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Introduction.

In the present paper, we shall introduce the concept of M-spaces, define
characteristic classes of these spaces and study their properties.

The definition of M-spaces will be given in Section 1; we shall give here
a rough explanation about what they are. Let M be a connected manifold,
say a C=-manifold, and G a finite group of transformations (C~-transformations,
when we are dealing with C=-manifold) of M onto itself. The quotient space
J\7I/G is a manifold if each element of G has no fixed point; otherwise M/G
is a “manifold with singularities” (which is not a manifold in proper sense).
Our concept of M-spaces is a generalization of the notion of “manifolds with
singularities ” ]\Z’/G. Let W be a submanifold of M and G a finite group of
transformations of W onto itself (with or without fixed points). The space
M= (M- WH\U(W/G), obtained as the set-sum of M—W and W/G, the topology
being so defined that the natural mapping ¢ of M onto M becomes continuous
and open, is an M-space, which we shall denote by {}/, M, W,G, ¢}.

The concept of characteristic classes of M-spaces is a generalization of
the concept of characteristic classes of manifolds. This has an interest also
on the theory of manifolds in the following sense. Pontrjagin classes are
diffeomorphy invariants but not homotopy type invariants, and so there is
a possibility to obtain finer classifications of manifolds than those according
to homotopy types by means of Pontrjagin classes. However, in case where
Pontrjagin classes vanish (for instance, when the manifolds are 3-dimensional),
there is no such possibility. But in certain cases (for example, when the
manifolds are lens spaces), we can imbed n-dimensional manifolds in (%-+1)-
dimensional M-spaces, and obtain a “finer classification” by means of charac-
teristic classes of these M-spaces (Tamura [6).

Moreover, by virtue of considerations of characteristic classes of M-spaces,
especially those of “manifolds with singularities” ]V[/G, we shall be able to
discuss the differentiable or complex analytic structure (¢ with singularities”)
of such spaces in like manner as differentiable or complex analytic structures
of manifolds. It seems that such a consideration is also useful to make clear
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various properties of characteristic classes of manifolds.

The present paper is divided into three parts.

We shall give definitions of M-spaces and describe their properties in
the first half of Part I. In the second half of Part I, D-bundles over M-spaces
will be defined. In particular case where the base space is a quotient space,
D-bundles become V-bundles (Satake Baily [T]) over a quotient space.
We shall study especially D-bundles having vector spaces as fibres which we
shall call vector D-bundles. A typical example of vector D-bundle is tangent
D-bundle of an M-space. Associated D-bundles of vector D-bundles and
generalized associated D-bundles of tangent D-bundles will be introduced
and studied for later use.

Part II contains the obstruction theory of D-bundles over A -spaces. In
case M-spaces have singularities, we have to impose several conditions upon
the neighbourhoods of singular points.

Part III is devoted to the definitions of characteristic classes of D-btindles
and of M-spaces. The obstruction theory of Part II is used here. We shall
generalize Stiefel-Whitney classes and Pontrjagin classes of O()-bundles and
of C=-manifolds to our cases, and shall call the corresponding classes SW-classes
and P-classes of O(m)-D-bundles and of C=-M-spaces respectively. We shall also
generalize Chern classes of U(m)-bundles and of almost complex manifolds to
our cases, and shall call the corresponding classes C-classes of U(m)-D-bundles
and of almost complex M-spaces respectively (Section 7).

Furthermore the Euler-Poincaré characteristic of quotient space will be
defined. This can be done under a looser assumption than the conditions of
Section 7. Our Euler-Poincaré characteristic can be written by Betti numbers
as usual.

In a subsequent paper [7], characteristic classes of 2-fold symmetric
products of spheres will be computed.

The author wishes to express his thanks to Prof. N. Shimada for his
valuable remarks.

Part I. M-spaces and D-bundles.
1. M-spaces.

Let M be a paracompact connected Hausdorff space. We shall define a
C=-M-space as follows.

DeriniTiON 1.1. By a C*-M-space M™ = {M, M, W, G, ¢} we mean a collec-
tion of the following objects:

@) M is a connected m-dimensional C*-manifold (with or without bounda-
ry) and is called the covering manifold of M™.



314 I. TAMURA

L ; - . . . .
(ii) W= X *W is a finite union of (not necessarily connected) submanifolds
i=1

(with or without boundaries) *W (;=1,---,/) of M whose underlying topolo-
gical spaces are closed subsets of M.

(iii) G is a finite group of C=-automorphisms of W which transform each
‘W onto itself. G is called the group of M™.

(iv) ¢ is a continuous and open map from M onto M which is satisfying
o(x) =) (%, & €M, x+x') if and only if x, ' W and there exists a g=G
such that gx) =x«'.

(v) @(CW) is connected for i=1,---, [

M is called the wunderlying topological space of M™. We shall call m the
dimension of M™.

(In future we shall sometimes write M instead of M™, if the dimension
is of no importance.)

It is clear that ¢(g(x)) = ¢(x) for all x& W, g&G, and that ¢ is a homeo-
morphic map on M—W.

We denote by ;G the (normal) subgroup of G consisting of all elements
operating trivially on *W and by G the factor group G/,G (i=1,---,0).

A C=-M-space becomes a usual C~-manifold, if each ‘G is the unit group
or each W is a point.

M-spaces of different categories other than C=, for example, C” (0 <7 < 00),
real analytic, complex analytic or almost complex M-space will be defined in
obvious manners.

The product of two M-spaces M= {M, M, W,G, o}, M = {M, M, w,G’, ¢’}
of the same category will become again an M-space Mx M’ = {M x M, M M,
Wx M/ \IM» W', GxG’, px ¢’} of the same category.

Let {!W} (G=A) be the set of all *W on which G operates non-trivially.

We put mzma/)f dim W and m=mindim ‘W, and shall call them max-V-
i€ icAq4

dimension and min-V-dimension of M respectively. Obviously an M-space
becomes a quotient space if and only if m = @ = m.

Let x be a point of M. Let us choose a point %M such that (%) = x.
Then, as is easily verified, the structure of the isotropy group of G at %:
G;={g; g®»=2% g= G} does not depend on the choice of %, and is uniquely
determined by x. Hence we call Gz simply the isotropy group of x and denote
it by G,. A point of M which has a non-trivial isotropy group will be called
the singular point of M.

A Cr-M-space M= {M,M,W,G,¢} (0=<r=oo) will be called orientable
if M and W (i=1,-,[) are orientable and the action on ‘W of each g<G is
orientation-preserving.

Let M be an almost complex M-space. Then we can regard M as a
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C=-M-space with the induced C=-differentiable structure in a natural manner.
By the same argument as in the case of almost complex manifolds, we see
that the C~-M-space M is orientable.

Let M be a paracompact connected C~-manifold (with or without bound-
3 ~
ary) and W= 3 ‘W a finite union of submanifolds of M, and let G be a finite
i=1

group of C=-automorphisms of W which transform each *W onto itself. If
we identify the points which are transformed by elements of G, we obtain a
space M with the identification topology. A C=-M-space thus obtained will
be denoted simply by M= {M, W, G, o},

We give here some examples of M-spaces.

Exampre 1.1. Let M= W= R™ (m-dimensional Euclidean space), and let G
be the group of order 2 with a generator g such that g(x;, x,, -+, ) = (—x,
Koy o'ty Xm), Where (x, %y, -+, X,) means the Cartesian coordinates of R™ The
underlying topological space M of the C=-M-space M= {R™, R™ G, ¢} is the
half plane of R™. The isotropy group at ¢(0, x,, ---, x,,) has order 2.

ExamprLe 1.2. Let S™ be the m-sphere with the natural differentiable
structure, that is, the set of points (x, 2y, -+, X) of R™! satisfying x,2-+x,24
vt x2=1. Let M=W=5" and let G be a finite group of C=-automorphisms
of S™ of order #» with a generator g such that g(x,, x;, -+, %) = (x,c08(27 /) —
x,8in(2x/n), x,8in2xz/n)+x,cos(2n/n), x4 -+, x,). We denote the C=-M-space M=
{S™ S™ G, ¢} by S™(1/x). The underlying topological space of S™(1/x) is a
topological m-sphere. The isotropy group at ¢(0, 0, x,, x5, ---, %,) has order z.

ExamrLe 1.3. Suppose that AM™ (resp. M,) be an m-dimensional C=-mani-
fold (resp. an m-dimensional complex analytic manifold) and that &, is the
symmetric group of degree n. Denote M™ = M™x - x M™ (resp. M, = M,, x
-x M,) (n-fold product of M™ resp. M,). ©, operates on M™ (resp. Mun)
as C=-(resp. complex analytic) automorphism group in a natural way. We
denote C=-M-space M= {}VI””‘, M™, ©,, ¢} (resp. complex analytic AM-space
M= {Mpny Mun, S,y ©}) by S, (M™ (resp. ©,(M,)) and call it the n-fold
symmetric product of M™ (resp. M,). We denote M simply M™% M™ (resp.
M,+«M,) in case n=2.

ExampLe 1.4. Let 2™ be an (m--1)-dimensional closed cell with the
natural differentiable structure, that is, the set of points (x,, %, --- x,,) of R™'!
satisfying x4+ %2+ +x,2<1. Let M=3™1! W=S" and let G be an
arbitrary finite group of C=-automorphisms of S™, for example, that of Ex-
ample 1.2 or that which is used when we define a lens space in case m is odd.
Then M= {2™,S™ G, ¢} is a C=-M-space. .

Now we shall define a C»-map between two C=-M-spaces. A C'-map
between two C™-M-spaces etc. will be defined in a similar manner.
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Derinition 1.2, Let M= (M, M, W, G, 9} and M = {M,M W',G',¢'} be
two C=-M-spaces. We mean by a C=-map h=(h, k) of Minto M’ a continuous
map %: M— M for which there exists a C=-map 4 of M into M’ in the usual
sense such that

(i) The following diagram is commutative :

. h
M — M
l ? 4 @’
M — M

(i) AM—W)cC M — W'
(iii) Ome of the following (a), (b) holds for each ‘W:
(@) ACWINW' =, hix) = h(g(x) (x ='W, g<G).
(b) A('W) is contained in a /.
h will be called the underlying map of h. We shall call h the C=-map of the
first resp. the second kind with respect to *“W according as (a) or (b) takes place.

Remarx 1.1. By regarding C=-M-spaces M and M’ as C°-M-spaces, we can
define a C*map of M into M.

Obviously we have

ProrosiTion 1.1. Let h: M— M and h' : M — M’ be two C>-maps, then
hoh: M—M' is a C*-map.

DeriniTion 1.3. Two C=-M-spaces M and M’ will be called isomorphic if
there exist C~-maps h = (h, h): M— M’ and b’ = (W', h') : M’ — M such that 4’ ok
and %Zo/4’ are homeomorphic maps of M onto itself and of M’ onto itself
respectively.

The following proposition is a direct consequence of Proposition 1.1.

Proprosition 1.2. If M is isomorphic to M’ and M’ is isomorphic to M’
then M is isomorphic to M”.

Exampre 1.5. M of Example 1.1 and the half plane of R™ are not iso-
morphic.

ExampLe 1.6. S™(1/x) (Example 1.2) and the m-sphere S™ are not iso-
morphic unless = +£1.

2. D-bundles.

For the sake of simplicity we consider the C= case mainly in this section.
In C™ and other cases, corresponding definitions and properties can be estab-
lished in similar manners.
We shall now define a C=-D-bundle over a C=-M-space M= {M, M, W, G, ¢}
L
(W=2>*W).

i=1

Let F be a C~-manifold and let I' be a group of C~-automorphisms of F.
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Let furthermore *F be a submanifold of F and I" a subgroup of I' which
transforms *F onto itself (=1, ---,7). We shall write the restriction of I
on ‘F by the same notation I

Derinition 21. A C=-D-bundle ® = {M, B, “B, ‘a, 4} is a collection as
follows :

(i) B={B,p, J\Z’, F, I'} is a fibre bundle over M with the fibre F and the
structural group I' in the usual sense.

(i) “B={*B,%p, W, F,I'} is a fibre bundle in the usual sense fori=1, ---, L.

(iii) For each ™8 (i=1, -+, /), ‘a is an isomorphism of ‘G into the group
of C=-bundle maps of *B onto itself such that

Pla(g)(x) = g(p(x)) (g €'G,x='B).

(iv) For each™B (i=1, -+, /), ?A is a fibre-preserving C=-injection *B— B|*'W
which induces the identity map of base space. (B|‘W denotes the restriction
of B on ‘W)

M, B, F and I will be called the base space, the total bundle, the fibre and
the structural group of D respectively. We shall sometimes write D= {M, B,
F, I'} to emphasize these objects, although M, B, F and I' do not exhaust the
data to define our D.

In the particular case M= W, D-bundles become V-bundles introduced by
I. Satake (Baily [1], Satake [4]).

Now we define a notion of D-bundle map.

DeriniTION 2.2. Let ®={M,B,F,I'} and ' = {M', B, F,I'} be two C=-D-
bundles with the same fibre and the same structural group, and let & =(i7, h):
M= {M, M, W, G, o} —=M = {M, M, W', G, ¢’} be a C’map (resp. C=-map).
Then by a D-bundle map (resp. C=-D-bundle map) h: D—I’ over h we mean
a collection as follows: _

(i) We have a C°(resp. C=-) bundle map %4: B— B’ over i : M- M’ in the
usual sense.

(i) If A is of the first kind with respect to ‘W, then we have a fibre-
preserving map (resp. fibre-preserving C=-map) % : ‘B— B’ over n ‘W : W — M.
If h is of the second kind with respect to ‘W, then we have a fibre-

preserving map (resp. fibre-preserving C=-map) % : “B—'B’ over i [*W: W —
W’ which satisfies the following condition:

ha(@)(x) =o' (g)(Ch(x)),

where x€'B,g&'G and g’ is an element of ‘G’ such that li(g( 2(x))) =g’(}:;(p(x))).
(iii) We have the following commutative diagram:
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B —— P (or B)
i, [
B8 — B

Obviously we have

Prorosition 2.1. Let D, % and D'’ be C=-D-bundles over C=-M-spaces M, M’
and M respectively, and let h: M— M and B’ : M — M be C'maps (resp. C=-
maps). If h:D—->D and h': D' —D" are D-bundle maps (resp. C=-D-bundle
maps) over b and k' respectively, then b' oh: DD is a D-bundle map (vesp.
C=-D-bundle map) over k' o h.

DeriniTiON 2.3. Two C=-D-bundles © and ¥’ over the same base space
M having the same fibre and the same structural group will be called egui-
valent (resp. C=-equivalent), if there exists a D-bundle map (resp. C=-D-bundle
map) ~:D—D’ such that . induces the identity map of base space and that
the restriction of each ‘% on fibre is an onto isomorphic map.

The following proposition is an immediate consequence of Proposition 2.1.

Prorosition 2.2. The equivalence (vesp. C=-equivalence) of C=-D-bundles de-
fined as above is an equivalence velation.

Now we consider the cross section of D-bundles.

DeriniTion 24, Let D= {M,B, F,I'} be a C~-D-bundle over a C=-M-space
M= {M,M,W,G,¢} and let N be a subset of M. Then by a cross section
(resp. C=-cross section) f of ® over N we shall mean a continuous (resp. C=-)
map f: ¢~(N)— B which has the following properties:

(i) pof is the identity map of ¢~!(N) onto itself.

(i) If x=9 ' (N)N'W, then f(x)€A(B) and f(g(x)) ="A(a((A~(f (%))
(g€'G).

DeriniTion 25. Let 9= {M,®B,F,I'} be a C=D-bundle over M and let
N be a subset of M (resp. of "W). The cross section f of B (resp. of “B)
over N in the usual sense will be called G-cross section if f satisfies

Fx) € A(°B) if xe'WAN,
fle®) =2(Ca(@(f®)) if xe0 < WAN,

(resp. flg() =‘a(g)(f(x)) if x2(x)eN).

Therefore the cross sections of 9 over N correspond bijectively to the G-
cross sections of B over ¢ I(N).

It should be noted that if ¢~!(N) contains a singular point x of *W on
which there exists a g= G such that ‘a(g)(%) +# # for any ¥ < %~!(x), we have
no cross section of ® over N. For example, there is no cross section of
tangent D-bundle of S2(1/x) (see Section 3) over the points (0,0, 1) if 7 # +1.
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Let us denote by § a fibre bundle with the fibre F over one point.

DeriniTiON 2.6. A C=-D-bundle ® with the fibre F will be called the
product D-bundle (resp. C=-product D-bundle) if there exists a D-bundle map
(resp. C=-D-bundle map) 2: D—F.

DeriniTion 2.7. A C=-D-bundle ® = {M, B, F,I'} will be called the principal
D-bundle if F=T,'F='T (i=1,---,1) and if I and each " operate on F and
on ‘F as the left translations respectively.

DeriniTion 2.8. Let 9= {M,B, F,I'} be a C=-D-bundle and let I'” be a
subgroup of I'. Suppose that there exists a C=-D-bundle ®©' = {M, ¥, F,I'’}
which is equivalent (resp. C=-equivalent) to ® (considering the structural
group of ®©’ as I'), then the structural group I' of D is calld reducible (resp.
C=-reducible) to I'.

3. Vector D-bundles and tangent I)-bundles of M-spaces.

In this section we shall consider D-bundles whose fibres are real or com-
plex vector spaces and whose structural groups are real or complex linear
groups. For the sake of simplicity we consider real cases mainly. Complex
cases can be analogously treated.

We denote by E™ (resp. E,) the n-dimensional real (resp. z#-dimensional
complex) vector space.

DeriniTION 3.1. A C=-D-bundle D= {M, B, F,I'} will be called the C=-
vector-D-bundle if F=E"F=E™ (n;<n) (=1,---,/) and I is the general
linear group GL(n; R) or its subgroup.

We denote min n; by ming dim F.

We now note two lemmas about fibre bundles which are used to define
associated bundles of D-bundles.

Lemma 3.1, Let B={B,p, X, E™, I'} be a C=-vector bundle over a C-manifold
X in the usual sense. Suppose that I' = GL(n; R) (resp. orthogonal group O(n))
and that V(E) (resp. Vy(k) (B=n) is a fixed k-frame (resp. ovthogonal k-frame)
in E™, where k-frame means an ordered set of k independent vectors in E™. By
GL(n,(n—k); R) we shall denote the subgroup of GL(n; R) consisting of all ele-
ments of GL(n; R) which operate as identity on the subspace of E™ spanned by
V(E). Then the associated bundle B® of B with the fibve GL(n; R)/GL(n, (n—k);
R) (resp. O(n)/O(n—k)) can be regarded as the C>-fibve bundle over X whose fibre
over x (x< X) is the set of all injections of V(k) (resp. V(&) into p~*(x).

This lemma is clear, and so the proof is omitted. In the special case
where %2 =n, above lemma is used by F. Hirzebruch [3, § 4.

The following lemma 3.1’ is the complex form of lemma 3.1.

Lemma 3.1, Let B={B,p, X, E,, Un)} be a C>-wvector bundle over a C>-
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manifold X with E, as fibve and the unitary group Un) as structural group in
the usual sense, and let VO(k) (k=n) be a fixed unitary k-frame in E,. Suppose
that B™! is a C=-fibve bundle over X whose fibre over x (x = X) is the set of all
injections of VO(R) into p~'(x), then B* is the associated bundle of B with the
fibre Uln)/Un—k).

The following lemmas are immediate consequences of Lemmas B.1] and B.JV.

Lemma 3.2. Let B={B,p, X, E"I'} and B ={B,p', X ,E", "'} be two
C=-vector bundles with structural group I' =GL(n; R),I'"=GL#’, R) (resp. I' =
O), I'' = 0W")) in the usual sense. If 2:B—B is a fibre-presevving injection
(m=n'), then X induces a fibve-preserving injection A® : BE B’ ® (k< n) in an
obvious manner, where BE , B'® denote associated bundles defined in Lemma 3.1.

Lemma 3.2/, Let B={B,p, X, E,, Un)} and B ={B,p', X, E., Un’)} be
two C=-vector bundles in the usual semnse. If 2:B—B is a fibre-preserving in-
Jection (n=n'), then A induces a fibre-preserving injection A% : BF - B (B < y)
in an obvious manner, where BF, B denote associated bundles defined in
Lemma 3.1'.

Now we introduce the following definition.

DeriniTion 3.2. Let D= {M,®B,E", GL(n; R)} (resp. ®={M,B, E", O(n)})
be a C=-vector D-bundle over a C=-M-space M= {M, M, W, G, ¢} and let & be
an integer <min,dim 7. We mean by an associated D-bundle D = {M, B®),
GL(n; R)/GL(n,(n—k); R),GL(n; R)} (resp. ®® = {M, B® O(n)/On—k), On)},
D = {M, B™, Uln)/Un—Fk), On)}) of ® with the fibre GL(; R)/GL(n, (n—Fk);
R) (resp. O(n)/O(n—Ek), Un)/Umn—k)) a C=-D-bundle as follows:

(i) B® = {B®, p M, GL(n, (n—k); R), GL(n; R)} (resp. B® = {B®, p, M,
Om)/O(n—E), O(n)}, BXI = {B™, p, M, Un)/Un—E), Om)}) is the associated
bundle of B with the fibre GL#; R)/GL(n, (n—k); R) (resp. On)/On—Ek),
Un)/Un—*k)) in the usual sense.

(i) B® = {{B®, p ‘W, GL(n;; R)/GL(, (n;—k); R), GL(n;; R)} (resp. “B®
= {!B®, p, "W, O(n;)/O(n;—k), O(m;)}, "B = {* B, p, *W, Ulny)/ Uln,—k), O(ny)}) is
the associated bundle of “B with the fibre GL(%n;; R)/GL(n,;, (n;—Fk); R) (resp.
On,)/Om;—k), Ulny)/Um;—k)) in the usual sense (=1, /).

(iii) For any ge G, define ‘a®(g) : ‘BE® —BHF) (resp. ‘athI(g) ; B — “BHT)
as the C=-automorphism induced by ‘a(g): “B—*B (Lemmas 3.2, 3.2’). (Clearly
the correspondence g— ‘a®(g) (resp. g—*a(g)) gives an isomorphism of G
into the group of C=-bundle maps of “B® (resp. “B*) onto itself.)

(iv) Define the fibre-preserving injection *A® : iB® — B® ‘W (resp. ‘A7 :
IR BT LTY) as that induced by “B—B|‘W (Lemmas 3.2, 3.2).

By the standard argument we obtain the following proposition.

ProrosiTion 3.1. If C=-vector D-bundles © and D' are equivalent (resp. C=-
equivalent), then their associated bundies DF and D'®, D™ gnd D™ are equi-
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valent (resp. C=-equivalent) vespectively.

It is to be noticed that, ®™! can only be defined in case # = min,dim F,
and in this case ®™ is nothing other than the associated principal bundle
in the usual sense if M is a usual manifold.

Now we consider tangent D-bundles of C~-M-spaces.

Let M= {M, M, W,G, ¢} be an m-dimensional C=-M-space. Each connected
component of W has the same dimension m; (i=1,---, ).

Derinition 3.3. By a tangent D-bundle T(M) of M we mean a C=-D-bundle
D= {M,I(M), E™, GL(m; R)} as follows:

(i) I(M)={T(),p, M, E™, GL(m; R)} is the tangent vector bundle of
M in the usual sense.

(i) ICW) = {TCW), p, *W, E™, GL(m;; R)} is the tangent vector bundle
of *W in the usual sense.

(iil) ‘alg): TCW)—Z(W) is the C=-automorphism dg of (W) onto itself
induced by g:*W—*W.

(iv) 2:IEW)—>I(M)|*W is the fibre-preserving injection determined by
the injection ‘W— M in an obvious manner.

Let us consider a Riemannian metric of M. In this paper, by a Rieman-
nian metric of M we always mean the Riemannian metric with respect to
which every g= G is an isometric transformation. Then by the standard
argument we can regard (M) has the orthogonal group O(m) as structural
group.

Associated bundles of (M) in the sense of Definition 3.2 will be denoted
by T®(M) and ITHI(M).

As is easily verified we have

Prorosition 3.2. If two C=-M-spaces M and M’ are isomorphic, then tangent
D-bundles I(M) and T(M') (resp. T®OM) and ITHOM); I*(M) and I*I(M))
are C=-equivalent.

For the later use we now consider a generalization of the concept of
associated D-bundles of T(M).

By a normal tube neighbourhood N*W of *W we mean the set of points of
M whose distance from W are <e (sufficiently small positive number). For
each point x of N'W there exists only one geodesic line /, passing x and
normal to *W. Denote [,n\‘W=px). Then we have a fibre bundle =
{N*W, p, *W, 2™ ™, O(m—m;)} (¢=1,---,1), where Z™ ™ denotes the closed in-
terior of the unit sphere of F™ ™. % will be called the normal bundle of
‘W. Let M) (resp. ‘N™i7) (m,’ <m—m;) be the associated bundle of *R
with the fibre O(m—m,)/Om—m;—m;") (resp. Ulm—m;)/ Uim—m;—m;’)).

Let us assume that *R™") (resp. “N™'7) (7 =1,---,/) has a cross section f
over *W.
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DeriniTion 34. Let %2 be an integer such that m, <k < (m,+m)’) G=
1,--,0). By a generalized associated D-bundle TEOM)(S,---,'f) = {M, TE&M),
O(n)/O(m—Fk), O(m)} (resp. TX(M)('f,-, f) = {M, TX(M), Ulm)/ Ulm—Fk), O(m)})
of tangent D-bundle (M) of a C=-M-space M we mean a C=-D-bundle as
follows :

() TOWL) = {T®W), p, M, Om)/O(m—Fk), O(m)} (resp. T¥M) = {T*(M),
b, M, U(m)/Um—E), O(m)}) is the associated bundle of the tangent vector
bundle i(]\?{ ) of M in the usual sense.

(i) ZTOCW),= {TOCW), p, *W, Olm;)/O(ms+-m;’ —k), O(m,)} (resp. TF(W);
= {TWICW), p, *W, Ulm,)/ Ulm;+m;’—k), O(m,)}) is the associated bundle of the
tangent vector bundle I(*W) in the usual sense.

(ii) ‘'a®(g): T®CEW); — TECEW), (resp. ‘a™(g) : TFI(W), — THICW),) is
the C=-automorphism induced by dg: T¢W)— T(¢W) (Lemma 3.2.).

(iv) Every point of the fibre p7'(x) of THE(CW), (resp. T™(W),) can be
regarded as a (k—m,/)-frame and % (x) as an m,/-frame (Lemma 3.1.) Let
Vik—my), (resp. Ve(k—m;'),) be a point on the fibre p71(x) of T®(CEW), (resp.
IICW),). We define the fibre-preserving injection 2® : IECEY) f—>‘i<">(ﬁ)
(resp. "AUI : T ), — THI(AT)) by

RE(Vk—m,")z) = AV k—mi)a)V Ax(f2)
(resp. APV E(k—m;)y) = "A(VE(k—mi)a) V(o)) ,

where 1, ‘dy are natural injections and the right hand side means the k-frame
obtained as the union of (k—m/)-frame ‘A(V(k—m;'),) (resp. ‘A(VC(k—m;),))
and m,-frame “A4(*fy).

In the above definition, we have regarded ¥(M) as having the orthogonal
group as structural group and what we have hitherto termed “frames” means
more exactly “orthogonal frames”. Of course, (M) can be also regarded as
having the general linear group as structural group. The definition of the
generalized associated D-bundles can be then correspondingly modified in
replacing orthogonal frames by affine frames, but we shall not need these
considerations in the sequel.

Part II. Obstruction theory of D-bundles.
4. Admissible cellular decompositions of C=-M-spaces.

We mean by a cellular decomposition K of a compact Hausdorff space X
a collection, called the cell complex, K= {02} G=1,--,a,;g¢g=0,1,---,m) of
closed subsets of X such that

(i) Each 0,2 is homeomorphic to the closed g¢-dimensional Euclidean
simplex. 0,2 is called g-dimensional cell or briefly g-cell.
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(ii) We denote by p-section K? the subset of K consisting of all g-cells
for ¢g<p and by |K?| the union of all cells of K?. Then X=|K™|.

(ili) 6,2 K| is the boundary 9g,? of ¢;% and it is an exact union of
cells called the faces of o,%

(iv) If i=#j, the interiors of ¢,2 and 0,2 have no point in common.

If we replace (i) by the weaker condition (i)’ below, X will be called the
cell complex in the wider sense.

(i)’ The set of interior points ¢,2—d0g;? of each 0,2 is homeomorphic to
the open g-dimensional Euclidean simplex.

From now on we shall always consider a compact m-dimensional C=-M-
space M= {M, M, W, G, ¢} which is subject to the condition

M is satisfying one of the following (a), (b):
) { (a) Each *G has no fixed point.
(by W=M (i.e. Mis a quotient space).

In the case of (x)(b), let W; (j=1,---,w) be connected components of the set
of all fixed points of G (i.e. the point xe M such that x=g(x) for some
g€ G—{e}). Then we assume

every element of G operates as identity map, and W;\W; =¢ unless
W;=W,.

Let NW; be a sufficiently small closed normal tube neighbourhood of W;
in W=M such that NW,ANW, =¢ if W,# W,, and that NW;= NW, if
W;= W;. The normal bundle NW(W;) = {NW,, p, W;, "™, GL(m—n;; R)} is
defined in an obvious manner, where #; denotes the dimension of W,. Clearly
every element of G operates on p~'(x) (x € W,) as an automorphism.

Derinition 4.1. A cellular decomposition K of the covering manifold A
of M satisfying the conditions (x), (x), will be called admissible if the fol-
lowing conditions are fulfilled:

(i) For each ‘W (i=1,--,1), a subcomplex ‘K of K gives a cellular de-

~ [
composition of ‘W. We denote Ky = > ‘K.

i=1
(ii) Each g <= G operates on K, as a cellular map.
(iii) For each W; (j=1,--,w), there exists a cellular decomposition lt’j
of W; such that p7(a) (¢ e—:]?,.) is a cell of K (in case where (%) (b) holds).
We donote by Nkj the subcomplex of K which gives a cellular decom-
position of NW; and by K, the set of cells contained in M—%} Int NW; which

Each W; (j=1,--,w) is an orientable submanifold of M on which
(k) {

is a subcomplex of K in virtue of the conditions (%), (x¢). Clearly, in case
where (%) (a) holds, we have I?C:I?.
As is easily verified, the covering manifold M of M satisfying the condi-
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tions (%), (x+) always has an admissible differentiable cellular decomposition
such that K, and 1%1. are simplicial.

ExampLe 4.1. M-spaces M= {M, M, W,G, ¢} of Examples 1.1, 1.2, 1.4 (in
case where G has no fixed point) and Example 1.3 for » =2 have admissible
cellular decompositions. But M-spaces of Example 1.3 for » = 3 cannot possess
such a cellular decomposition, because the condition (xx) is not satisfied.

The chain (resp. cochain) homomorphism Cq(I?W)——»Cq([?W) (resp. CUK)—
Cq([?w)) (g=0,1,---,m) determined by the cellular map g will be denoted by
g (resp. g%).

Now we define the first regular subdivision of an admissible cellular
decomposition K of M. It is constructed as follows. First, inductively with
respect to the dimension of cells of each ]?]-, we introduce one new vertex
on each &Eﬁj (7=1,--,w) and divide & by the join of this vertex with the
subdivision of the boundary of 6. We denote the complex thus obtained
by /ﬁj (j=1,-,w). Let 27 and 2P "% be subsets of 3™ " consisting of
points whose distances from the origin are <1/2, =1/2 respectively, and let
R(Wy) = {NWj, b1, W, 27773, GLm—n;; R)} and No(W,) = {N, W, po, W, 2577,
GL(m—n;; R)} be associated bundles of R(W,) with fibres Ip~ and Ip-™
respectively. Then natural injections R,(W;)— R(W;), Ry(W;)— R(W,) are de-
fined. We denote their images by the same notations R,(W;) and N(W;)
respectively. For each NWj,, there exists, as is easily verified, a G-invariant
cellular decomposition Jé]%,- of NW; such that p,7('é) (‘6 =’ N,-) is a cell of 1\;~j,
and that yK; coincides with K on the boundary of NW, We can assume
without loss of generality that A;I?j is simplicial on N,W;~\N,W,.

Secondly we construct a G-invariant cellular subdivision ‘(K,) of ]?C as
follows. For each & of K we introduce one new vertex v; inductively with
respect to the dimension of & and we divide & by the join of »; with the
subdivision of the boundary of &, whereby we always choose vgﬁ,; =g;) (g€ 6G)
in case & € Ky

From A;I?, (j=1,--,w) and ’([?C) thus obtained we get a cellular decom-
position of M which we denote by ‘K. This is the first regular subdivision of
R. Obviously 'K is an admissible cellular decomposition of M. Arbitrarily
fine subdivision can be found by repeated regular subdivisions. We denote
the v-th regular subdivision of K by ®K.

DeriniTiON 4.2. Let M= {}, M, W, G, o}, M = {M, M, W', G', ¢’} be two
C=-M-spaces satisfying the conditions (%), (x«), and let K, K’ be admissible
cellular decompositions of M, M’ respectively. A C%map h = (h,h): M— M will
be called the admissible cellular map if the following conditions are satisfied:

(i) A:K— K’ is a cellular map.

(ii) & maps K, into K,
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(iii) In case where M satisfies (x) (b) and A(W;)N\(Z W;’)=¢, there exists
7

a fibre bundle RGA(W))= {A(NW,), p, R(W,), 3™, GL(m—n;; R)} such that
E:W(Wj)——»‘ﬁ(ﬁ(Wj)) is a bundle map. In case where both M, M’ satisfy () (b)
and A(W,)CW,/, Il is a cellular map of K, into K,’and of yK; into 4K, .

5. The obstruction cocycle.

In this section we always consider a compact m-dimensional C=-}M-space
M= {M, M, W, G, ¢} satisfying the conditions (), (xx). Let K be an admis-
sible cellular decomposition of M.

Let ®={M,B, F,I'} be a C°-D-bundle over M. We shall use notations
of Section 2 about ® without special references.

Suppose that ® is satisfying the following assumptions (A I)—(A VI).

(AD) n,(F)=0 0=qg<r—1),
T, (F)= 7, (and =,(F) is 1-simple in case » =2),

where Z denotes the group of integers Z or Z mod 2.

(AIl) *W (=1,---,1) are disjoint.

(A1) For each “B (i=1,---,1), one of the following conditions (a), (b)
holds :

@ ‘1:B—B induces (A 'F)y: 7,(F) ~ m,(F) O=g=r—1).
‘G operates on "W without fixed points.

(b)
n(F) =0 0 < g < min (dim *W, #).

We write i = (a) (resp.i < (b)) when B satisfies (a) (resp. (b)).

Now we define a C%-D-bundle D(x,_,) = {M, B(x,_,), Z, +1} as follows:

G B(z,._,) ={B(x,_.), D, M, Z, 41} is defined in the usual sense (Steenrod
[5, p. 1527).

(ii) In case i € (@), B(z,_,) = {!B(z,_.), p, ‘W, Z, +1} is defined in the usual
sense. “2p: “B(x,_,)—B(x,_,)|'W is the injection defined by ‘A in an obvious
manner.

In case i< (b), B(z,_;) is the product bundle *Wx0 and ‘i,.: *B(r,_,)—
B(w,_,)|*W is defined by (x, 0)— (x,0) € B(m,_)|*W (x € ‘W).

(iil) ‘a(g): “B—*B induces the bundle map ‘a.(2) : *B(x,_,)—*B(x,_,) in an
obvious manner. We define the isomorphic map of ‘G into the group of
bundle maps of “B(z,_,) onto itself by ‘a.

Then we assume

(AIV) D(z,_,) is the product bundle.

(AV) Fixed cross sections fy’ of ® over the r-section of the boundary
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of foj (7=1,-,w) are given. (They will be introduced in the following ac-
cording to circumstances in relation to the singular points of M.) fx= {f¥'}
will be called the standard cross section of D.

For each W(W;) (j=1,---,w), a fibre bundle ¢(R(W)))= {p(NW,), p, (W),
I mni/@, I';} is defined in the natural way. The fibre bundle R°(W),)=
{Int NW, p, W;, Int I™ ", GL(m—n;; R)} (resp. p(R° (W) = {e(Int NW)), p, (W),
Int(2™"i/G), I';}) is an associated bundle of R(W;) (resp. @(R(W)))).

In this paper we denote by H* H? H? etc. the singular cohomology
groups and by H,*¥, H?, H? etc. the singular cohomology groups with com-
pact carriers.

There exists a spectral sequence {E;} of R°(W);) (resp. {*E;} of ¢(M°(W),))
such that

EP %= HYW;; HA(Int 3™, 7)),

(resp. YE.P 1= HY((W;) ; Hx'(Int(2™"/G)))) ,
EPt=Jra/pt1,a-1

(resp. QPE”.’P,Q p— ("fp,(l/‘ﬂjpi-l,q—l) ,

where J?+¢ (resp. ¥/?+9) is the submodule of H,?*%(Int NW;; Z) (resp. H,*+*%(¢(Int
NW,); Z)) determined by the filtration (H, Cartan et al., Séminaire de topologie
algébrique, 1950-51, XXI). Let d,: E,— E, (resp. %d,: E,—YE,) be the differ-
entiation of E; (resp. ¢E;) and k/ (resp. “z) be the homomorphism of the set
of elements e, of E, (resp. Ye, of ¢E,) satisfying d.x,%,=0 (resp. ?d,’r, e;=0)
for s<u <t onto E, (resp. °E)).

We assume

(AVI) (i) For any element %e, of YE,” ™™= Px2(%e,) RQ=t<0) is a
cocycle of “d,.

(ii) There is a canonical direct sum decomposition

qa]r—-m+nj,m—nj — ¢Emr—m+nj,m——nj+(a]r—m+nj+1,m—~nj—1 .

Let us denote the natural injection of (A VI) (ii) by
joo¥ : CR Tomngmeng (ﬂ]r—m+nj,m—njCHJ{r(¢(Int NFVJ) : Z') .

If M(W,) is trivial, the assumption (A VI) is always fulfilled. Furthermore
we have

Lemma 5.1, If 3™ "i/G is a topological (m—n;)-dimensional closed cell, then
(AVI) 1), (ii) are trivially satisfied. And we have a natural onto isomorbhism

f¥olrL2: YE, ™™ = 0 (o(Int NW,) 3 Z) .
This is a direct consequence of the fact that cohomology groups with com-

pact carriers of (m—n;)-dimensional open cell vanish except (m—#n;)-dimension.
Under the above assumptions, let us consider the primary obstruction of
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®. First, for each *B (:=1,---,/), we define a G-cross section f of *B over
iK~K, in the sense of as follows.

Define a G-cross section ‘f of “B over ‘A~K,° such that ‘f agrees with
fx' on Nﬁjmﬁgo (j=1,-,w). Since ‘G operates on iﬁmﬁa without fixed points,
such a G-cross section always exists. Suppose that a G-cross section *f of B
over ‘KAK,® which agrees with 75/ on NN,-f\I?Cq (j=1,-,w) is constructed.
If 7,(’F)=0, we can extend f to a G-cross section of B over ‘KK, which
agrees with f’ on Nkjml?g‘”l (7=1,--,w). Therefore, in case where *B satis-
fies the assumption (A III) (a) (resp. (A III) (b)), we obtain a G-cross section *f
of “B over ‘KK ! (resp. ‘K”) which agrees with fy’ on yK;NKy ™' by the
stepwise extensions. By the assumption (AIl), f= éle(if) is a G-cross sec-
tion of B over ( 3K AK,HU( S KN

1€ (a) 1€ (b)

Next we extend f to a cross section of B on K™'U 3 ‘K" in the usual
i€ (b)

way. Let us denote it by the same notation f. f determines the r-dimen-
sional primary obstruction cocycle &f)e C"(K;®B(r,_,)). According to the
assumption (AIV) we have

N eCK;7Z)
by choosing an isomorphism %(nr_l)zﬁzle—. Moreover by the assumption
(AV), we have

HNEN=0 e xK;nKo .
Hence we can regard
(N eCk, 3 wkinke; 2).
Let ¢ (Ko 2 vEnKo)— (K, %‘: KinKo), 4 WKy wKin Ko — (K, Zj: KinKe)

J
be inclusion maps and let ¢# ¢;# be cochain homomorphisms induced by ¢,%;

respectively. Then we have
HEN) € CBey Sk Ko 2),
() € Cwky wE N Ko 2).
Since the restriction of f on K, is a G-cross section, we have
(HENE) = N(&@) @ € Ky N Ko, g €6) 6.1)
by the assumption (A III).

Obviously ¢(K,) gives a cellular decomposition in the wider sense of
¢(|K;|). We define the r-dimensional cochain

¢'(f) € C(p(Ry), o P KN Ke)s Z)
by
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c'(fNP@E) = tFENE) (0" € Kp).

Then ¢’(f) is well defined by

We have the following lemma:

Lemma 5.2. ¢'(f) is a cocycle.

Proor. Let ¢"*! be an (#+1)-cell of (p(l?o—g Nﬁjmﬁ’o). If o™= @(6""),
then

0c’ ()0 ) = 8(cHC (MG = tHE())(06™ 1) =0
qg.e.d.
Therefore the cohomology class

(e'(N) € HeRe), 9(Z wK;NKe)3 2)

is defined.

On the other hand, as is easily verified, ¢#((f)) is a cocycle. We define
the correspondence

ot K= (WK, vE; N Ky (5.2)
by
48 =7 @) — (7@ N Ko) -

We fix now an orientation of 2™ " and give to ,;(§) the orientation which
is the product of the orientations of ¢ and of 3™ ™. Then ,¢; is one to one
and induces an onto isomorphism

ot CUR, Z) = Crr (oK, oK, ARy Z).
Since ,¢# and the differentiation are commutative, ,* induces an onto iso-
morphic map
ot HUK; Z) = HH 00Ky 5By N Ko 2) - (@=0,1,m).  (B.3)
Define
&N} =t {ef@UND

then we have
M ed ™K, Z).

Let S™ " ! be the (m—n;—1)-sphere which is the boundary of ™",
Since S™"%7!/G is an (m—mn;—1)-dimensional manifold and 2™ "i/G is con-
tractible, we have

Hr(Int(Z™"i/G) ; Z) = H™ (2™ "i/G, S™ " /G ; Z)
=~ H™ " (S™ G Z) = Z.
The fixed orientation of 2™ ™; determines a generator {Int(Z™"/G)} of
Hm(Int(Z™1/G) ; Z) = Z.
Making use of the assumption (A VI), we define

{e )} € Hi(p(Int NWy); Z) = H(p(NW,), o (NW; A\ Be1) 3 Z)
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by
{c(N)} = i*(CeL( N RAInt(E™"/G)Y)) -

Now we have
(M, (| ,szf?ml?o:);Z‘>=H*(¢<u?’on, (| ;Nﬁmﬁon;z‘)

&3 HHX(e(|wK; D, 9wk Kol); 2) -
Let ¢: M— (M, ¢(| ZNﬁij?OI)) be the inclusion map. Define
J
{e(N)} =F{c' (N} @z?: {1,

then we have
{e(HYeH(M;Z).

{c(f)} is defined after a stepwise extension of fy to a cross section on
Kt whose restriction on K, is a G-cross section. Finally we shall show in
this section that an alteration of the extension f of fy does not alter {c(f)}.

More generally, suppose that fy and fy’ are G-homotopic standard cross
sections of ®, that is to say, there is a family of G-cross sections fy() =
{f¥'@®} of B on ZN&-Q K, with a continuous parameter 0=<7<1 satisfying

J

In0) =Sy, f4(1) =fy" (considering fy, fx' as G-cross section of B). Let 5 and
/7 be two cross sections of B defined on K™1\U 3 K" such that they are

ie(b)
extensions of fy and fx’ respectively, and that their restrictions on A, are

G-cross sections.

The closed interval 7=[0,1] is decomposed by the cell complex K con-
sisting of two 0-cells [0],[1] and the 1-cell I. By the suitable orientations
of cells, the coboundary formula is given as follows:

o[0]=—1, o[1]=I.

Let KxK; be the product complex of K and K;. Clearly Kx K; gives an
admissible cellular decomposition of the product C=-M-space MxI= {Mx]I,
MxI, WxI,G,¢}. Let ®xI={MxI, BxI, F,I'} bea C-D-bundle over Mx I

defined in an obvious manner.
We define a cross section F of BxI on (K™1U %)ikr)x([o:lb’[l]))u
[AS

(G KN Ky < I) by
F(x,0)=f, F(x’l)zf’,
Fx, 1) = (fy®)(®) -

We can extend F to a cross section F defined on (K x K;)™~! whose restriction
on K,x K, is a G-cross section.
Then the obstruction cocycle
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dFHYeCWExK; 7)
is defined. 2(F) coincides with &(f) on Kx[0] and with &’) on Kx[1].
Using the natural isomorphism I*:C'(Kx Ky, Kx[0]VKx[1]; Z)= C\(K; 2),
we define
d(f, fHecC\&;Z)
by
d(f, £y =Ix@EE)—e(f) x [0]—2(f") < [1]) .

Obviously d(f, f/)5 1) =0 for any ¢ 'e Nij[?C. Hence we can regard
7
a1 e K 2wk n Ko 2).
Since the restriction of F on K,x K, is a G-cross section, we have

HAS, FNG) = A, )@ (@ eRynKngel).
Then we define
d'(f, ) € C Y (p(Ky), 9 > KN Ko Z)
by
d'(f, FYPGE ) =t d'(f, FNGEY (7 e Ko).
Clearly we have

od'(f, 7N =c"(N=c"(S),

which implies

{c'N=A{c" UM} (6.4)
On the other hand we have

S S, 1)) = cFE)—t#EU)

Therefore we obtain

{¢;(NO ={&;(MN}

{e; () = {e ()} - (5.5
Combining and we have

{c(N)} ={c(M}.

Thus we have proved the following proposition.

Prorosition 5.1. Let {fy} be a family of standard cross sections which are
G-homotopic to each other. Then the cohomology class {c(f) € H'(M;Z) is
independent of the choice of the extension of fy.

DeriniTion 5.1. The cohomology class {c(f)} € H"(M;7) will be called
the primary obstruction class cx(®D) of D with respect to {fy}.

Remark 51. In case where ® is the fibre bundle, ¢x(®) becomes the
primary obstruction class in the usual sense.
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6. Invariance of c;(D).

The primary obstruction class ¢x(®) is defined by means of a fixed admis-
sible cellular decomposition K of M. In this section we shall prove that
x(®) is independent of the choice of the admissible cellular decomposition
of M.

Let M= {M, M, W,G, ¢}, M ={M,M,W,G’,¢'} be compact m-dimen-
sional and m/-dimensional C=-M-spaces satisfying the conditions (%), (%)
(Section 4), and let K, K’ be admissible cellular decompositions of M, M
respectively.

Prorosition 6.1. Let ®={M,B,F,I'}, D' ={M,B,F, I't be C'-D-bundles
with the same fibve and the same Structural group, satisfying the assumptions
(AD-(AVD. Leth:D—D be a D-bundle map over a C*-map k=0 : M—M
satisfying the following conditions :

(1) If h:*B—IB (resp. "B—B'), then their fibres ‘F and 'F’ (vesp. 'F and F')
arve the same, and "h|°F is the identity map.

(i) & is an admissible cellular map with respect to K K.

(iii) % maps the standard cross section fy' of D into the standard cross
section fx'? of ®’ in case E(Wj)(: Wi'.

iv) If E(Wj)c s them m—n;=m’'—n;’ and the following diagram is
commutative :

_ _ joXo¥p 2 _

H™=™"3(p(Wy); 2)QHE "i(Int(2™"/G) 5 Z) — H,(¢(Int NWy); Z)

[ Bl @id. I KT A
- e _
H=™*3 (W) Z)QH ' (Int(E™ "' /G') ; Z) —— Hy(¢(Int NW,/"); Z).
Then we have
ex(D) = h*(Cx(D)),
provided that isomorphisms B(r,_,) =~ Mx Z, B'(x,_,) =~ M’ x Z are suitably chosen.

Proor. In case where E(Wj)m( 2 W;)=¢ we can find a G’-cross section
]/

Sup! of B’ on E(NijII?JI). We extend fy'\J (U fr(»’) to a cross section
J

S/ of B over K'"~'\U 3 ‘K™ whose restriction on K, is a G-cross section as
is(b)

in Section 5. Let us define the cross section f of B over Rr-1U > iR by
iE(b)

the map & and the cross section f/ of ®. Obviously f is an extension of fy
whose restriction on K, is a G-cross section. Then we have

2" = ()R @ K).
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We can regard &(f’) as an r-dimensional cochain
L e C’, (3wl NED VYRS KM Re); 2) -
J

Let 0, (R, (2w NV RO w0 Eon)— (B, (S vk nEH VRS e
A Ky) be the inclusion map. Since the restriction of f on K, is a G’-cross
section, ¢g,*((f’)) determines an r-dimensional cochain

e/ (f) e C(e" (R, ¢ by wB AR U p) KinKo)); Z)

in an obvious manner. c¢,’(f’) is a cocycle and so the cohomology
class

{e.)/(f)} e H(9" (Ko, ¢'(( 3w R ARSI S RiNKe); Z)
is defined. We have
¢'(f) =0/ He (F),

where ¢’ : (9K, (S wKi/ Ko )~ (9(Ry'), 9( S vEy NV RS v A Ko)))
3 J’ J
is the inclusion map.
By the commutative diagram

e

(ﬁo, ; Nﬁj N ko) — (kol: ( 47_4 Nkj', N [%0/) Y ;L:( ijv[;}j N Ko))
[+ - |+
o N~ hlo(Ke) N .
(p(Ke), ¢( EJJ yKinKe) —— (9K, ¢/( ; vK; N K
VRS KN Ee) s
we have
¢/(f) = k| p(Re)e, () . (6.1)
In case where A(W,;)C W;’, we have
{c;(N} = R oNW({c ()} (6.2)

by the condition (iv) and the following equation:
FE) = RN ).
In case where A(W,) N\ ( 3 W)= ¢, we have
{c/()} =Rl eINW*{e/ ()], (6.3)

by the following lemma:
Lemma 6.1, Let {"E,} be the spectral sequence of the fibre bundle NH(W;))
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(Definition 4.2. (iii)) and let %; be the map of (5.2) with respect to RG(W)).
Then we have

i ("B ({3e HC(Fnt) NI @{Int Em31)) = enp*({er (A
where tp is the inclusion map (90| vE1), 0/ By A Ko N— (@ UK D),
#'(1 3wy Ko/ |V R S oKy N Ko D)

This lemma is a direct consequence of the definition of the obstruction

cocycle and [Lemma 5.1 So the proof is omitted.
Combining [6.1), (6.2) and [(6.3), we have

PE({e(f)) = R**({c' ()} EB; {es (O
= E*(U*(ch/*({cl/(fl)})))@E*(‘,*(§ {es ()
=c*({¢' (N} EB§ {e NN =1{c(N}.

Hence we obtain
EK(@) = h*(EK/(@)) . q. €. d.
Prorosition 6.2. Let 'K be the fivst vegular subdivision of K’, then we have
C-K(@) = C_/K(@) ’

provided that the standard cross section 'fy with respect to 'K is given by™(6.4).

Proor. Let 7: ]’I?I—»II?I be the identity map. Clearly, for each I?,-, there
exists a cellular map #;:’K,— K, which is homotopic to the identity map.
Let ﬁj(t) : ’Kjal?j (0=<¢=1) be a homotopy satisfying ﬁj(O) = identity, ﬁj(l) = ﬁj.
Let % be a point of N,WW; which is expressed by (x,s) (xe W;, 1/2 <|s| < 1).
Define the map i;® : N,W,— NW; | K| by

R (5, ) = (%, s/1s]) .

Furthermore let us define the map i®: ('K do— I?g by
i (Ke)=11"Ro),
iO|N,W,=h,® .
Then there is a homotopy Ay : ('K de— I?g such that ﬁO(O)=?<2> and hg(1) isTa
cellular map, and that
ho@)CW) W, he@)(N.W3) C NW; A\ Kol (he®)(2() = 2((ho(t)(%)

for any ¥ W, g€ G. For each W, let us consider the fibre bundles (R(W )
= {p(NWp, p, (W, " "i/G, I';}, o(R(W ) = {p(N, W), p, ¢(W)), 2™ "1/G, I';}
anq their associated bundles ¢(§E(W,)) = {o(NW; N K1), 1, (W), S™"i~t/G, I';},
P (W) = {p(N,W; AN W, p, (W), S™"71/G, T';}.  Since @(R,(W,) and
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qo(SR(W)) are equivalent, there is a homotopy 4;/(f): ¢(IN, W, \ N,W,)— ¢(NW;

IKCI) which is covermg hi(2) : @(W)—»;O(Wj) with respect to the equi-
valent bundle map go(%l(Wj))——» §0(‘R(Wj)). Clearly #%;(#) defines a homotopy
ﬁ/(t) : NlemNszeNijlﬁgl covering %,(t) with respect to the equivalent
bundle map R,(W,)—R(W,) such that (h,/(£))(g(%)) = g(h;/O(®) for any e N,W,
NNW;, g=G. Obviously h ;/(1) is homotopic to ho(D) | (N, W;\ N;W,), and
hi/(1) maps p~'@3;9N\Ke (3,2 € (K, into yK; K, ™", Therefore we can
find a homotopy i, /() : 5('K); N\ (‘K)e— vK; N Ky satisfying

() " O)e@) =g ®®) for any Ze | yK),N(K)l, g€ G.

() A0 =hy/Q), /(1) =AW (' K); N K )o).

(i) A&7, N EKe) CnEsn Ko™ (30 € (K )Y,

For a point % of NW, expressed by (x,s) (x&€ W;, 0<|s|<1), we denote
the point (x,7s) (0=<¢=|s|™!) by %. Define the map #:’K— K by

i) AlCR)o=ho(1),

Giy A'B;="Fy,

(i) Al ) = A/, s/ls st v 7K, 0<s=1/4;

(% 8) = (b (4s—D)(x, s/2]s])) xe’K,1/4<s=<1/2.

Then, as is easily verified, 4 determines the admissible cellular map k = (4, /)
of M into itself with respect to ‘K and K such that % is homotopic to the
identity map M— M.

Assumption (i), (iii) and (iv) of [Proposition 6.1] are trivially satisfied in
this case, if we take the standard cross section ’fy such that

{fuy=1A"(a)} - (6.4)

Hence [Proposition 6.2 is a direct consequence of [Proposition 6.1l qg.e.d.

Now we prove the following theorem:

Tueorem 6.1. Let ©= {M,B,F,I'}, D = {M', %/, F,I'} be C"-D-bundles with
the same fibre and the same structuval group, satisfyving the assumptions (ik -
(A VI) and (), (+%). Let h:D—D' be a D-bundle map over a C-map h= (b, h):
M— M satisfying the conditions (1), (iv) of Proposition 6.1. Suppose furthermore
that the following conditions holds :

@) If M satisfies () (b) and ﬁ(Wj,m(.z W) =g, fz(W-m(z W)= ¢,

then h(W],) and h(Wj,) are submamfolds of M’ and they are satisfying h(W],) =
h(W,,) or h(WJ,) = h(Wj,) unless h(Wﬁ)mh(W],) =
(ii) h- W, ’)c:jz W;  (G=1-w).

Then we have
Cx(D) = h*(Cg/(D)),
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provided that the standard cross sections fy of ® and fn' of D' are suitably

chosen.

Before proceeding to the proof, we mention an important special case of
this theorem :

Tueorem 6.2. Let D= {M,B,F,I'} be a C°-D-bundle over a C=-M-space
satisfying the assumptions (A D-(A VL) and (¥), (xx). Then the primary obstruc-
tion class ¢x(D) of D is independent of the choice of the adwmissible cellular
decomposition K, provided that the standard cross section is suitably chosen.

In fact, all assumptions on A in are obviously satisfied if h
is the identity map. 5

Proor or Tureorem 6.1. If M satisfies (x) (b) and E(Wj)m(z W) =¢, we

<

take a sufﬁciently small normal tube neighbourhood N(E(W-)) Let St(f—:(W-))
{N(h(W)), p, h(W ), Z”“":, ;/} be the normal bundle. We can find ?R(h(W))
satlsfymg SJl(h(W'J,))——Sf(h(VVh))lh( ;) in case h(W,l)Ch(sz) and N(h(WJ,))f\

N(h(Wj,))—qS in case h(W],)mh(WJ,)~ .
First assume that the following condition [C] holds:
K’ is an admissible cellular decomposition of N’ which has p~1(3")
[C] (&’ehkj’) as a cell, where K ;/ is a cell complex giving a cellular
decomposition of A(W)).
Then, for a sufficiently large integer v, ®K satisfies the following condi-
tions:

ﬁ((”>&) (Mg e (<">X)C) and f:;(<”>&j) (Mg, e (“>I?j) have acyclic carriers,

MONW)CNW,,  if (W)C Wy,
W(ONW,)C NGR(W,) otherwise.

Let f;zvj: (”>IA('J~—>I?' ’ (or (”)k-—%hﬁj’) be a cellular map which is homotopic to

the map filwﬁ and let h A (”>Kj~>[{j,’ (or <”>Kj——>hK ) be a homotopy

satisfying 7,0)=#|® K, A,)=h, Letus define the map fiy: (K )— Ky by
Eol@-l(f?c'—g NG(W) = h |/€"<I?o’—; NG(W))),
he(®) = (%, s/Is]) (& & B U(Ry' —3 NR(W))),
J

i@ =, 9), xezf?(Wj), 0=[s|=1).

Then by the same method as used in the proof of lProposmon 6.2, making

use of h D), hc, we obtain an admissible cellular map A’ = (h’ h'y: M— M’ with
respect to ®K and K’ such that 7’ is homotopic to A. Therefore, by Pro-
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positions 6.1 and 6.2, we have
Ex(D) = h*(Ex (D)) .

Now the condition [C] is satisfied if k is the identity map. So

is completely proved.
We can finally get rid of the condition [C] applying to @',
g.e.d.

Part III. Characteristic classes.
7. Definition of characteristic classes.

First we shall define characteristic classes of vector-D-bundles.

Let M= {M, ]\71, W, G, ¢} be a compact m-dimensional C=-M-space satisfying
the conditions (%), (+%) of Section 4, and let K be an admissible cellular de-
composition of M. Let D, ={M,;®,, E",0(n)} be a C=-vector D-bundle over
M with the n-dimensional real vector space E™ as fibre and the orthogonal
group O(n) as structural group, and ®,= {M,B,, E,, Un)} a C=-vector D-
bundle over M with the n-dimensional complex vector space E, as fibre and
the unitary group U(n) as structural group. In the following we shall use
notations in Section 3 without special references.

Let ®,® = {M, B,®, O(n)/O(n—k), O(n)}, D, = {M, B,*¥1, Un)/Uln—Fk), On)}
(k=minpdim F) be the associated D-bundles of ®,, and D,® = {M, B,®,
Un)/Un—Fk), Un)} (k=min,dim F) the associated D-bundle of ®,.

As is well-known we have

O .7 < ni_k >
7 ;(O(n;)/O(n,—k)) :{ Z j=mn,—k, n,—k: even or k=1,
Zy j=m—k otherwise,
w(Uny)/Uln,—k)) = ‘ ]
A J=2m;—k)+1.

Suppose that, for each “B,® (resp. 8,1, iB,®) 5, satisfies ome of the
following conditions (1), (ii):
i) m=n
iG operates on ‘W without fixed points;
(ii) ) .
dim W< n;—k (resp. dim *W < 2(n;—k)+1).
Then the assumption (A III) of Section 5 is fulfilled for ®,;® (resp. ®,™*?, ®,®).
Moreover let us assume the conditions (AIV), (AV) and (A VI) of Section 5
for ©,® (resp. D, D,™). Then we have the primary obstruction classes

DM € H (M Z),
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(@, e H B (M; Z),

(D, € H2X"B*M; 7)),
respectively. (&(®,®), é(®,%) and ¢(D,™), as defined in Section 4, are deter-
mined respectively by ©,®, D, 9, and their standard cross sections.
These cross sections exist in virtue of the assumtion (A V). We suppose in
the following that these standard cross sections are given.)

DeriniTion 7.1, ¢@®,®) 1 =<k <minp,dim F) will be called the (—k-+1)-
th SW-class SW_141(D;) of D,.

Derinition 7.2, ¢@®,") 1=k <min,dim F) will be called the (n—k-+1)/
2)-th P-class P _11):(D;) of D,

Derinition 7.3, ¢(®,®) 1=k =<=minp,dim F) will be called the (»—k-+1)-
th C-class Ch_yri(Dy) of D,

Obviously in particular case where ®; and ®, are fibre bundles in the
usual sense, SW-classes, P-classes and C-classes coincide with the Stiefel-
Whitney classes, the Pontrjagin classes and the Chern classes of fibre bundles
respectively.

Now we shall define characteristic classes of M-spaces.

Let M, = {M,, Ml, W, Gy, .} (resp. My, = {M,, Mg, W, Gy, ©5}) be a compact
m-dimensional C=-M-space (resp. 2m-dimensional almost complex M-space)
satisfying the following conditions:

BD W, (resp. ‘W,) (i=1,-,[) are disjoint.

(BII) M, (resp. M,) satisfies the conditions (x), (%) of Section 4.

(BIII) M, and ‘W, (i=1,---,1) are orientable.

BIV) ‘a(g) (g€ G) is an orientation-preserving isometric transformation
with respect to the Riemannian metric of M, (resp. M,).

Then the tangent D-bundle I(M)) = {MI,E(JVII), E™ Om)} (resp. T(M,) =
{M,, I(M,), E, Um)}) is defined (Section 3).

Suppose that *R,= {’N,, p, ‘W, E™ ™, Om—m;)} (resp. N,= {!N,, p, ‘W,
Enm,, Umm—my)}) (=1,--,1) be the normal bundles of ‘W, in M, (resp. ‘W,
in M,). We introduce now the following assumptions (sss), (ssx) :

The associated bundle ®,(™-™) = {{N, ™™ p W, O(m—m,), O(m—m;)}
(k%) of R, (resp. M, ™) = [IN,™ ™), p ‘W,, Um—m,), Um—m;)} of *R,)
has a cross section ¥ over ‘W, (resp. ‘W, for 1<i=/.
The associated bundle “R, = {*N,¥3, p W, Ulm—m;)/ Um—m;—k;,),
Om—m)} (m—m; =k, =k—[(m;+1)/2]) of *R, has a cross section ¥
over ‘W, for 1<i=</, where k&, must be equal to m—m, in case ‘G
operates on ‘W with fixed points.

Then the generalized associated D-bundle T®(M)(f, -, ) = {M,, TEO(M)),
O(m)/O(m—k), O(m)} (miax(m—mi) <k <m) (resp. LX(M,)(f,++, 'f) = { M}, TX(M,),

()’
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U(m)/U(m—k), O(m)} max(k; =<k =m)) and the generalized associated D-bundle
TEMY(CS,, ) = { My, TO(M,), Ulm)/ Ulm—k), Ulm)} (max(m—m,)<k=m) satis-

fies the assumption (A III) (Section 5). Furthermore the assumption (AIV) is
fulfilled by virtue of the conditions (BIII) and (BIV).

Concerning IOM)CS,--+, ), TM)(S,-+, ) and  TEBL)CS, -+, ), we
define correspondences IO (M) (T ) = M, % Z, TH N Tyt 1)< M, x Z and
i<">(ﬂ2)(n2(m_k)+l)z]\7[2x2 by the canonical generators (Borel-Hirzebruch [2,
Appendix I7).

Moreover suppose that T®(M)(f,---, ), SE(M)(CS,--+, ') and T® (ML,
'f) satisfy the assumption (AV), and that M; and M, satisfy the assumption
(A VI). Then we have the primary obstruction classes

EXOM)S -, ') € HM UM, Z),
XM Sy, ) € HX0¥(M 5 Z)
CEOMYCf -, ) € H* ™ O+(M; Z)
respectively. Here again we suppose that the standard cross sections are

given.
Derinition 7.4, E@E® M), ) (max (m—m) <k <m) will be called

the im—k+1)-th SW-class SWr (M) of M,.
Derinition 7.5, &@E™S(M)CS,, ') (maxk; =k=<m) will be called the

(m—k-+1)/2)-th P-class Pm_x+1)2(M,) of M.

Derinrrion 7.6, S(Z®(M,))('f, -, i) (max (m—m;) <k = m) will be called the
(m—k+1)th C-class Corsi(My) of My

In particular case where M, and M, become manifolds, SW-classes, P-classes
and C-classes coincide with the Stiefel-Whitney classes, the Pontrjagin classes
and the Chern classes of manifolds respectively.

The following Proposition is an immediate consequence of the definition
of characteristic classes and Theorem 6.2.

Provosrrion 7.1. Let M, and M’ (resp. M, and M,') be isomorphic compact
C=-M-spaces (vesp. almost complex M-spaces) satisfying the assumptions (BI)-
B1IV), (%) (or (%)) and the assumption (A VI) of Section 5. Then we have

SWi(M,) = SWi(M,") (k=1,2,-),
Pk/z(Ml) = Pk/z(Ml/) (k = 17 2!'" )’
Ci(M,) = C,(M,') (k=1,2,-).

(We suppose that the standard cross sections ave suitably given.)
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8. The Euler-Poincaré characteristic.

Let M= {}, ]\7[, M, G, 9} be a compact m-dimensional C=-M-space such that
M is the quotient space M/G (i.e. 7l =m=m).

Suppose that M satisfies the assumptions (BI)-(BIV) of Section 7. Then
M has an admissible cellular decomposition K of M.

Let I(M)= {M, T(M), E™, SO(m)} be the tangent D-bundle of M and
TOM) = {M, IO, S™ 1, SOm)} the associated D-bundle of FT(M). Take
the normal vector field with the outer direction on the boundary of NW;
(7=1,---,w) as the standard cross section fy of TM(M), then fx has an obvious
geometrical meaning and its homotopy class is defined independently of the
choice of the admissible cellular decomposition. Moreover, as is easily verified,
the assumption (A VI) of Section 5 is always satisfied in this case.

Hence we obtain the following proposition:

Prorosttion 8.1. If M is a compact quotient space MG (dim M = m) satis-
fying the assumptions (B D-(B1IV) of Section 7, then the m-th SW-class SW (M)
is always defined.

Furthermore we assume that M is oriented and the set of all fixed points
of M under any g& G forms a submanifold of M whose dimension is < m—2.
Then, as is easily verified, we have H,(M;Z)~Z. H,(M;Z) has a generator
[M] satisfying go*[ﬂ 1= (ord G) [M], where [M] is the fundamental homology
class of H,(M:Z)~=Z. [M] will be called the fundamental homology class
of M.

DeriniTiON 8.1. SW.(M)[M]< Z will be called the FEuler-Poincaré char-
acteristic of M, and will be denoted by x(M).

Clearly x(M) becomes the Euler-Poincaré characteristic in the usual sense
in case where M is a C~-manifold.

Now we shall prove the following theorem which is a generalization of
the well-known theorem on C=-manifolds.

Tureorem 8.1. Let M:M/G be a compact connecied m-dimensional C=-
quotient space satisfying above assumptions. Suppose that M has a simplicial
decomposition K such that the set of singular points is a subcomplex of K and
0~ o) (6 € K) is differentiable. Then we have

2(M) = %0 (—1)f dim Hi(M: R).

Proor. K and ¢ give a simplicial decomposition Kof M. A subcomplex
f{j of K gives a simplicial decomposition of W;. Let 'K,”’K denote the first
and the second regular subdivisions of K respectively. ¢ and ‘K (resp. ¢ and
""K) give the first (resp. the second) regular subdivision ‘K (resp. "K) of K.
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A

A vertex /3% of /K lies in the interior of just one simplex & of K. Denote
by b("’6°) the barycenter of 4. This vertex assignment b determines a unique
simplicial map &: "K—'K in an obvious manner. The fixed points of b are
the barycenters of K.

Now #% and (%) (#< M) lie on a single simplex of 'K, and are joined by
a unique line segment of the simplex. Since K is differentiable, the segment
has a tangent direction at each point. And we can define the unit tangent
vector at £ We denote it by f(#. It follows that f(®#) is defined and is
continuous except at the barycenters of simplexes of K. Obviously f(%) is
G-invarient. For each ¢g-simplex ‘4? of 'K, there is a dual (m—q)-cell *'57
which is the union of those simplexes of /K having the barycenter of 8¢ as
vertex of last order. The set of *5 gives a cellular decomposition * K of
M. Clearly */ [ is G-invariant. In a similar manner, we obtain a cellular
decomposition * K, which is dual to ‘K, where ‘K; is the first regular sub-
division of K;. By a suitable modification, we can regard * K as an admis-
sible cellular decomposition K of M. The singularities of ¥ occur at the
centers of the m-celles of K. Obviously f is (homotopic to) the normal vector
field with outer direction on X Nf{'jmf?c. That is to say, f is an extension

J

of the standard cross section fy.
Clearly we have

{'(H) [pE)l= 2 (—1)dima (8.1)

A

GEK—-¢p(Z Kj)
i
where [go([?c)] is the fundamental homology class of Hm(go(l?'g), 1OIPY ijl?};);
J

Z)=Z.
Moreover we have the commutative diagram:

To¥ ol o2

H (K} Z)QH™"5(Em", S™"71; Z) — H"(wK;, vE;n Ko 2)
[ia.@e* [ o
iw*o(ﬂlcmz

H™(K;; Z)Q H™ (3™ )G, S™ i1 )G; Z) —— H™@(xK,D), ¢( ¥ KNEo) 5 2)
Therefore we have

(€0 LR =gy (@HeOD Lok

= ord(G7G,y (GARPIE PN DI /GCRIBLE)

={&,(N} [K}]
=2 (—Ddime, (8.2)

aGKj
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where [go(NK'j)], [Nkj] and []?j] denote the fundamental homology classes of
Hm((/’(lNﬁjl), e(nK;NKdl); 2) = Z, Huy(yK;, NKjf\Kc; Z)y=Z and Hnj(Kj A LA
respectively, and G, denotes the subgroup of G whose elements act on NW;
as identity.

and enable us to compute (M), i.e.
{cUNIMT=(*({c'(N} EBJE {c;(AH)1) [M]

={c (N1 ,2 {e; (0D (LMD

= 3 (~Dtime = 31 (—1) dim H(M; R) qe.d.
ASS =0

Let M be a compact 2m-dimensional almost complex Af-space. Suppose
that C=-M-space M’ induced from M satisfies the above assumptions. Then
by the standard argument, we have

CnlM) [M]=SWy(M')[M']. &.3)
The following theorem is an immediate consequence of and

(8.3)

Tueorem 8.2. Let M= M/G be a compact connected wm-dimensional C=-
quotient space satisfying the same assumptions of Theovem 8.1 (vesp. a compact
connected 2m-dimensional almost complex quotient space). Then the Euler-Poincaré
characteristic of M and the m-th SW-class (resp. the m-th C-class) of M are
homotopy type invariants of M.

ExampLe 8.1.

m: odd
2(8™(1/n)) =
m:. even.

Remarx 8.1. I. Satake [4] introduced the Euler-Poincaré characteristic
xvy(M) for V-manifolds M. x,(M) is different from y(M). x,(M) is not neces-
sarily an integer and depends on the V-differentiable structure of M, and is
not topological invariant.

University of Tokyo.
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