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Introduction.
In this paper, by a Riemannian manifold we always mean a connected $C^{\infty}-$

manifold of dimension $n(\geqq 2)$ with a positive definite $C^{\infty}$ -Riemannian metric.
A transformation of a Riemannian manifold is said to be conformal if it pre-
serves the angle defined by the Riemannian metric. Evidently a conformal
transformation with respect to one Riemannian metric is also conformal with
respect to one conformally related to the original one. It is known [5] that
if a manifold is compact and of dimension greater than two, every Riemann-
ian metric on it can be conformally deformed into one with constant scalar
curvature. Thus as far as a conformal transformation is concerned, we may
assume the constancy of the scalar curvature in the above case. Then the
scalar curvature, which is constant, is preserved by the transformation. This
property seems to help the study of conformal transformations. Indeed, a
conformal transformation between two compact Riemannian manifolds of non-
positive scalar curvature, not necessarily constant, is isometric if and only if
it carries one scalar curvature into another [4]. Thus a compact Riemannian
manifold of constant scalar curvature admits a conformal transformation,

which is not isometric, only if the scalar curvature is positive. Therefore we
may restrict our consideration to Riemannian manifolds of positive constant
scalar curvature as far as a conformal transformation is concerned, provided
that the manifold is compact and of dimension $>2$ .

Furthermore, if a Riemannian manifold of constant scalar curvature $k$

admits an infinitesimal conformal transformation $u$ with $C\vee u\iota\cdot g=2\phi g$, where $g$

is the Riemannian metric, $c_{u}$ the operation of Lie derivatives corresponding
to $u$ and $\phi$ a function, then $\phi$ satisfies the equation $\Delta\phi=nk\phi$ , where $k=$

$K/n(n-1),$ $K$ being the contracted curvature scalar (See for example [2, 6]).

The existence of such a function might give some informations about the topo-
logical structure of the Riemannian manifold. Indeed we are going to show that
a compact Einstein manifold of constant scalar curvature $k$ admits a non-constant
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function $\phi$ such that $\Delta\phi=nk\phi$ , if and only if the manifold is isometric with a
sphere $S^{n}(\sqrt{k})$ with radius $1/\sqrt{k}$ in the $(n+1)$-dimensional Euclidean space (the

main theorem).

In the course of the proof it will be shown that such a function satisfies
the condition $\nabla_{X}d\phi=-k\phi X$ for any tangent vector $X$ of the manifold, $\nabla_{X}$ being
the operator of covariant differentiation in the direction of $X$. Then we use

THEOREM A. In order for a complete Riemannian manifold of dimension
$n\geqq 2$ to admit a non-constant function $\phi$ with $\nabla_{X}d\phi=-c^{2}\phi X$ for any vector $X$,

it is necessary and sufficient that the manifold be isometric with a sphere $S^{n}(c)$

of radius $1/c$ in the $(n+1)$-Euclidean space.
This theorem has been proved and used in the Einstein case [7] and also

in the case of constant scalar curvature [1]. Even though the existence of
such a function is implied by the existence of an infinitesimal conformal
transformation in the Einstein case, essential is the former (with neither
assumption of Einstein manifold nor of constant scalar curvature). We are
going to give an elementary proof of the theorem in the coordinate free
method in \S 2.

\S 1 is devoted to the proof of the above main theorem. In the course of
it, it will also be shown that the minimum eigenvalue of the Laplacian
restricted to the functions on a compact Einstein space is just equal to $nk$ .
This is a generalization of a result of Nagano [3]. The main theorem is just
the case where the Laplacian admits such value as an eigenvalue.

1. Let $1\psi$ be a compact orientable Riemannian manifold of dimension
$n\geqq 2$ with metric $g:<,$ $>$ or $ds^{2}=g_{ji}dx^{j}dx^{i}$ . In the following, covariant and
contravariant tensors are identified in the canonical manner.

The global inner product of two tensor fields $u:u_{i_{p}\cdots i_{1}}$ and $v:v_{i\cdots i}p1$ of
degree $p$ is defined by

$(u, v)=(v, u)=\int_{M}u_{i_{p}\cdots i_{1}}v^{t_{P}\cdots i_{1}}dlM$ ,

$ dl\psi$ being the volume element of $M$. We denote by $\nabla$ the operator of covariant
differentiation and by $\nabla_{X}$ that of covariant differentiation in the direction $X$,
$X$ being a vector on $M$. We denote by $\delta$ the operator acting on a tensor field
$u$ of degree $p$ to give a tensor field of degree $p-1,$ $\delta u:-\nabla_{i}u_{i_{p-1}\cdots i_{1}}^{i}$ . The
Laplace operator for a scalar field is written as $\Delta=\delta\nabla$. It is well-known that
$\nabla$ and $\delta$ are dual to each other :

(Vu, $v$) $=(u, \delta v)$ .
The Ricci curvature tensor $K_{ji}$ defines a transformation $R$ of a vector

$R:v\rightarrow R\cdot v,$ $i$ . $e$ . $v^{\dot{t}}\rightarrow K_{j}^{i}v^{j}$ . If the manifold is Einsteinian, $R$ is the $(n-1)k$-times
the identity.



Conditions for Riemann manifold to be isometric with sphere 335

Assuming that a non-constant function $\phi$ satisfies the equation $\Delta\phi=n\lambda\phi$

for some real $\lambda\neq 0$ , we prepare some formulas. First of all it is known that
$\lambda$ is positive.

(1.1) $(V\phi, \nabla\phi)=(\Delta\phi, \phi)=n\lambda(\phi, \phi)$

(1.2) $(V^{2}\phi, \phi g)=-(\Delta\phi, \phi)=-(V\phi, V\phi)$

(1.3) $\delta\nabla^{2}\Phi=n\lambda V\phi-R\cdot\nabla\phi$

In fact, it has components:

$-V_{k}\nabla_{j}\nabla_{i}\phi g^{kj}=-\nabla_{k}\nabla_{i}\nabla_{j}\phi g^{kj}$

$=-V_{i}V_{k}V_{j}\phi g^{kj}-K_{i}^{j}V_{j}\phi$

$=n\lambda V_{i}\phi-(R\cdot V\phi)_{i}$

(1.4) $(\nabla^{2}\phi, V^{2}\phi)=(V\phi, \delta\nabla^{2}\phi)=n\lambda(V\phi, V\phi)-(R\cdot V\phi, \nabla\phi)$

On putting $v=\nabla^{2}\phi+\lambda\phi g$, we have, from the above formulas,

(1.5) $(v, v)=(\nabla^{2}\phi, \nabla^{2}\phi)+2\lambda(\nabla^{2}\phi, \phi g)+\lambda^{2}(\phi g, \phi g)$

$=(n-1)\lambda(\nabla\phi, V\phi)-(R\cdot V\phi, V\phi)$ .
Since $(v, v)\geqq 0$ and $(V\phi, \nabla\phi)>0$ , we must have

(1.6) $\lambda\geqq\frac{(R\cdot\nabla\phi,V\phi)}{(n-1)(V\phi,V\phi)}$ .

The equality holds only when
$V^{2}\phi+\lambda\phi g=0$ ,

which implies that $M$ is isometric with $S^{n}(\sqrt{\lambda})$ by Theorem A.
If $M$ is non-orientable, we take the orientable double covering $\overline{M}$ of $M$

and induce, in the natural manner, the Riemannian metric $\overline{g}$ and the function
$\overline{\phi}$ from $g$ and $\phi$ respectively. Then $M$ and $\overline{M}$ have the same local geometry.
Denoting by $\overline{V}$ and $\overline{\Delta}$ the operator of covariant differentiation and the Laplace
operator respectively corresponding to $\overline{g}$, we have

$\overline{\Delta}\overline{\phi}=n\lambda\overline{\phi}$ if and only if $\Delta\phi=n\lambda\phi$

$\overline{V}^{2}\overline{\emptyset}+\lambda\overline{\phi}\overline{g}=0$ if and only if $\nabla^{2}\phi+\lambda\phi g=0$ .
Thus if $\nabla^{2}\phi+\lambda\phi g=0$ , we know that $1\psi$ and $\overline{M}$ are both isometric with

$S^{n}(\sqrt{\lambda})$ .
Therefore the assumption of orientability is removed and we have
THEOREM 1. Let $M$ be a connected compact Riemannian manifold of dimen-

sion $n\geqq 2$ . If $M$ admits a non-constant function $\phi$ such that $\Delta\phi=n\lambda\phi,$ $\lambda\neq 0$ ,
then $\lambda$ is positive and

(1.6) $\lambda\geqq\frac{(R\cdot\nabla\phi,V\phi)}{(n-1)(V\phi,\nabla\phi)}$ .
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THEOREM 2. In order for a compact Riemannian manifold $M$ of dimension
$n\geqq 2$ to be isometric with $S^{n}(c)$ it is necessary and sufficient that $M$ admit a
non-constant function $\phi$ with

$\Delta\phi=nc^{2}\phi$

and $(n-1)c^{2}(\nabla\phi, V\phi)=(R\cdot\nabla\phi, \nabla\phi)$ .
If $M$ is Einsteinian, (1.6) turns out to be $\lambda\geqq k$ where $k$ is the constant

scalar curvature (in case $n=2,$ $k$ is assumed to be constant). This means that
the smallest possible value of $\lambda$ in the Einstein case is just equal to the scalar
curvature.

THEOREM 3. Let $M$ be a compact Einstein manifold of dimension $n\geqq 2$ with
positive constant scalar curvature $k$ . If $M$ admits a non-constant function $\phi$

such that $\Delta\phi=n\lambda\phi,$ $\lambda\neq 0$ , then
$\lambda\geqq k$ .

Now let $P_{i}(i=0,1,2,3)$ be the following properties of an Einstein mani-
fold $1\psi$ with constant scalar curvature $k>0$ .

$P_{0}$ : $ j\psi$ is isometric with a sphere $S^{n}(\sqrt{k})$ .
$P_{1}$ : $ j\psi$ admits a non-homothetic infinitesimal conformal transformation.
$P_{2}$ : $1\psi$ admits a non-constant function $\phi$ satisfying

$\nabla^{2}\phi+k\phi g=0$ .
$P_{3}$ : $1\psi$ admits a non-constant function $\phi$ satisfying

$\Delta\phi=nk\phi$ .
Then Theorem 2 can be stated in the following form in the Einstein case:
THEOREM 4. Let $M$ be a compact Einstein manifold with positive constant

scalar curvature $k$ . Then the conditions $P_{0},$ $P_{1},$ $P_{2}$ and $P_{3}$ are equivalent with
each other.

In case $\dim M=2,$ $M$ is of constant curvature and the theorem is obvious,

even though the implication $P_{1}\rightarrow P_{2}$ is not evident. Namely we have the
diagram

$P_{0}(\backslash \lambda_{P_{2^{1}}}\nearrow^{P}\nearrow\nearrow\backslash P_{3}$

It is also stated in the following form:
THEOREM 5. In order for a compact Einstein manifold of dimension $n$ with

constant scalar curvature $c^{2}$ to admit a non-constant function $\phi$ with $\Delta\phi=nc^{2}\phi$ ,

it is necessary and sufficient that it be isometric with a sphere $S^{n}(c)$ .
The above gives essentially the equivalence of $P_{2}$ and $P_{3}$ in the Einstein
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case, whereas Theorem A shows the equivalence of $P_{0}$ and $P_{2}$ in the most
general case.

2. Proof of Theorem A. The sufficiency is obvious. In fact, $S^{n}(c)$ in
the $(n+1)$-Euclidean space is defined by the equation $\sum_{i=0}^{n}x_{i}^{2}=1/c^{2}$ . Then it
is known that the function $\phi=x_{0}$ , considered as a function on $S^{n}(c)$ , satisfies
the required condition.

Conversely, assume that a complete Riemannian manifold $M$ admits a
non-constant function $\phi$ satisfying

(2.1) $\nabla^{2}\phi+c^{2}\phi g=0$ .

It turns out $\frac{d^{2}\phi}{ds^{2}}+c^{2}\phi=0$ on each geodesic $l(s),$ $s$ being the arc length from

a certain point $Q_{0}$ on $l(s)$ . Thus $\phi$ is given by

$\emptyset=A\cos cs+B\sin cs$

on $l(s)$ , where $A=\phi(Q_{0})$ and $B=(1/c)\nabla_{X_{0}}\phi,$ $X_{0}$ being the unit vector at $Q_{0}$ tan-
gent to $l(s)$ . Since $M$ is connected and complete, every geodesic can be ex-
tended for any value of $s$ . Therefore on each geodesic $\phi$ takes the maximum
value at some point. Furthermore on the geodesic through $Q_{0}$ in the direc-
tion of the vector $(d\phi)_{Q_{0}}$ there exists a point $P_{+}$ at which $\phi$ takes the maxi-
mum on $M$. The minimum is also taken at a point $P_{-}$ on $M$. Without loss
of generality we may assume that the maximum is 1 and then evidently the
minimum is $-1$ . From the equation (2.1), $P_{+}$ and $P_{-}$ are both non-singular
critical points for $\phi$ and hence they are isolated.

Now let us consider any geodesic through $P_{+}$ . Then $\phi$ is written as
$\phi=\cos cs$ on it, $s$ being measured from $P_{+}$ along it. Let $M_{s}$ be the set of all
points $P$ being at distance $s$ from $P_{+}$ on geodesics through $P_{+}$ .

LEMMA 1. $M_{\pi/c}$ consists of a single point P-and it is the only point such
that $\phi(P_{-})=-1$ .

PROOF. Since $\phi$ takes the value $-1$ on $M_{\pi/c}$, the points of it are non-
singular critical points for $\phi$ . It follows that $M_{\pi/c}$ is discrete. On the other
hand, it is a continuous image of the tangent unit sphere at $P_{+}$ and hence is
connected. It follows then that $M_{\pi/c}$ consists of a single point $Q$ , which means
that all the geodesics issuing from $P_{+}$ meet at $Q$ . Since $M$ is a manifold,
there exists no point whose distance from $P_{+}$ exceeds $\pi/c$ . Thus $Q=P_{-}$ .

In like manner we have
LEMMA 2. $P_{+}$ is the only point such that $\phi(P_{+})=1$ .
Since the shortest geodesic joining any point $P(\neq P_{+}, P_{-})$ of $M$ with $p_{+}$ ,

which exists because of completeness, is uniquely determined in the direction
$(d\phi)_{P}$ , no two distinct such geodesics through $P_{+}meet$ except at $P_{+}$ and $P_{-}$ . This
implies
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LEMMA 3. $M$ , $0<s<\pi/c$ , is homeomorphic with an $(n-1)$-dimensional
sphere.

Now every point $P$ on $M_{s}(0<s<\pi/c)$ is determined uniquely by the pair
$(s, v),$ $v$ being a unit vector at $P_{+}$ tangent to the geodesic $l_{v}$ joining $P_{+}$ and $P$

and $s$ the arc length between $P_{+}$ and $P$. In the sequel, we use the notation
$(s, v)$ to represent the point $P$.

Next consider a sphere $S^{n}(c)$ in the $(n+1)$-Euclidean space and take an
arbitrarily fixed point $\overline{P}_{+}$ and its antipode $\overline{P}_{-}$ . Since there is an isometry
between the tangent unit sphere at $P_{+}$ on $M$ and that at $P_{+}$ on $S^{n}(c)$ , we fix
one and denote by $\overline{v}$ the unit vector at $\overline{P}_{+}$ corresponding to $v$ at $P_{+}$ . In the
same manner as above every point $\overline{P}$ on $S^{n}(c)$ is represented by $(\overline{s},\overline{v})$ by using
the great circles through $P_{+}$ and $P_{-}$ . (Of course $\overline{M}_{\pi’ c}$ consists of the point
$P_{-}$ alone).

Now define the mapping $h:M\rightarrow S^{n}(c)$ by $h(P_{+})=\overline{P}_{+},$ $h(s, v)=(s,\overline{v})$ and
$h(P_{-})=\overline{P}_{-}$ . Then evidently we have

LEMMA 4. $h$ is a diffeomorphism of $M$ onto $S^{?t}(c)$

Now if we define the function $\overline{\phi}$ by $\overline{\phi}(\overline{P}_{+})=1,\overline{\phi}(\overline{P}_{-})=-1$ and $\overline{\phi}(s,\overline{v})=$

$\cos cs$ , then $\overline{\phi}$ satisfies (2.1) on $S^{n}(c)$ and $\phi=\overline{\phi}\circ h$ , which implies $d\phi=h^{-1}(d\overline{\phi})$ .
Since $d\phi=(-c\sin cs)ds$ and $d\overline{\phi}=(-c\sin cs)ds$ , we have $|d\overline{\phi}|=|d\phi$ , $||$ denot-
ing the length of vectors.

Next we are going to show that $h$ is an isometry. To do this let us con-
sider unit vectors $X_{0}$ and $v$ at $P_{+}$ which are perpendicular to each other and $X_{s}$

the vector at $P=(s, v)$ obtained by parallel displacement along the geodesic $l_{u}$ .
Then $X_{s}$ is tangent to $M_{s}$ . Next consider any differentiable function $f$ on
$1M_{\pi_{/}2C}$ and then define the function $F$ on $j\psi-\{P_{+}, P_{-}\}$ by $F(s, v)=f(\pi/2c, v)$ .
The function $sF$ is differentiable on $M-\{P_{-}\}$ and every differentiable function
on $M-\{P_{-}\}$ is obtained as a function of functions of this type. (This is the
idea of the normal coordinates !)

LEMMA 5. $cX_{0}(sF)=\sin csX_{s}(F),$ $0<s<\pi/c$ .
PROOF. From the definition we have $V_{(fS}X_{s}=0$ , which implies

$[ds, X_{s}]=\nabla_{cls}X_{s}-V_{X_{S}}ds=\nabla_{X_{S}}(\frac{l}{c\sin cs}d\phi)$ .

Since $\langle X_{s}, ds\rangle=0$ , we have $\nabla_{X_{S}}(\frac{l}{c\sin cs})=0$ and $[ds, X_{s}]=-\frac{c\cos cs}{\sin cs}X_{s}$ .

On the other hand,

$[ds, X_{s}](F)=(ds)(X_{s}(F))-X_{s}(ds(F))$

$=(ds)(X_{s}(F))=\nabla_{as}X_{s}(F)$ .

Therefore along $l_{v}$ we have
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$\frac{d}{ds}X_{s}(F)=-\frac{c\cos cs}{\sin cs}X_{s}(F)$ .

It follows then that

(2.2) $X_{s}(F)=\frac{1}{\sin cs}X_{\pi/2c}(F)$ .

Thus we have $X_{s}(sF)=sX_{s}(F)=\frac{s}{\sin cs}X_{\pi/2c}(F)$ and we obtain

(2.3) $X_{0}(sF)=\lim\rightarrow 0X_{S}(sF)=\frac{1}{c}X_{\pi/2c}(F)$ .

From (2.2) and (2.3) the lemma is proved.
On $S^{n}(c)$ we have the lemma corresponding to Lemma 5, which has just

the same form, since $\overline{\phi}$ satisfies (2.1).

We are now in a position to prove that $h$ is isometric.
Let us take unit vectors $X_{0}$ and $v$ at $P_{+}$ as above and consider the cor-

responding ones $\overline{X}_{0}$ and $\overline{v}$ at $P_{+}$ on $S^{n}(c)$ . Of course we have $|X_{0}|=|\overline{X}_{0}|=1$ .
Then $X_{s}$ , the vector at $P=(s, v)$ obtained by parallel displacement along $l_{v}$ on
$M$. Then $|X_{0}|=|X_{s}|$ . Now consider any function $\overline{f}$ on $\overline{M}_{\pi/2c}$ in $S^{n}(c)$ and
construct the functions $\overline{F}$ and $s\overline{F}$ as in $M$. It follows then from Lemma 5 and
the corresponding lemma in $S^{n}(c)$ that

$dh(X_{s})(\overline{F})=X_{s}(\overline{F}\circ h)=\frac{c}{\sin cs}X_{0}(s\overline{F}\circ h)$

$=\frac{c}{\sin cs}\overline{X}_{0}(s\overline{F})=\overline{X}_{s}(\overline{F})$ .

Namely we have $dh(X_{s})=\overline{X}_{s}$ . Thus we have
$|dh(X_{s})|=|\overline{X}_{s}|=|\overline{X}_{0}|=|X_{0}|=|X_{s}|$ .

By the linearity of $dh$ at any point $P(\neq P_{-})$ , we have $|dh(X)|=|X|$ for any
vector $X$, not necessarily tangent to $M_{s}$ , at $P$ on $M$. Changing the roles of
$P_{+}$ and $P_{-}$ , we know that $dh$ keeps the lengths of the vectors at every point,
that is $h$ is an isometry between $M$ and $S^{n}(c)$ , completing the proof of Theo-
rem A.
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