primitive recursive schemata of Takeuti-Kino, but our
modification is not essential.

By the definition given by Takeuti-Kino, a function ¢(¢,, -+, ¢, x;, -+, ).
where /=0 and n >0, is primitive recursive, if it is introduced by a finite
series of applications of the following schemata (I)-(XIII), where ¢, ¢,, ---, ¢,
are function variables, y, x,, -**, ¥» are previously introduced functions and
m>0:

O ew=x

(11a) o(x)=0. (1Ib) p(N)=w.

(11D o(x)==x.

av) o(x, )= 1x,5).

V) @(x,y)= max (x,y).
(VD o(x, y)=7(x,¥).
(Vlla)  ¢(x)=g"(x). (VIIb)  ¢(0)=g%x).

(VIID (¢, xy, -+, x0) = (xy, =, %) -
(IX) O Py, oo Doy 20, 00, X)) = (Do, oo oy 20(Pyy oo s Py Xy, -0y X,
‘ S 29 C/VEIEIN 0 SHELEE )
Xa) @y, e o, &y, ooy e )= (P, o0, Py 2y o0, Xn)
Xb) @Dy, X Xy e X)) = X (P e P Ky e, X))
Xia)  @(Py, o, i Py X1, - X) = 2(Py, o0y iy Xy, o, X))
(XIb) @&, &y, ooy fuy Xy, e X)) = 2(Pay oo P Xy, -0, X))
XID @@y, o Py, Xy, 0 Xy )= p2ocal X(P1, 0 i Xy, o0, X, 2) =07,

where pz,.,R(---,2) is the least ordinal z < x such that R(---, 2) if (E2),<,R(---, 2)
and x otherwise.

(XIII) ¢<¢1J Tty ¢l! Xy Xqy 0ty x?z>: C(ngox(sbl’ Tt (7[)1: By Xy, o, xn)v
¢1v Tt ¢l» Xy Xiy o0y xn)v

where C(¢, ¢y, -+, ¢y, x, X1, -+, X,) 1s @ function combination and ¢ is a function
variable of one argument.

A function combination C(¢,, -, ¢y, xq, -+, Xx,), an expression for the am-
biguous value of a function, can be defined by induction so that it is con-
structed syntactically from some of the ordinal number variables x, -+ . X,
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some of the function variables ¢,, -+, ¢,, the constants: 0, w, /,, max, 7,g£%, g2,
the operators: ', ¢#z,.;, and functions introduced by the application of Schema
to previously constructed function combinations, without the use of
A-notation (cf. [2, §4471).

Now, we take Schema (XIII’) in place of as follows:

(XIII/) @(gbi; Tty (;bly Xy X1y 00y xn>:l(2z¢x(¢l, Tty ¢[y Ry Xyy o0ty xn):
¢1) Tty ¢l) X, Xy, 0t xn) )

where x(¢, ¢y, -+, ¢, x, %, -+, X,) IS a previously introduced function and ¢ is.
a function variable with one argument. Then we can define the concept of a
primitive recursive description of a function @(¢,, -+, ¢y, x,, -+, x,) In terms
of Schemata (I)-(XII) and (XIII’), and we have:

A function @(¢y, -, P, Xy, 0, X,) 1S primitive recursive in the preceding
sense, if and only if there is a primitive recursive description of ¢ in terms of
Schemata (DH-(XID) and (XHI1").

Proor. Given a primitive recursive function ¢, we show by induction on
the number of applications of Schemata (I)-(XIII) that there exists a primitive
recursive description of ¢. For this, it will suffice to treat only the case for
the schema of transfinite recursion. Let (¢, -, ¢, x, %y, , Xn)
=CAz20" (P, -+, P12, Xy, o0 LX), Py on Py, X, Xy, 000, X,) Where C(@, &y, -, &y, 1, 5y,
-+, x,) is a function combination, and assume that the previously by (XIII}
introduced functions, which are used to construct C, are exactly &, -, &,
Put y(¢, ¢y, -, Oy, x, Xy, -+, ) =C(P, ¢y, -+, &1, X, Xy, -+, X,). Then similarly to
£A of [2, p. 2247 (also cf. [2, §44, Example 1, p. 2211), we obtain a primitive
recursive derivation of y from ¢y, -+, ¢y, say in order of &, -+ &;:

(4) Py =y §0n1, 51, Tty Spnzr 52; Tty §0n‘7-, Ej; A4

with a fixed analysis? where Schemata (I)-(XII) are applied.

Now by the hypothesis of the induction, there is a primitive recursive
description @y, -+, @i, (=§&), foreachi=1,---,5. In (4) we replace each func-
tion &; by the sequence @y, ---, 9u,;, and supply ¢ as the last. The resulting
sequence is a (probably redundant) primitive recursive description of ¢ in
terms of (I)~(XII) and (XIII’).

Conversely, given a primitive recursive description ¢, ---, 9, (=¢), we
show by course-of-values induction on the length % of the description that ¢
is primitive recursive (i.e. definable by a series of applications of Schemata
(ID-(XIID)); at the same time we shall see that ¢ is expressible as a function
combination.

Cases 1-8: ¢ is introduced by one of Schemata (I)-(VIII). These cases

4) Cf. [2, p. 2347
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are trivial. In fact, say ¢(x, y)=max (x,y) by (V), where max (x,v) is a func-
tion combination by itself.

Case 9: @(Py, -, Pu,x0, o, X)) = X(D1, o+, i, Xa(Pry = s i Xay o0, X)), ooy X P,
ey, x, -, x,)) by Schema (IX), where yx,x,, -, ymn DPrecede ¢(=¢;) in the
description. Then by the hypothesis of the induction ¢ is primitive recursive.
Also assume as the hypothesis of the induction that there are function com-
binations expressing y, xi, -, ¥xm, denoted by C(¢y, -+, &1, i, o, V), Ci(¢y, -+,
D, Xy, 0 X)), 0, Culdy, -, &y, x40, -+, Xn), Tespectively. Then ¢ is expressible as
the function combination C(¢,, -+, ¢, Ci(P1,+, Dy, X1,o00, Xy CoulDr,eoe, Puy Xyeee, X))-

Case 101 @(Py, o, o, Xyy ooe, Xy 1) = 2(Pyy o0y P, Xy o0y X)) OT PPy, w0, Py, X, Xy,
cee s X)) = x(Py, 0, Py, Xy, 00, X,) DY Schema (X), where y precedes ¢ in the des-
cription. Assume as the hypothesis of the induction that y is expressible as
a function combination C(¢y, -+, ¢, X1, =+, Xn). Then C(¢y, -+, ¢y, x1, -+, X,) 1S A
function combination expressing 90(951, e Dy Xy, Xy X) (Or Oy, e, Dy X, Xy,

-, x,)) by itself, and is also denoted by C(¢y, -+, ¢y, Xy, >+, X, x) (0r C(¢y, -,
D, X, Xy, 0 X))

Case 11: Similar to the case 10.

Case 12: @(¢y, -, Py, x0, o0, Xy X) = p2, [ (1, -+, i, Xy, ==+, X, 2)=0] by
Schema (XII), where y precedes ¢ in the description. Assume as the hypothesis
of the induction that y is primitive recursive and is expressible as a function
combination, denoted by C(¢,, .-+, ¢y, X1, -+, X,,2). Then by the definition, ¢ is
primitive recursive. The function combination pz,.,C(¢,, -, ¢, X1, 00, X, 2)
expresses the ambiguous value of ¢.

Case 13: @(¢y, -+, ¢, x, x4, -+, X0) = 2(A2P7(Py, -+, Dr, 2, Xy, 00, X)), Py o0, Do, X, s
--, x,) by Schema [XIIT"), where x(¢, ¢y, -, ¢, %, x,, -+, X,) precedes ¢ in
o, -, (= ¢). Assume as the hypothesis of the induction that y is expressible
as a function combination, denoted by C(¢, ¢, -+, ¢, x, x4, -+, x,). Then, for
each fixed choice of ¢,,---, ¢; and x,, -+, x,, we see by transfinite induction on x:

¢(¢l1’ Tty Sbl; Ky Xy =00y xn):C(ZZSDx(Sbl, E) Sbl; 2y Xy 00ty xn)r ¢19 Tt Q/JL, Xy Xyy ttt xn)

Thus, ¢ can be introduced by Schema [(XIIT), and ¢(¢, -, ¢, x,, -+, x,) IS @

function combination itself. Q.E.D.
Now we define the partial recursive functions. For this, we rewrite
Schemata (I)-(XII), with = ’® in place of ‘=", except for ‘=" in the

bracket [ ] on the right-hand side of Schema (XII), and let ¢, ¢, -+, ¢, range
over the partial functions. Here we use the interpretation that pz, . [x(¢,, -,
@y, Xy, 0, X, 2)=07] is defined if and only if (&),<ilx(¢1, -, ¢, xq, o+, X, 2) 1S
defined] (likewise for the partial predicates (Fz),< [ x(¢1, -+, $u, Xy, -+ X, 2)=0],

5) See, e.g. [2, §63].
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(Z)J<x[;¥(¢1: Ty ¢l: X1, 00ty Xy Z): O:D but in X1 ¢x(¢11 Tty ¢l! Ry Xyy 00y xn) is
undefined exactly if z< x A [@(dy, -+, ¢, 2, %1, =+, x,,) is undefined] where

§0(¢1, Tty SbL: Zy X1y 00ty xn) if z <x,
qjx(gbl:""gblizy xy'";x)—N“ )
0 otherwise .

To those schemata we add further

(XIV) @(9[’1, Tty Sblr Xyy t00 s xn) = /"Z[X(gbl: Tty S[]L, X1y ot s X Z): 0]

under the interpretation that pz[x(¢,, -+, ¢, x4, -, x,, 2)=07] is defined if and
only if (E2)[x(Ps, -, Pu X, o0, X0 2) = 0 Az [ 2(P1, oo+, P, Xy, 000, Xy £) 18 de-
fined]].

A function @(¢,, -+, ¢, x,, -+, x,) is partial rvecursive, if there is a partial
recursive description of it in terms of Schemata (D-(XII), (XIII’) and
A partial recursive function ¢(¢y, -+, ¢y, x4, -+, X,), Where ¢, .-+, ¢, range over
the completely defined functions, is general recursive, if it is defined for all
the values of arguments.

We also call a function @(¢,, -+, ¢y, x1, -+, x,,), where [ =0 and n >0, prim-
itive, partial (general) recursive in the classical sense, if it can be introduced
by adding a schema:

0) p=a,

where « is a constant ordinal < wy, to the primitive, partial recursive schemata,
respectively. Then, if a function ¢(¢y, -+, ¢, x;, =+, x,) is primitive (or partial,
general) recursive in the classical sense, a finite number of constant ordinals,
say «ay, -+, d,, are used in the definition of ¢. We say for such a function to
be primitive (resp. partial, general) rvecursive in o, -+, Qy.

2.2. To argue the formal calculability of the partial recursive functions,
we begin by showing the effective calculability of some particular primitive
recursive functions.

Let S denote a system of equations of the forms s(a, 0)=a, h,(c,a)=s(a, c)’
and s(a, b)=sup,., h,(z,a), M a system consisting of the equations of S and of
equations of the forms m(a, 0) =0, h,(c, a)=s(m(a, ¢), a) and m(a, b)=sup,«,h.(z, a),
where s is the principal function letter of S, and R a system consisting of
the equations of M and of equations of the forms r(a, 0) =0/, h,(c, a)=m(r(a, ¢), a)
and r(a, b)=sup,«.h,(z, a), where m is the principal function letter of M.

Then by transfinite induction on y (for (6), (7), using Lemma 1, succes-
sively) we see easily:

5) S+s(0,,0,)=0, if and only if x+y=2z for any ordinals x,y and z.
6) M+ m(0,,0,)=0, if and only if x-y=2 for any ordinals x, ¥y and =z.

(7N R+—r(0,,0,)=0, if and only if xY=2 for any ordinals x, y and z.
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Now we choose function letters f, ¢ and h which do not occur in R, and
consider £ consisting of the equations of R, whose principal function letter
is r, and of equations of the forms:

h(zx ay, 0, an) = r(o’ g(alr cer, Ay, Z)): f(alx cee, Ay 0) = 0/ .
f(alr see, gy a) == r(O; Supz<ah(zy Ay, o0, an)) .

Let ¢(xy, -+, x,,2) be a given function. By (7) we see easily that for any
ordinals Xy, =+, X,, X
Eé} ’ EF— f(oxp Sty O.l‘ny Om) = 07/

only for y=0 or 1; because to deduce f(0,,--,0,,0,)=0,, for any symbol
0,, we must use f(a,, -+, a,,a)=r(0, sup ,.,h(z,a,, -+, a,)) as the principal equa-
tion, and we have by that, for any ordinals » and w,r(0,0,)=0, is
deducible from the equations of R only, hence 0" =w. Moreover, we see the
following

LEMMA 3. For any ordinals x,, -, x, and Xx,

Eg’) E'_ f<0.7:1y Tty O$n’ Ox): 0

if and only if (B2),eq[d(xy, -, x0,2)=0].

Proor. Consider any n-+1 ordinals x,, -, x, x and assume (Ex),..[¢(x,
-, x,,2)=0]. Then for every z<x, ¢(x,, -, X,, 2) is defined and there is an
ordinal b < x such that ¢(x,, -+, x,,0)=0. Hence, g(0,,, *+,0,,0,)=0, € E¥ for
every z<x and some y, and in particular g(0,,-,0,,,0,)=0c E¢ for that
ordinal 4. Now we choose the equation f(a,, ---, a,, a)=r(0, sup,«.h(z, a,, ---, a,))
and apply the rule R, successively to obtain

(8> f(O.z‘]’ tty Oxn’ O.z') = r<01 Supz<0mh(z) Oxlx Sty O'L',n)) .

At this position, we establish the contributory deductions of the minor
premises for the application of R,. Using the equation h(z, a,,--,a,) =10,
g(a,, ---,a,,2)), and applying R, to substitute the respective symbols corre-
sponding to the ordinals x,---,x, and each ordinal z<x for the variables
a,, -+ ,a,, %, respectively, we obtain the equations h(0,,0,, -+ ,0, )=1r(0, g0,
+,0,,0,)). From each of the latters it results h(0,, 0y, ---,0,,)=r1(0,0,) by
the rule R, with g(0,,,--+,0,,,0,)=0, in EY as a minor premise. In particular,
h(0,, 0;y, -+, 05, )=1(0,0) is deducible. On the other hand, by (7) there is a
deduction of r(0,0,)=0, from the equations of R for any ordinal y, where
Ooy is the symbol corresponding to 1 or 0 according to y=0or y>0. By R,
we then have an ascent

(9) {h(oz» O.z'p ety Oxn) = Ooy}z<x .

This includes a prime equation h{0,,9,,, --+,0,,)=0;, so the supremum of it
is 0,.
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Now, we can use R, with (8) as the major premise and (9) as the minor
premises to deduce f(0,,, ---,0,,,0,)=1r(0,0,), which implies £(0;,, -+, 0, ,0,)=0
by R,, since by (7) R~r1(0,0,)=0.

Conversely, to deduce f(0,,,-+,0,,0,)=0 from £ we must use the same
principal equation and the same substitutions as above. Hence r(0, sup,<,,h(z,0,,,
-+, 0;,)) must be replaced by 0 in consequence of a series of applying rules
and of using further equations of £. By (7) and Lemma 1, we see easily
that for all z<x h(0, 0, -+ ,0z,) =0, must be infered, including at least one
of prime equation with 0, for ¥y >0 as the right member. Here, to deduce
h(,, 0,,, ==+, 0,,)=0, for any z < x and y we must use the equation h(z, a,, ---,a,)
=r(0, g(a,, ---,a,,2)) and the equations g0, --,0,,0,)=0,, whence g(0,,, -,
0,,0)=0,=FE¢%; in particular, as is easily seen from (7) and [Lemma 1|
g(04,, -+, 04,,0,)=0 for some ordinal z must belong to £% The latters imply
that ¢(x,, -+, x,,2) are all defined for z<x and ¢(x, -, x, 2)=0 for some
ordinal z<x. Thus we have (Ez),o,[¢(x,, -, x5, 2)=0].

In the above, we saw that the system F of equations defines the represent-
ing function of (£z),.,[¢(x,, -+, x,,2)=0] as a function formally calculable in
¢. Then we may write such a system as

(10) E<f, dz <a g(al: ety 8y, Z)) B

where f, g denote the principal, given function letters, respectively.
Dually (or more easily), we have a system of equations which may be
written for the sake of brevity as

(11) E(f,Vz <ag(a,, -, a, 2)),

where f,g denote the principal, given function letters, respectively, and which
defines the representing function of the partial predicate (z),<,[@¢(xy, -, Xn, 2)
=07 as a function formally calculable from ¢.

LEMMA 4. pz, o [¢(x,, -+, x,,2)=0] is formally calculable in ¢.

Indeed, f, g, h;, h,, s being distinct function letters, we consider the system
E(,,3x <z g(a,, -+, a,, X)) of equations taken in such a way that s is the
principal function letter of its subsystem S and f, h, do not occur in it, fol-
lowed by the equations of the forms: f(a,, -, a,,0)=0,h,z,a,, -, a,)=s(f(a,,
-+, a,,2),h(a,,,a,2)) and f(a,,-,a, a)=sup,-hy,z a,, - ,a,). We shall
denote it by E(f,uz <ag(a,, - ,an 2). Then by (5), and 3, we have
that, for any ordinals x,, .-, x,, x and v,

Eg}, E(f; Mz <a g(alr sty Ay, Z))'-' f<0xlr Tty O.z'ny 0x>:0y »

if and only if py,..[¢(xy, -+, X4, 2) =0] is defined and its value is ¥ (the informal
reasoning for the case of number-theoretic functions in [2, 228-229] suggests
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the present proof).

Next, let f, g, h;, h, be distinct function letters. We take the system con-
sisting of the equations of E(h,,Ix <z g(a,, -, a,, X)), chosen in such a way
that it does not contain f, h,, and of the equations of the forms:

h,(0',0,2)=z2,
f<a19 R an): hz(hl(a]) s, Ay, Z), h(ap cec, Qpy Z/)y Z) s

and denote it by E(f, pzg(a,, -, a,, 2)). Then, we have the following lemma,
the proof of which is obtained similarly to [2, 279-281] by using Lemmata
1, 3:

LEMMA 5. E¢ E(, pzglay, -+, a,, 2)— 104, -+ ,0,)=0, if and only if
Bz P (1,000, X, 1) 15 defined) N\ P(xy,++ , X, 2) = 0], where y = pz[P(x,,++, Xp, 2)
=0].

This shows that the function pz[¢(x,, -+, x,,2)=0] is formally calculable
in ¢.

2.3. LEMMA 6. The functions Aix-x’, ix-0, Ax-w, Ax-x, Axyig(x,y),
Axymax (x,y), Axyj(x,y), Axg'(x) and Axg¥x) are all effectively calculable.

Proor. For the functions Ax-x/, ix-0, Ax-x, we have immediately the
systems FEy, Eu., B of equations (each of them consists of one single equa-
tion), by translating Schemata (I), (Ila), (III), respectively, into the formalism,
so that each of them defines the corresponding one as a effectively calculable
function.

Let f, h;, h,, r be distinct function letters. We choose R, £(h,, Vx<a h,(y, X)),
E(f,3y <bhya,y)) in such a way that the auxiliary function letters of each
of them be distinct from those of the others and from f, h,, h,,r and that the
principal function letter of R be r. Denote by E(f, <) the system consisting
of the equations of R,f(0,b)=r(0,b),h(y,x)=1(X,y), the equations of E(h,,
¥x <ahy(y,x)) and E(f, 3y <bhy(a,y)), in the order exhibited. As it is easily
seen, the following recursion holds:

1g(0,0)=0",
0 if (Ey)y<b(x>x<a[IQ(xy »)=0],

1 otherwise .

lg(a,b)=

By (7), Lemma 3 and its dual and using Lemma 1, this informal argument
suggests the proof that

E{, <)—1(0,0,) =0, if and only if Ig(x,y)=z

and hence Axylg(x,») is effectively calculable.
Using this, the dual of Lemma 3, Lemma 5 and Lemma 1 (or using the
counterpart of Lemma lle of [2, §54]), we see that Ax- @ is also effectively
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calculable. In fact, £;,: the equations of FE(h,, <), hy(a, X,y)=h(y’,x), the
equations of E(h,, Vy < X h,(a, X,y)), deleted the equation hy(a,0)=0, and the
equations of E(f, #x hy(a,x)) (with the same conditions as those mentioned
above for the definition of E(f, <)) defines 1x- w, i.e. Ey,+—1(0,)=0, for any
ordinal x; for, we have o= px{Ig(0,x)=0A(),<.[Ig(y’,x)=0]}, where
(Ex){Iq0, ) =0 A (9)y<z[Lg(y’, x) =0]}.

As FEy, the following system of equations may be chosen:

h(0,a,b)=a, h(0’,a,b)=>b and f(a, b) =supx« h(X, a, b),

from which f(0,,0,)=0, is deducible if and only if max(x,y)=z.
Now we consider the function

o(a, b)= y(max (a, b))+b+a - Iq(b, max (a, b))
where x{(¢) is defined by recursion as follows:
x(0)=0,
2(6) = p2(0)y<x(P+(y - 2) = 2)).

Here, x(¢) is effectively calculable; for, translating this definition of y into the
forms:

£(0) =0, h(y) = s(f(y), (m(y, 07))), f(a) = supy.h(y),

we see easily by (5), (6) and that, for any ordinals x and y, f(0,)=0,
is deducible from M and these equations if and only if y(x)=y, when M is
chosen in such a way that it does not contain f nor h, its principal function
letter is m and the principal function letter of its subsystem S is s. Hence,
by the effective calculability of the functions Axy max(x,y), Axy - x4y, ixy - xy
and Axylg(x,y) and using (or the counterpart of Lemma Ile of [2,
§541]), we have the effective calculability of 2xy ¢(x,»). On the other hand,
we see that

o(a, b) < ¢(c, d) " max(a, b) < max(c, d)
V (max(a,b)=max(c,d)Nb<dVb=dAN a<c))),

and therefore ¢(a,b)=j(a,b) for any ordinals a and b (see, [8, §1] and cf.
Godel [1, Chapter III, 7.81, p. 28]). This shows that Axy j(x,») is effectively
calculable.

Finally, as to the function g!,g£%, by Lemmata 3, 4 and 1 (or using the
counterpart of Lemma Ile of [2, §54]) it will suffice to remark that

gl(a) - Auxx<a(Ey)y<a[j(x; y) = a]

8¥(a) = px<a(i(g'(@), X)=a)
and
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x=yZ1g(x,y)=1NIg(y,x)=1
=1q(0, Iq(x, v) - Ig(y, ))=0.

2.4. Now, we are going to prove the main theorem of this section:

THEOREM 1. For each 1=0,n>0: [f @(¢,, -, ¢y, X1, -, x) 1S partial
recursive, then it is formally calculable uniformly in ¢,, -, ¢,

Proor. Given a partial recursive function ¢(¢,, -+, ¢, x;, -+, x,) wWith any
given numbers [ =0, n > 0, we construct a system E(f:g,, ---, g, a,, -, a,) which
defines ¢ as a formally calculable function uniformly in ¢,,---, ¢, by course-
of-values induction on the length % of a given partial recursive description
@, 0,9, of @ The cases (D-(XID), (XIII"), (XIV) correspond to Schemata
(D-(XID), (XII1), (XIV) by which ¢ (=¢) may occur in the description.

Case (I)-(VII): These were already established in Lemma 6.

Case (VIID: (¢, x4, -+, x) = d(xy, -+, x,). Let E(f:g,a,,--,a, be the
system of an equation of the form f(a,, ---, a,)=g(a,, -, a,).

Case (IX): P(Py, oy Do, X100 X0) = (e, oy Dy x:(Py, o0, Oy, b SPRTLI ) RETTIN
Xl Pe, 0y iy Xy, -+, %)), By the hypothesis of the induction, there exist systems
Hy(hy gy, -, 8,85, ,8,), -, Hy(hy 1 gy, oo+, 81,84, - ,8,) and H(h:gy, -, g, a,
--+,a,) of equations such that, for each choice of ¢, -, ¢,

Egug, Hy—nyOyy, -+, 0,,)=0,,

if and Only if Xj(¢19 oot 1¢l: Xyy oo° :xn)zyj for j= 1, e, m,
and
Eﬁ}:::ﬁ%, H—h(0,,, -+, 0,,)=0, if and only if (¢, -, ¢,y -+, V) =Y,

for any ordinals x, -+, x,, %, -+ , ¥ and y. Here we can choose these systems
so that the function letters occurring in each one of H,,---, H,, H are distinct
from those occurring in the others excepting the given function letters g,, -+, gi.
Let f be a function letter not occurring in H,, ---,H, nor in H. Denote by

Ef.g, - ,g,a,,-+,a,) the system consisting of the equations of H,, -+, H,, H
and of the equation

f(a,, -+ ,a,)=h(hy(a,, -, a,), -, h,(a,, =, a,).
Then, we get easily that for each choice of ¢, .-, ¢,
B, E(f g, -, &, 8, a,)—1(04, -+, 0, )=0,,
if and only if ¢(¢,, -+, ¢y, x4, -+, x,) =y, for any ordinals x,, .-, x, and v,

In the above, to establish the consistency property ‘only if’, we shall use the
counterpart of Lemma Ilc of [2, §547.

Case (Xa): @(¢y, =, Py, Xyy oo, Xy X) = x(Py, o+, 1, %y, 0, ). By the hy-
pothesis of the induction, there is a system H(h:g, -, g, a,, - ,a,) of equa-
tions such that, for each choice of ¢y, -, ¢y,
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Egg H—h(0,,, - ,0,,)=0,, if and only if (¢, -, ¢y,
(12)
Xy, -+, x,) =, for any ordinals x, -, x, and y.

Then let £(f:g,, - .g,a,,a, a) be the system consisting of the equations
of H and of the equation

f(a,, -+, a,,2)=h(a, -+, a,)

where f is a function letter not occurring in H.

Case (Xb):  @(Py, =+, Py, X, X1, o0, X0) = x(Pyy o0, Doy 2y, -+, x,). Similarly to
the above, we have a system E(f:g,,--,g,a,a, ,a,) of equations with the
desired property.

Case (XD): @(¢y, =+, i @, X1, o0, ) = X(Py, oo, Piy Xay oee , X)) O @(@, ¢y, een
Puy Xy, o, Xn) = x(Py, e, Dy, Xy, -+, X,). By the hypothesis of the induction, for
y there is a system H(h:g,, -, g,a, ,a,) of equations such that, for each
choice of ¢,, -+, ¢, we have (12). Let f,g be function letters not occurring
in . Then the system E(f:g,,---,2,8&, 2, -, a,), consisting of the equation
ga,, -+, a,)=g(,, -+,a,) where p is the number of arguments of ¢ and of
those of H followed by f(a,,---,a,)=h(a, - ,a,), is the desired one for ¢.

Case (XII): @(dy, =+, Pu, Xyy oo Xny =2 p2ocel (D1, 0y Pu 0, -0, X, 2) =01,
By the hypothesis of the induction, there is a system H(h: gy, -+, g, a;, -+, 8,, 2)
of equations such that, for each choice of ¢, -, ¢,

Edudt, H—h(0,,, - ,05,,0,)=0, if and only if
(13) (P, s Qi Xy, o, Xy 2)=w (e h(0gy, -+, 0,,,0,)=0,

e Efor-ent@he b o) for any ordinals x,, -+, x,, 2 and w.

Here we choose the system E(f: pz <ah(a, -, a,, z)) defined in SO
that the function letters except h do not occur in H. Let £(f:g,, -, g, a,,
-++,a,,a) be the system:
HMh:gy, -, 8, ,a,2), E{, pz<ah(a,, -, a,, 2)).
Then we can see, for any fixed choice of ¢,, , ¢, the following:
P(Pyy ooy Doy Xyy ooy Xy X) =Y
S vzpcal A( Py s P Xy v, Xy 2)=0] =y
= Bfprent@udionann  B(f puz <ah(ay, -, ay,, 2))
— 104y, -+, 02, 05) =0,
(by Lemma 4)
ZENS HE(f, pz <ah(ay, -+, a,, 2)— 04y, =+, 0,,,0,)=0,
using and also—for the proof of ‘~—’ — by the counterpart of Lemma
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ITc of [2, §54]), for any ordinals x4, -+, x,, x and y.
Therefore, we have that, for each choice of ¢, .-+, ¢,

Eg%:::g;’ E(f L8, 8y, 0, Ay, a)'__ f<0x1; tty Oxn: Ox): Oy ’

if and only if @(¢,, -+, ¢y, xy, -+, X, x)= y, for any ordinals x, ---, x,, x and y.
Case : PPy, oy Pu X, Xy, oo, Xn) = (A2 Py, 0, Dy, 2, Xy, e, X)), O,
v,y X, X1, 0, X,). By the hypothesis of the induction Axx, --- x,x(¢, ¢y, -+,
¢y, x, X1, -+, X,), Where ¢ is a function variable with one argument, is formally
calculable uniformly from ¢, ¢, .-+, ¢;; i.e. there exists a system of equations
Hh:g,g,,8,8,a,,--,3,) with h as the principal function letter and with
g, g, -, g as the given function letters such that, for each choice of ¢, ¢,, -, ¢,

Egg%gga H(h 2,800, 81,2,8y, 00, an)k—_ h<ox; 0.‘01, "ty Oxn) - Oy:
(14) if and Only if Z(Sb: ¢1: Tty ¢L, X: xl’ R x‘IZ)zy)
for any ordinals x, x, .-+, x, and .

Now, for each choice of ¢, .-, ¢;, by the definition of ¢ and (14) we see
immediately that

Eg:}:::g: Elzgx((ljl’ " ¢l,z,x1,"~.z‘n)’ H(h g, 85,0, 80 a,ay, -, an)
(15) —h(0,, 0y, --+,0,,)=0,, if and only if ¢(¢y, -, ¢, x, x4, -+, x,)
=~y for any ordinals x, x,, ---, x, and y.
Using Lemma 2, we can take the system H*h:g, &, -, 8,a,a,,-,a,C,Cy,
-+, C,) to be such that H* defines Axx; -+ x 001 x(22¢%(2, ¢, ¢y, =, Cn)y Py, o,
&, X, X1, -+, X,) as a formally calculable function uniformly in ¢*, ¢, -+, ¢,
Let f,f,, f,, f,, be function letters not occurring in H*, and consider the
equations:
fZ(O: b’ ag, o, an):f(b: g, oy, an) ,
f?)(o’ b: ag, =, an>:0
g(b, a,aq, -, an) - fz(fl(b: a), br ayg, =, an) ’
g(by a: al; Tty an) = f3(f1(0, fl(b) a)): b; al; 0y an) .

We shall denote the system of these equations by G(g,f2(b,a,,---,a,). Let
¢, -+, ¢, be given functions with the specified number of arguments, respec-
tively. For each n+1-tuple of ordinals x, x,, ---, x,, we define F'Z,., to be the
set of equations 1(0,,0,, -+,0,)=0,, where (¢, -+, ¢y, 2, x5y, -+, x,) =y, for all
z<x and y. In particular F§ ., isempty,if x=0. Then we see immediately
that

F%l-“z‘n, E{SI’ G(g’ fa (b! ay, -, an))"— g(oz’ Ox; O.z‘ly Tt Oxn): Oy ’
if and only if
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g(ozr O.t) 0.‘1:11 tt, O.‘r,ﬂ) == 01/ & E{f](fg((gldz,’oﬁli’,z{:xlfz‘n,)xn)
Therefore, when we choose E(f;, <) so that the auxiliary function letters do
not occur in G(g, f2(b,a,, -+, a,)), by the counterpart of Lemma Ilc of [2, §54],
we have

Fﬁr-‘xny E<f1y <> G(gr fa (b, dy, o, an)) — g(Oz’ Ox’ Oxls Sty Ox )Z Oy»

. . ¥ )
if any only if g(0,,0,, 0., ,0,,)="0, € E#aslbarim .

Tn

(16)

Now let £(f: gy, -+, 88,8, ,a,) be the system consisting of the equa-
tions of E(f,, <) G(g,f2(b,a,, - ,a,)) (which may be also abbreviated by FE,,
where E(f,, <) is chosen so that the auxiliary function letters occur neither
in G(g, f2(b,a,, ---,a,)) nor in H¥*), those of H* and of the equation

f(a, a;, -, an): h(a’ Ay, ***,aAp, &, 8y, 0, an) s

Let ¢,, .-, ¢, be given functions with the speciﬁed number of arguments,
respectively. For each n-1-tuple of ordinals x, x,, ---, x,, we denote by Gi,..,,
be the set of equations 1(0,,0,,--,0,,)=0, for any z<x deducible from.
Egllj_"g, E{:g, - ,8,a,a,,a,). Then we see:

If h(0,, 0,4y, -+, 04,04, 0y, -+, 0,,) is deducible from E;‘{f;_"'g”,E,
a7

then it is deducible from Eg{ ty G,y BV H*
For, the letter f does not occur in H*, so the last equation of E is used only
to deduce equations of the form g(z, 0, 0y, -+, 0, )=w in the given deduction;
but by the definition of F,, only the equations of GZ,.,, are used in those
subdeductions.

For any fixed choice of ¢, -+, ¢, (with the specified number of arguments,

respectively), we shall show by transfinite induction on x that

Egll:g;’ E(f . g]: Ty gl; av ah Tt an)'_ f(o.l'y Oxp ttty Oxn): o’y
(18) if and only if ¢@(¢,, -+, ¢y, a,ay, - ,a,)=y (i.e. ¢ is defined
and its value is y), for any ordinals x, x,, .-, x, and y.

Basis: Let x=0. For the proof of ‘if’, suppose ¢(¢y, -+, ¢, 0, x,, -+, x,)

=~y Then by the definition of ¢, y(220%(¢y, -+, ¢y, 2, Xy, =+ s Xu)y L1y 4 D1, 0, Xy,

, X2y (s true), where 2z9%¢,, -+, ¢, 2, Xy, -+, x,) =22 - 0; it follows by the
completeness property of (15) that

Enga(wl’""d)l'z'wh ‘Tn)(f:i g% H<h 18,8000, 8,8, 00, an)
= h(ox Oxlr Tty Oxn): Oy .

Using (3) as given in the proof of (for the choice 0, x, -++, x, of
c, ¢y, o, Cp), We see that (19) implies

(19)



18 T, TUuGUE

B4, ERissiingyy o, H*
20) 2%
~h(0,0,,, --+,0,,,0,0,,--,0,)=0,.

Then by the completeness property of (16) and the general property of de-
ducibility, h(0,0,,-,0,,0,0,,---,0,)=0, is deducible from Eggﬁ} H*,
since FY,..,=¢; hence £(0,0,,---,0,)=0, is deducible from Eiﬁ;}‘g,E(f:gl,
-+, 85,8,a,, - ,8a,) by using the last equation of E as the principal equation.

Conversely, suppose that E;@;::‘é;, E(f:g,,8,aa, ,a,)—10,0,,-,0,)
=0,. In Eé;iﬁ;, E only the equation f(a,a,, -+,a,)="h(a,a,, -, 2a,,a,a, - ,a,)
contains the function letter f in the left member. Then to deduce f(0,0,,

+,0;,)=0, we must take it as the principal equation, to which the rule R,

Is to be applied successively to obtain (0,0, -+, 0,,)=h(0,0,, -, 0,0, o
--+,0,,) followed by the application of R, to eliminate the letter h, since no
other applications of rules along the principal branch yield £(0,0,,,---,0.,)=0,
as the end equation. Therefore we must take the deduction of h(0,0,, -,
0z, 0,04y, -+, 05,)=0, from E£:%, E as only the contributory deduction.

Now we can use (17). In consequence it must be deducible also from
E;ﬁllg; G% +p EH*, where G, is empty by definition. We note that the
left members of equations of H* contain no function letters which occur in
ng;%; or in E)} by the definitions of them, h is the principal function letter
of H* (hence it occurs neither in E;f;ifi nor in E)), and that only the function
letter g occurs in both E; and H*. Then by the counterpart of Lemma llc
of [2, §54] and using (16) for the case when x=0 (in this case [, =¢)
we necessarily have (20). From this, it follows (19), hence (¢, -+, ¢, 0, x4,
-, x,) =y by using (3) as given in the proof of (for the choice
0, xy, -+, x, 0f ¢, ¢y, -+, cn), the consistency property of (15) successively.

Thus, (18) is proved in case x=0.

INDUCTION STEP: Let x>0. Assume as the hypothesis of transfinite
induction that (18) holds for every ordinal z<x. Then by the definitions,

F2g =G,

Then we can prove (18) for x similarly to the case for x=0. We give the
outline of the proof:

P(Pry e s Qi X, Xy oee ) =Y
2 prgrretna e el e h(0g, 04y, -+, 04,)=0,
(by (15))
—E jflljjj;f;, EXelhinthzstis, H* —h(0g, 0gy, -+, 0,y 0y Oy, -+, 05, ) =0,

{by (3) as given in the proof of (for the choice x,x,,-,x, of ¢, ¢,



Partial recursive functions of ovdinal numbers 19

°tcy Cﬂ))
= ng?ﬁf: Fgr--xn» EH*—h(0,, Oxv Tt Orn’ 0, Om’ T Oﬂn) = 01/

(by (16), and for ‘< ’, using the counterpart of Lemma IIc of [2, §547] and by
the definitions of E, and H¥)

=B, Gy EAH* = 0(0,, 04y, -+, 05, 0, Oy, o0, 0,) =0,

(by the hypothesis of transfinite induction)
:E%I."ZJL,E“—[’I(OJ‘., Oxp e aO:L‘ yo,z';()mp o 7092 ):0
8181 n n

Y

(for ‘—’, by the definition of G%,., and using the general property of de-
ducibility ; for ‘<, by (17))

— 1 =
«— Eé:?gg’ E'—' f(Oa:’ 01:1; ’ O:c,,,) - y

(for ‘«’, by analysing the given deduction.)

Thus, (18) is proved for any fixed functions ¢,,---, ¢;; hence, we know
that £(f:8,, -+, &, 8,84, +,8,) is a desired system for the present case.

Case [XIVY: @(¢y, -+, 1, 2y, w0, %) = pxlx(Py, -+, fu, Xy, oo, X, X)=0]. Using
Cemma 5, we can define a system E(f:g,, -, g, a,,,a, of equations simi-
larly to the case (XII) such that, for each choice of ¢,, -+, ¢,

E¢d, E—1(0,,--,0,)=0,, if and only if ¢(¢,, -, ¢,

Xy, e, Xn) =2y, for any ordinals x, -+, x, and y.
Q.E.D.
Similarly we have
THEOREM 2. If @(y, -+, &y, x4, -+, Xp) 1S pavtial recursive in the ordinals
A, e, Ay, then it 1s formally calculable in ay, -+, &, and uniformly in ¢y, -, ¢

§3. Arithmetization of the formalism in the theory of ordinals.

3.1. We introduce a Godel numbering of objects of the formalism by
ordinals in such a way that the Godel number of a system of equations in
the strict sense is a natural number (i.e. an ordinal < ®). To the symbol 0,
for the ordinal a we correlate the Godel number j(3, @), to the 1+1-st variable
v; the Godel number j{4, i), and to the ¢+1-st function letter f; the Godel
number j(5, 7). Suppose that the Gédel numbers v, v, ---, 7, have already been
correlated to the terms r,ry, ---,r,, respectively. Then, to r’ we correlate the
Godel number j(6, r), to f(r,, ---,r,) the Godel number j(f, (7., 5(7s, -+, i (¥, T)
-+))) where f is the Godel number of the function letter f, and to supxr,
the Godel number j(7,j(x, j(r,, 7,))) where x is the Godel number of the variable
X. Next, to r; =r, we correlate the Gddel number 58, 7(r;, v.)). To a system
of equations e, .-, e, we correlate the Godel number (1, j(ey, -« , (exm1, €x)-+))
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where e,, -+, ¢, are the Godel numbers of e, .-, e, respectively.

In order to define the Godel number of a transfinite sequence of equations
(say, the Godel number of an ascent) or of a transfinite sequence of deduc-
tions, we introduce some auxiliary notions by using the model of set theory
constructed in the theory of primitive recursive functions, given in (for

this model, cf. also [5], [6]. Let S(a,b) be

(uju(a(v)v<a<w)w<a(< v, u> < aN <7/U, u> cEa—-V= W)
N (Deca(x € a—(EY)y<a( E2):<s(O(0) A 2=, (0, 2,0)7))
AN (Dl EY)y<a(,50, x,0)) € a).

Then S(a,d) is a primitive recursive predicate by [8, §37%.
Now, we assume the axiom of constructibility ‘V =L’ (Godel [I]). Let
S*a; ¢, b) (S¥(a; {as) <)) denote the predicate

S(a, &) A (2)p(P(x) = u(ati(0, x, 0)))"
(S(a, b) A ()@ = u(atj(0, x,0)))),

and S(a; ¢,b) (S(a; {az}.<) be

S*a; ¢, D) N (Daca 7 SH (x5 ¢, 0) (S¥(a; {az}aco) N (Dy<a 7 STy {az}2)) .
Then for any given ordinal 4 and function ¢ with one argument (or a trans-
finite sequence {a,},«, of ordinals), there exists one and only one ordinal a
such that we have S{a;¢,b) (or S(a; {a;},<)). Using this, we correlate to an
ascent {es}e, the Godel number j(®, a) where S(a; {a¢}e<,) and ag is the Godel
number of the prime equation e, of the ascent, under the assumption of the
axiom of constructibility.

By the definition, a deduction is in the tree form with infinitely many,
but finite in length, branches in general. Hence, by induction corresponding
to the definition of ‘ deduction’, we can assign the Godel number d to a2 deduc-
tion D, whose end equation is e with the Gddel number e, from a set F of
equations as follows:

0. If D consists of only one equation in F, then d=3(2, e).

1,2. If D, is a deduction with the Gédel number d;, from F, and D is

6) For the definitions of the functions or predicates: j(x,¥, 2), xEy, x=3. {(x, ¥),
O(3), see [8, p. 204, p. 205 and p. 208]. These are all primitive recursive by their
definitions.

7) w(x) is a primitive recursive function such that #(e)=the ordinal to which a
corresponds if a is an ordinal in the model, #(a)=0 otherwise; cf. [8, p. 206]. afb
is defined as follows:

a“rb:{ Wy<a({y, by €a) if there exists a y such that y<a and (¥, b)>&a,
0 otherwise.
The function xty is evidently primitive recursive; cf. [8, p. 2077
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_%‘ by R, or R, then d= (2, j(e, 2%d,))).

3. If D,, D, are deductions with the Goédel numbers d,, d,, respectively,

from Fand D is 425 by R,, then d=1(2, (e, (g, g @)

4. If D, is a deduction with the Godel number d, from F, {D, ¢}:cy is a
sequence of deductions of the members of an ascent {e;}.., with the Godel

number a from Fand D is ~—D\1{22’-5}i<f*— by R,, then d=(2, j(e, j(g*(d,), i(a, d.))))

where S(d,, {g%(dy, )} e<,) and d, ¢ is the Godel number of D, ..

Thus, the Godel number can be uniquely correlated to each object of the
system, under the assumption of the axiom of constructibility if necessary.
As is easily seen from the property of the function j, distinct ordinals are,
of course, assigned as Go6del numbers to distinct objects.

3.2. Let »(x, y) be defined by

w(x, y)=y f x=0
= g*(v»(3(x), y)® if x>0 Nx<ow,
=0 otherwise .

Using [8, Proposition 3], we see easily that this function is primitive recur-
sive. We use below the abbreviation [a], for the function g'(v(n, a)), where
n<m.

Now, we define primitive recursive predicates and functions corresponding
to the respective metamathematical predicates and functions for our formal
system, via the Go6del numbering defined above for the objects, similarly to
[2, §56].

Or(a), V(a) and Fl(a) are the predicates expressing that ‘a is the Godel
number of a symbol for orvdinal’, ‘a is the Godel number of a variable’ and
“a is the Godel number of a function letter’, respectively. Then we have

Or(a)2gla)=3,

V(o) 2Zgia)=4 N na<w,

Flla) Zg{a)=5Na< w.
Let Or—*(a) be defined by

Or—Ya)= pxycq (a=7(3, x)).

If a is the Godel number of the symbol for an ordinal b, then Or~(a)=0b;
Or—Ya)=a, otherwise.
Tm*(a) is ‘a is the Godel number of a term in the strict sense’, that is

8) d6(x)=z if x=2z'; otherwise, 6(x)=x. See [8, p. 201]
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ITm¥a)2a=9Vv V(a)V [g(a)=6ANTm*(g%a)))]
\% [FZ<[G:]0) A (En)ocnco Tm*(v(n, a)) A (DocicaTm™(Lal))]
VILg(@)=7AV([al) ANTm*{Lal) N Tm*((3, a))] .

When a¢=0, all disjunctive members on the right-hand side are evidently
false; hence we have 7 Tw*0). When a >0, we see that g%a) <a (g¥a)=Z a),
by the property of 7 and the definition of g2 (g?), hence we have also [a]; <a
and v(n,a)<a, for 0<i<n and n <w®. Let z(x) be the representing function
of Tm*(x). Then, putting

R(¢,a)2a=9VV(@)VIg(a)=6A¢(g¥(a)=0]
V LFIalo) A (En)ecn<o $(n, a)) =0 A (Docica($(Lals) = 0))]
Vg @) =7TAV({a]) A ¢lal)=0A¢(3, a))=0],

we get r(a)= y(Azt*(2), a) where x(¢,a) is the representing function of the
primitive recursive predicate R(¢, a). Therefore, the predicate Tm*(a) is prim-
itive recursive (cf. [2, §43, Example 3]). This argument can be applied
also to predicates given below.

Tm(a)=0r(a)V V(a) VvV [g¥a)=6 A Tm(g¥a))]

V LFU(Lale) A (En)cnco(Tm(v(n, a)) A Do<icn Tm([a]:))]

VIgHa)=7AV(Lal) A Tm(Lal) A Tm(x@3, a))] .
Then the predicate Twm(a) is true if and only if a is the Gdédel number of a
term.

Eqg¥(e), Eq(e), SE*¥(z) and SE(z) are the predicates expressing that ‘e is

the Godel number of an equation in the strict sense’, ‘e is the Godel number
of an equation’, ‘z is the Godel number of a system of equations in the strict

sense’ and ‘z is the Godel number of a system of equations’, respectively.
Then we have

Eq*(e)2g'(e) =8 AN Tm*(g'(g¥e)) A Tm*(g*(g%e))),
Eqle) Zg'(e)=8 ATm(g (gxe))) N T'm(g*g¥e))),

SE¥(2)S [2]o = 1 A (En)ocnco Eq*(v(n, 2)) A (Docicn Bg*([212))
and

SE(z) Z[z]o=1 N (En)<i<olEq(v(n, 2)) A (Do<i<noq([210)) -

Sb(d, e, t,x) is ‘t, x and e are the Godel numbers of a term t, a variable x
and a term or an equation e, respectively, and d is the Godel number of the
term or the equations d which results from e by substituting t for x’, that is
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Sbh(d, e, t, x)ZTm() N\ V(x) AN(ITmle) V Eqle))

ANlle=xANd=bHVV(e)ANe+xNd=e)V(Or(e) Ad=¢e)

V ([d]o="lelo # 7 N (En)cnco(Sb(x(n, d), v(n,e),t, x)

A Do<i<aSWLd Ty, L, 2, 1))

V{Idly=[ely=7TNA[d],="[el, # xANSb([d],, [els, ¢, x)

A Sb(»(3,d),v(3,e), ¢, x))].
To see that Sb(d,e,t, x) is primitive recursive, it will suffice to consider in
the same way as in [2, p. 257] the predicate Sb(z, ¢, x) such that

Sb(z, ¢, x) =2 Sb(g*(2), £%2), ¢, x);

because ([ g1(2)];, [£%2)]) <z and j(v(n, g'(2)), v(n,g%*))) <z for 0 <i<n and
n <o, when z>0 and gi(z)>0.
Let Cit(e, x) be the predicate

(Tme) Vv Eqle) AN V(x) N\ 7 Sble,e,9,x).

Then Ct(e, x) is true, if and only if e is the Godel number of a term or an
equation e and x 1s the Gddel number of a variable X such that e contains X
free.

Cny(c, d) 2 Eq(d) N (Ex)s<a(££a)q<(Or (@) N CHd, x) N\ Sb(c, d, a, x)) .
Cnyle, ) S Eg(d) N (X)zca /CE, x) N (ED)<i(£a)qca[ Tm() N Ci(2, 16)
A Or(a) A Sb(d,t, (6, a), 16) A Sb(c, t,7(3, Or~(a)+1),16)].
Cny(c, d, e) 2 Eq(e) A\ FI(g'(Lel)) A (En)ocn<ol Or(v(n, [e]1))
A (Do<icnOr ey, )1 A Or(»(2, e)) \ Eq(d)
A (X)za /CHd, ) N ¢ =(8,7([d ], ¥(2, )
N Ea[ Tm(t) N\ CHE, 16) N\ SO((2, d), ¢, €], 16)
A Sb(v(2, ¢), t, v(2, e), 16)]
where [d];,,; abbreviates [[d],];, Then Cn(c, d) (Cny(c, d)), Cnyc, 4, ) express.
‘c is the Gidel number of an equation c which is an immediate consequence
of an equation d with the Godel number d by R, (R,)’,
‘c, d and e are the Giodel numbers of equations c, d and e, respectively,
such that c is an tmmediate consequence of d and e by R,,
respectively.
Hereafter we assume the axiom of constructibility.
Let As(a) be ‘a is the Godel number of an ascent’, and Sup(a, b) be ‘b is.

the Godel number of the supremum of an ascent with the Gdédel number a’
Then these are
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As(@)2g (@)= @ AN(EY)y<oEDi<d[S(8%@), 9) A FI(g'(1)
AN g =16 V (En)icpcol[t1 = 16 A Or (»(n, 1)) A (D1<icaOr (LEIN}
N (D)acy(g1(@™) =8 A Sb(La“ ], 8, 5(3, x),16) A Or(v(2, a“®)))]
where a*” = u(g%a)14(0, x, 0)),
Sup(a, )= As(a) A () z<uca(¥(2, a) = b) A Or(b)

N Dyl O7(3) = (EX) cicay < ¥(2, aP))]

vhere (@)= pz,..S(g%a), ).
We can see easily that Sup(a,b)—b<a’. Hence, put

Sup (@) = pz.<4- Sup (a, 2) .

Then we have a primitive recursive predicate Cn,(c, d, a) expressing that ‘¢, d
and a are the Godel numbers of equations c, d and an ascent A, vespectively,
such that c is an tmmediate consequence of d and A by R,’. In fact,

Cnyc,d,a)= As(a) A\ Eq(d) A (x)<a 7 CHd, x)
N e =178, j([d ]y, »2, N N (EWuca EX) pca E)i<a [ Tm(u)
A Ctu, 16) A V(x) A Tm(6) N\ Ctt, x) A Sb([a®],, 8,9, x)
ASO((2, d), u,j(7,5(x,7(45(3, I(a)), 1)), 16) A Sb(v(2, ¢), u, Sup (a), 16)] .

Let D(z,y) denote the predicate ‘z is the Godel number of a system of
equations Z, and y s the Godel number of a deduction from Z’°, and D(¢,, -+ .
¢y, z,y) the predicate ‘z is the Godel number of a system of equations Z (whose
given function letters are g, -+, 8, and vy is the Godel number of a deduction
from E¢:é, 27’ for completely defined functions ¢, ---, ¢, with n,,---,n, varia-
bles, respectively. Let [x]ys=xif g'(x)=8; otherwise, =g'(x). Then by the
definition of the Godel number of a deduction, we have

Dz, ) ZSE(@) Ng'(y)=2
AN LEG(&*9) N (Eocico( 82 (3) = [21: V (&%) = v(i, 2)))]
V [Cny(Lydy, [v2, 90150 A Dz, 52, (2, ¥)))]
V [Cno(Lydy, [Tv(2, ¥) 100 A Dz, 52, v(2, 3)))]
V LCns(Ly i [y a0 [v(3, 9015 A D(z, 72, Ly12)) A D(z, (2, w(3, ¥))]
V ECn Ly Ty, [¥dem, (10 ASCE, 9), 91)) A (0acrayipn(Ty 1
= [Lu(v@, »170, x, 0) s A D(z, 52, u(+4, y)75(0, x, ONNI}

and that D(¢,, --- . ¢y, 2, ¥) is expressible by the predicate obtainable by inserting
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(21) [[y:‘l =8 A [yjz,o =& AN (Eul)u1<1/ hh (Eun1)um<y([y]2,1 :](3’ ul)
/\ Lo /\ [y]2,n1—1 :](3! un1-—1> /\ y(nl) I:y:'z) :](3, unl))
AN V(?)’y) :](3: S[)l(uly Tty un1))]

Ly =8 ALyl =28 N Euuy<y = Ethaun<(LV 2,0 =53, up)
VANRLIVAN [yjz,n[——l :](37 unr—l) AN V(nlx [y:lz) :]<3, um))
A U(gr y) :7(31 sbl(ul’ Tty unl)):l ’

where g, -+, g, are the Godel numbers of g, --,g, as the first disjunctive
member in the braces { } in the right member of the above equivalence,
using D(¢y, -+, ¢, z,%) in place of D(z,*).

Now, we consider the predicate ‘z is the Gddel number of a system of
equations Z, and y is the Godel number of a deduction from Z of a prime equa-
tion f(x,, -+, x,)=x, where f is the principal function letter of Z, x,, -+ ,x, are
the symbols corresponding to the ordinals x,,---,x, respectively, and x is a
symbol for ovdinal’, and denote it by S.(z, x;, -+, X, ¥). We can also consider
the predicate denoted by S.(¢,, -+, &1, 2, Xy, ** , X, ¥), reading ‘ from E¢¢, Z7 in
place of ‘from Z’ in the above.

Then by the definition, we see that

Sz, X, -0, X, V)2 D(2, ) AN (EDpcico {[v(E, 2)]y =8
A LFULE* ()]s, 1,0 A L& (0 k1,0 = [¥(T, &) 11,0 A L&) 1,0 =53, x1)
A s ALk 1,01 =53, X)) A v(n, [L&2(9)4,1) =53, %)
N Or(v(2, Lg*(»)1:0)]}

Therefore, S,(z, x;, -**, x,,,¥) 1s primitive recursive. For S,(¢,, -, ¢, 2, x5, -+,
x,, ¥), we have an equivalence like S,(z, x,, -+, x,, V), except reading ‘ D(¢,, .-+,
¢, 2,)" in place of ‘ D(z,y)’; hence it is also primitive recursive.

Let U(y) be defined by

U(y) =0r='(»(2, [g*(¥)]s)) -

Then U(y) is a primitive recursive function such that U(y)=x, whenever y is
the Godel number of a deduction of an equation of the form r=0,.

Thus, we have established the following results, under the assumption of
the axiom of constructibility:

A function @(xy, -+, x,) 18 formally calculable (uniformiy)in ¢, -, ¢, ((=0)
wheye ¢,, - ,d, are any completely defined functions of ny, ---,n, variables,
respectively, if and only if theve exists an ovdinal e such that

22 e<w
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(23) (xp) -+ (x)[@(xy, +++, x,) is defined

:(Ey)sn(¢lﬂ Tty ¢l; €, X1y °** s Xny y)] s
and

(24) (xl) e (xn)(y>[Sn(¢1’ ) Sl’z, €, Xyy vty Xny y)'—) U(y> = @(Xl, STty xn)] .

In general, a function @(x, -+, x,) is formally calculable in ay, -, a,, and
(uniformly) in ¢y, -, ¢y, where ay, -+, &, are any constant orvdinals and ¢y, -, ¢,
are any completely defined functions of n,, -+ ,n, variables, respectively, if and
only if there exists an ordinal e (the Godel number of a system EQuy, -, 04,)
of equations) such that and (24) hold, wheve generally e > @ but e is con-
structed from &, -+, a, by primitive recursive functions.

§4. Theorems on recursive functions and the hierarchy {37 1199} o1.0...

4.1. In this section, we assume the axiom of constructibility, and suppose
¢, -+, ¢, range over the completely defined functions of n,, ---,n;, variables,
respectively.

For each [=0, let

T’n(¢1; Tty ¢l: Ry X1y =y Xy y):Sn(¢1’ e, 9[11,, 2, Xyy 00ty Xy y)
/\(t)t<y7sn(¢)1) "t ¢'l; Zy X1y 0 5 Xy t) s

following Kleene’s famous notation. Then, we have

(25) (Ey}Tn(¢1: "ty ¢l, 2, X1y *0*y Xy y)Z(Ey)Sn(¢1y Ty ¢l: By X1y 7ty X y) .

Now, using these primitive recursive predicates we can proceed as in the
Kleene’s theory of recursive functions of natural numbers. First of all, we
have the normal from theorem (cf. [2, p. 288, p. 292 and p. 3307]):

THEOREM 3. For each [ =0 and n>0: Given any function o(x;, -, X,)

Sormally calculable (uniformly) in ¢,, -, ¢, a natural number e can be found
such that

(26) P(xy, +o, xa) 15 defined Z(EY)To($y, -+, Pi, €, Xy, 20, Xny 3) s

@27 Py, =0, %) = Uy TPy, -, Py €, 20, 0, X0y 3))
and

<28) ) (xl) o (xn)(y)[Tn(gbl’ ) S[]L‘; €, Xy, 0, xn’y)—é U<y) = @(xl) Tty xn)] .

Furthermore, we have the following theorem.

THEOREM 4. For each | =0, m >0 and n>0: Given any function ¢(x,,
e, x,) formally calculable in constant ordinals ay, -+, a,, and (uniformly) in
Junctions ¢y, -, ¢y, an ovdinal e can be found such that

(29 e=v(a,, -+, Ay) .
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where v is a primitive recursive function known from the syntactical form of
the system E(0y, -, 04, 0f equations which defines ¢(x,, -+, x,) as a formally
calculable function from &, -, &y, ¢q, -+, ¢, (26), C7), and (28) hold. Thus, it
holds that

(30) §0(X1, Tty xn) = U(ﬂTn(¢1y Tty 9[’11 V(thl, T am): Xpy =ty xn,y» .

When a function ¢(x, -+, x,) 1s formally calculable uniformly in ¢, ---, ¢,
(in a4, -+, a,, and uniformly in ¢, ---, ¢;) we write this as @(¢y, -+, ¢, x4, -+, ),
and say @(¢y, -+, ¢y, x4, -+, x,) to be formally calculable (in a4, -+, a,). Then,
from the above theorems, if follows that a formally calculable (in «, -, ay)
Junction @(Py, -, Py, Xy, -+, X,) 18 partial recursive (in «,, -+, a,). Unifying this
with (2), we have

THEOREM 5. For each [ =0 and n>0: A function @({y, -, ¢y, xq, o0, Xy)
is partial recursive (in «,,---,a,), if and only if it is formally calculable (in
a,, -, ), when ¢y, -, ¢y range over the completely defined functions.

To obtain the predicate T72™ (wy, -+, wy, 2, X1, -+, X, ¥) similar to Kleene’s
(cf. [2, 290-2917]), we proceed as follows.

When ¢ is a function variable with n arguments, let 0,(¢,%) be the func-
tion defined by

0§, ¥) = pwSw, {P(x)} z<y) for n=1,

= pwS, {P(xs, -+, X} ir, o joners mmy5<y) for each n>1.
By the definition of the predicate S, we see immediately that, for each n:
3L ¢(x) = u(o (¢, 150, x,0)) when 1<y,
(32) Py, o0, Xa) = (0 (¢, PITIO, 5(xy, -+, F Xy, X) +++), 0D)
when j(xy, -+, j(Xpmy, X0) =) <,
and that o,(¢,»y) is general recursive. We shall abbreviate tfunctions
u(o (¢, 130, x, 0)), u(o(P, »)150, j(xy, =+, H(Xnmy, Xn) =), 00) (m>1) by (0(¢, ¥))a,
(0.9, ¥))zy.a,, TeSPECtively.

Using (31) or we can write ¢;(uy, -, u,) (=1, in (21) as
(On(Pis Yy, s fOr, even if n;>1, we have not only u; <y (j=1,---,n;) but
also j(uy, -+, j(Un;—1, Uny) ) <», as is easily seen from the definitions. Hence,
we obtain the predicate D*"™(w,, ---,w;, z,y) instead of D(¢,, -, ¢, 2,5) by
replacing ¢;(uy, -+, uny) in (21) by Wy, for each t1=1,-.-, [ Then, using

D, -+ ywy, 2,¥) in place of D(¢,, -+, ¢, 2,¥), we have a primitive recursive
predicate ST (., -+, wy, 2, Xy, -+, Xn, ¥) for each />0, n >0 such that

S:zzlmnl(on1<¢1,y); Ty Un](¢lvy)’ 2, X1y *00, xn:y)

= n(gblv i v¢l7 Ry Xyy oty xn:y)'
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Let Trvmi(e,, -,y 2, X4, ==+, X, ¥) be the predicate
Szrunl(wl’ e W, 2, Xq, 0t x7“y) VAN (t)l<y'7S;111"~nL(w1’ e Wy, 2, X, X, t) .

Using this, we have by the normal form theorem that, given a partial
recursive function @(¢y, -+, ¢y, x4, -+, X)), a natural number ¢ can be found such
that

¢((/}1! A ’ Sbly xl; Sty xn) = U(pyTZ]"'ﬂl(o-nl(g])h y)! Tty O"/LI(S")Z: _y)y e! xly Sty x'n; J’)) .

This shows the following: For example, let wy=w,,[=1 and n,=1. Given
a partial recursive function (¢, x,, ---, x,.), for each ¢, x,, --- , x,,, if (¢, x,, -+, x,)
is defined, its value depends only on at most countably many values ¢(z) for
the function argument ¢.

REMARK. T,(¢y, -+, &, 2, X1, o+, Xn, V), TR0y, o0, 10, 2, X1,y o0, Xp, V) A€ Prim-
itive recursive, but, unfortunately, T2V ™(0,,(¢1,3), =, 0Py, ¥), 2, Xy, = 4 Xy, V)
is general (not primitive, at present) recursive, in contrast to the Kleene’s
case (cf. [2, 290-2917). '

4.2. On account of [Theorem 3, we say, following to Kleene’'s terminology,
that any natural (ordinal) number ¢ such that holds defines ¢ recursively
(n ay, - ,a,) or is a Giodel number of ¢ (from a4, -+, ad,). Now we have a
counterpart of [2, Theorem XXIII'} for our case.

THEOREM 6. [For each m,n >0, there 1s a primitiwve vecursive function
SoT(z, Yy, -+ 5 Ym) Such that, if e defines vecursively Ay, -+ VX1 -+ X,0( V1, =+ 5 Vim, X1,
o, X)), then, for each fixed m-tuple y,,-- ,vn of ovdinal numbers, SbZ(e,y,, -,
Vm) defines recursively Ax; -+ x,@(Viy 0 s Ymy X1y *** » Xn) IR V1,000, Vo, and, when
2,91, o, Vm ave naturval numbers, so 1S STz, V1, *** » Vm)-

Similarly for the case [ > 0.

Proor. Similar to the proof of [2, Theorem XXIII]. By the definition,
(Vs s Yo X1y o X)) Z U T i€, Y1y oo ) Vs X1, o005 Xy 3)). SINCE A2V -++ Yy =+ Xy
UCYT a2, V1, 0 Yms X1 o+« X0, ¥)) 1S partial recursive, it is formally calculable
by Theorem 1. Then, we can find a system of equations defining that func-
tion as a formally calculable function. Let D be such a system, and g denote
its principal function letter. Now, we choose a function letter f which does
not occur in D. For any choice of ordinals z,y,, -, v, let C consist of the
equations of D followed by the equation

f<al) ) an): g(oz, O::/p Tty Oymy ay, yan) .

Let d,f, g, a,,+-,a, be the Godel numbers of D,f,g, a,,-,a,, respectively.
Then, the Godel number of C is the ordinal

](17]([d]1) T :j([d]S"l’].(y(S: d),](8’](](f’j(a1: b :j(an-—ly an) "')) s
(g, 7033, 2),5(G3, 31), -+, 1B, Ym), J(ar, ==+, {(@nrs @d-++D)-+ D)D)
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where s = px,.Eq(v(x,d)). We write this as Sz, v, -+, V). SO™2, V1, -+, Vi)
is a desired function. Indeed, Sb2(z, y,, ---, V) is primitive recursive and, for
each fixed m-tuple y,, ---, ¥, of ordinals, SbZ%(e,y,, -, v, defines 2Ax, -~ x,0(y;,
e VYo, X1, 0t , Xp) Tecursively in vy, e,

COROLLARY. For cach natural number n>0: Ifa function ¢(x,, -, x,) is
partial recursive in a,, -+, &y, then a natural number e can be found such that

Sbm(e, ay, -+, &y) 1s a Godel number of @ from «y, -, Ay,

THE OUTLINE OF THE PROOF. Given a function ¢(x, ---, x,) partial recur-
sive in «,, -, @, we can find, by [Theorem 2, a system FE(0,,, -, 0,,) of
equations which defines ¢ as a function formally calculable from «, -, &,
Choose variables y,, -+, v, and a function letter f not occurring in E(0,,, -,
Oun). In each equation of E(0,,---,0,,). change simultaneously each part

h(r,, --+,r,) to h(ry,--,r, vy, -,V and then each symbol 0,, (G=1,.--,m) to
the variable y;, respectively. To the system of equations thus obtained, add
the equation

f(YI; sy Yms drs ot an>:g(all oty Ay Vi, s y'm) y
where g is the principal function letter of £(0,,, ---,0,,), as the last equation.

Let £ be the resulting system. The Godel number ¢ is a desired one; i.e.
e< and e defines Ay, -+ VuXy -+ 5,0( 31, -, Yy X1, -+, Xn) Tecursively, where
@(-xh T, xn>g @(“1: ey Wy Xyy 000, xn) .
As the other corollary to we have the following recursion
theorem (cf., e. g., [2, Theorem XXVII]).
THEOREM 7. For each natural number n>0: Given any partial recursive

Sunction ¢(z, xq, -+, xX,), @ natural number e can be found which defines ¢(xy, -
X,) recursively, where

’

(-xlr Tty Xn) = ¢(€) X1y =ty xn) .
The proof is similar to that of Theorem XXVII in [2], and e=SbL(f,f)
< w, where f is a natural number which defines 2yx, --- x,0(SDL(Y, V), x4, -+, Xp)

recursively.

4.3. We can apply usefully the predicates T.(z, x;, -, %,,y) (n=1,2,--2)
to develop the theory of hierarchy {27% ITZ%}i-y,o,.. (cf. [8, §5]), built on the
quantified forms of the predicates of ordinals which are expressible syntacti-
cally by starting with general recursive predicates and using the symbolism
of the first order predicate calculus. Hence, we have a version or another
easy proof for each of the enumeration ([ 8, Corollary to Theorem 4]), hierarchy
([8, Theorem 51), Post’s Theorem ([8, Theorem 3]), etc. of [8, §§5, 6].

For example, given any general recursive predicate R(a,b) of two vari-
ables, consider the partial recursive function g#xR(a, x). Then, by the defini-
tion,
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rxR(a, x) is defined = (Ex)R(a, x).

By Theorems 1, 3, a natural number ¢ can be found such that it defines
pyR(x,v) recursively. Hence, using (26) of Theorem 3,

(33) (Ex)R(a, x)(Ex)T\(e,a,x).

Thus, we see: The predicate (Ex)[z<w A Ty(z,a, x)] enumerates® the pred-
icates P(a) of the form 339" with general recursive scope. Similarly we have
the enumerating predicates for the classes of predicates of the other forms
in {39 I17%s-1,.. From this, it follows immediately that the class of the
predicates of the form 27 (or 11¥?®) is the same whether a general recursive
or only a primitive recursive predicate be allowed as the scope. (cf. [8, the
second part of Theorem 37).

Now, we can give another proof of Theorem 5 (the hierarchy theorem)
of [8]. Indeed, for the form 3¢ it suffices to take the predicate (£x)T(a, a, x).
This is evidently of the form >}¥¢, but it can not be expressed in the dual
form TI¢¢ Similarly for the other forms. Furthermore, we add the complete
form theorem (cf., e.g., [3, VII]).

THEOREM 8. The predicate (Ex)T,(a,a, x) is a complete predicate'® of the
form X974, Similarly for the other forms in {220 TIZ %} io1,s,.

PrOOF. Given any predicate (£x)R(a,, -, a, x) with general recursive
scope R, consider the function 2a, --- a¢,zp¢xR(a,, -+, a,, x). Since this function
is partial recursive, there is a Godel number, say e (e <w), of it. Then, for
any fixed n-tuple a,,---,a, of ordinals, Sbi(e, a,, -, a,) is a G6del number of
the function AzpxR(a,, -+, a,, x), which is defined if and only if v(Ex)R(al, .,
a,, x) for any z. Hence, by Theorem 4, we have

(EX)R(al» Tty an; X)Z(Ex)T;(Sb?(e, aly Sty an); Z, x)
Z(Ex)T\(She, ay, -+ , a,), Sbi(e, ay, +++ , a,), X)

(by substituting Sb%(e, a,, -+, a,) for z).

We consider the predicates obtained by using ‘ general recursive in the
classical sense’ or ‘ general recursive in the ordinals «4,---,«,’  in place of
‘general recursive’ in the definition of the (gr)-predicates (see [8, p. 206]),
and denote the corresponding quantified form (or the class of the predicates
of that form) by J9%w;) (I¥%w;)) or 1g®et-am (TIg®etam) regpectively.

The following will be remarkable.

The predicate (Ex)Ty(z,a,x) (Ex)z<wo A T,(Sb™z, ay, - ,ay),a,x)]) enu-
merates the predicates of the form U w)(Xy%*v%m)  and the predicate
(Ex)T\(a, a, x), which is of the form X and is a complete predicate of it, is

9) Cf. [2, Discussion of §57, p. 2827.
10) For the terminology ‘complete predicate’, e.g., see [3, p. 196].
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a complete predicate also of the predicates in 37 w.). Similarly for the other
forms.

In §4.2-3, we treated only the case where the number / of function vari-
ables=0. We remark that one can extend that to the case [ >0, without
any difficulty.

Tokyo University of Education
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