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Let X(#) (0=¢< o) be the Brownian motion process. Concerning the
uniform continuity of X(#), there exists P. Lévy’s result. Before stating his
result, let us define the concept of upper class and lower class with regard
to the uniform continuity of X(#) (0<¢<1).

If there exists a positive number ¢ such that |#—¢| < ¢ implies the rela-
tion
ey lfE)—r@®) | = g(1t'—t]),
where g(¥) is a non-negative, continuous, non-decreasing function defined in
some finite interval (0, 7) and vanishing with ¢, then we say that f(¢#) satisfies

Lipschitz’s condition relative to (). Putting ¢(t)=1/f(—1~)VzT i XOO0=¢

=1) satisfies Lipschitz’s condition relative to ¢(#) with probability 1 we say
that ¢ () belongs to the upper class. If X (0<#<1) does not satisfy Lip-
schitz’s condition relative to ¢(¢#) with probability 1 we say that iﬁ(t) belongs
to the lower class. P. Lévy proved that the function

¥(t) = c2log
belongs to the upper class for ¢ >1 and belongs to the lower class for ¢ < 1.
Following his method, T. Sirao [2] improved the result as follows: The
function
Yr(?) = (2 log t+c log log z‘)%
belongs to the upper class for ¢ >5 and belongs to the lower class for ¢ <—1.
In this paper we shall prove the following theorems.

Tueorem 1. A non-negative, continuous and monotone non-decreasing func-
tion Y (t) belongs to the upper or lower class according as the integral

@) [Tyetvoa

is convergent or divergent.
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TueoreMm 2. The function V(&) defined by

16)) P(t) = (2 log 145 log yt+2 log i+ +2 10g (u_pyt+c logmd?,
where log )t denotes the n-times iterated logarithm, belongs to the wupper class
for ¢ >2 and to the lower class for ¢ < 2.

These theorems werte quoted by P. Lévy [3] without proof. They give
a difinitive solution to the problem of uniform continuity of Brownian mo-
tion X(#) and are comparable to A. Kolmogorov’s criterion in the theory of
iterated logarithm for X(#) at time point co.

is a simple corollary of [Theorem 1. Hence we prove only
[Theorem 1l

Lemma 1. Without loss of gemevality, we may assume that

(@) @ log t—10 log log /)’ < ¥(¥) < (2 log #-+10 log log H¥ .

Proor. We show that if Theorem 1 holds under the assumption (4),
then it holds without (4). Let us denotes the first member in (4) by v, (?)
and the last member in (4) by ¥,@).

Define ﬁ(t) as follows:

®) V() = min(max( (@), ¥,@), Y1) -

"Then the convergence of the integral (2) for ¥(#) implies the same for lﬁ(t).
In fact, let us assume the convergence of (2) for ¥ (#). If the set of # on
which (@) is less than v,(#) is not bounded, there exists an increasing sequ-
ence {t,} such that ¥(¢,) < (¢,) and #, tends to infinity with ». Since ¥ (¥)
is a non-negative and non-decreasing function, we have

j‘w'\,W(z‘)e_%‘/’z(‘) dt §f£n1#3(t)e"%‘/’n(‘)dt
t, t
= cpr¥(t,)e 19" Cat,

> c(log £,)*
‘where ¢ is a positive constant. Since log#, tends to infinity with #, the
integral for v¥(¢) is divergent. This contradicts our assumption and there-
fore ¥, (f) must be smaller than v () for large £. On the other hand the
integral for vr,(#) is convergent. These facts prove our assertion. Now we
assume that the integral for ¥ (¥) is convergent and Theorem 1 valid under
the condition (4). Then the integral for () is convergent and therefore
fh(t) belongs to the upper class. But by what has just been shown V() < v ()
for large £. So we have (%) < ¢(%) for small 2 where @(f) is defined by fb(t)

as o) is by ¥(#) and therefore ¥r(#) belongs to the upper class. Thus Lem-
ma 1 is proved in the convergent case.
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Secondly let us assume that the integral for vr(#) is divergent. If the
set of # on which () is less than v,(¥) is bounded, then it follows that %(t)’
is less than Y(?) for large # and accordingly the integral for vr(#) must be
divergent. On the contrary, if there exists an increasing sequence {¢#,} having
the property

(6) q70‘(231) < W:(fn), t'n'_> 0 as B— 0 ’
then we have
% Vtn) = ¥ri(t) -

By the monotony of wA(t), we have

[ ho@e 0 0dt =yt et et~

@®
=Y 3@ )e Hita) (¢, — 1) .

Since the last term in (8) tends to infinity with #, the integral for vr(?) is
divergent in our case. Now, by the result in [2], ¥.(#) belongs to the upper
class and therefore, for almost all sample point w, there exists € such that

) | X, 0)— X o) | < @y(|t'—t])  for [#'—i|<e,

where ¢,(#) is defined by vy,(f) in the same way as @) is by ¥(#). On the
other hand, since by assumption v¥r,(¥) belongs to the lower class, for almost
all  we can choose a sequence {(,,¢,")} having the following properties

[t —t.|—0 as m—oo,

From (9) and (10), we have

(10)

(11) O tn —ta]) < @[t —2a) .
shows that ¢(#) is at last equal to ¢() at ¢#=|(¢#,’—¢,|. This fact and (10)
show that y¥~(¥) belongs to the lower class. Q.E.D.

We now proceed to prove

1) Proof of the convergent case.

First of all we remark that it suffices to prove, for almost all w, the
existence of a positive ¢ such that

X, 0)—X@ o) = ¢(|t'—2])  for [¢'—t|<e .

In fact, let us assume that this assertion holds. Then it follows from the
symmetry of Brownian motion that the probability of the existence of a
positive ¢’/ satisfying the inequality

—o(|t/—t) S X, 0)—X(t, w)  for |t'—t|<e”
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is equal to 1. Taking ¢ for the minimum of ¢ and ¢/, we have
Therefore we may consider the difference X(#)— X instead of its absolute
value.

For each triple (p, %, /), let E@&, be the event
(12) (B0 x(E)ze(L), k=012,
[= 1, 2"")1) .
A simple computation shows that
2 p 1 p
for large p. Summing up P(E#) for p=1,2,, k=1,2,---,2?7, [= [%],

[%]—[—1,---,17, we have

» 2P p _ 8 213
555003 § S O/
= = 1 k=1 L= ]

oo pY4 _%‘b’(%})
— e .
W22

27
B b
Applying [Lemma I, we obtain

oo

5 %‘ P(EE) = O) E yo(Z)e &)

p=1k=1,_ %] =

2P

(3) ]
=0 yo@e 10Ot < oo

Next, for each triple (p, %, 1), let F}?, be the event

ket1

(14) Oglajczp{ X(“op ) —X —“S} / o5 z+2
E=0,1,2,--,2°,
[=1,2,-,p.

For convenience’ sake, we consider the F?, only such that the time parame-
ters t of X(#) which appear in the above definition are positive and less
than 1. It is well known that

P(max X(s) > )= 2PX0 > a),

0=s=t

where ¢ is any real number. Since the Brownian motion is an additive
process, we have
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Pz) = Plmax (X(EEL+0)—x(%E)) + (x(BED)-x(£))

o=st=L

2P

+Z?§X% <X<—2/%)_X<2ip_s))§\/21:1’1’b(li—p2)}

1s)

<4P{X<k+l+1) <k+l +X(k+l>

v
K
bg|
.%
/\
N
l\D =8
N— [\
N—

e

By we have, for large p and /,

P(sz,)l)— - 3 4 . 2(L+2) ¢* (L+2
@2r) w( e )

~AP(ER) e &

Therefore, if / is an integer existing between [%—] and p, there exists a

positive constant ¢ such that
(16) P(Fklfz) = CP(EEZ:L) .
Combining (13) and we obtain

2P

> 3 PFER)<+oo.
i TR

M3

an

»

According to Borel-Cantelli’s lemma in the convergent case, shows that
the events F#, appearing in occur “only finitely many times” with pro-
bability 1. Or, in other words, there exists a positive ¢ with probability 1

such that if —21%1— is smaller than ¢, F® does not occur for any pair (%,/)

appearing in the summation of [(I7).

Now, for any pair of (¢,#') satisfing the condition |#—#]| <e, we choose p
as follows:
18 L <lr—tl= L <2

If we define 2 and / by the following inequalities

a9 k 55— < min, ) = 2’;’, < k;;l <max ) < k+l:i:1_ ,
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it follows that [—g—] <I!=p and therefore we obtain

X(¢)-x0 = max (X(FE46)—x(f~s))

1
0=t,s=—-
21)

=(4) ¥(%2)

=e(¢'—t])
with probability 1.
Thus is proved in the convergent case.
2) Proof of the divergent case.

Let E2, be the event defined by [1Z). By the monotony of ¥»(f) and Lem-
ma 1, we have

o 9P » . (2P
s 5 2 rapn-ony S Y (25)/ (%)
- —o03 2y (5

=om i@ e dr=tco.

It is sufficient to show that E@, occur “infinitely often” with probability 1.
For this purpose, we use the following Lemma given in

Levma 2. Let {E} be a sequence of events satisfying the following condi-
tions.

) élp(E,g =400,
(ii) For every pair of positive integers h, n with n = h, there exist c(h) and H(n, h)
> #n such that for every m = H(n, h) we have

P(EL/E v, E) > c(WP(Ey) ,

where P(F/E) denotes the conditional probability of F on the hypothesis E and
L’ denotes the complement of E.

(iii) There exist two absolute constants ¢, and c, with the following property:
to each Ej there corresponds a set of events Ej,,-, E;, belonging to {Ey} such that

@ g:l P(E,E;,) < c,P(Ey)

and if k>j but E; is not among the E;; 1 =i=<s) then
(b) P(E;E) < ¢, P(E)P(EY) .
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Then the probability that the events E; occur ‘“infinitely often” is equal to one.

We rearrange Ep, and denotes it by E, so that we may apply
in our case. The rule of ordering is given by the following. If E,=Ep®,
E,=EZ,, then n<m if and only if one of the following three conditions
holds :

(@) p<y,
) p=p’ and I>V,
@ p=p, 1=l and k<K .

Now we prove that the sequence {E,} satisfies the conditions of

(i) is a consequence of [20). For (ii), we use the characteristic property of

Gaussian distribution. Let E, Ek , and put U,=X (k;; l)—X (%) For

every pair (%, »n) with n=#, if we define U, Uysiy--, U, similarly then
E(Uz)=0 (i:h, k+1’: n)y E(Um)zo

E(U'LUm):<:2—lp‘ (i:hy k+1):n):

@n

where E(U) denotes the expectation of U. Since 711; tends to zero as p
increases, (21) shows that for each i (2<i=<w) the correlation coefficient of
U, and U, tends to zero as m increases. In other words, U, is asymptotically

independent of the joint variable (U,, U1, U,). Therefore we have

. P(Em/Eh,y"') En,) 1 P(Eh,) Eh-H/y"') //Em) —
(22) lim == = i e Banin By

This shows that (ii) holds in our case. For the justification of (iii), we need
some lemmas.

LemMma 3. Let U and V be two random variables whose joint distribution is
Gaussian and each of them has a standard Gaussian distribution. Let the cor-
relation coefficient of U and V be p, then there exists a positive constant c, such
that
@23) PU>a, V>h = PU>P(V>b) for p<— .

Proor. If p is negative or if @ or b is small, (23) holds trivially. There-
fore it is sufficient to prove Lemma 3 for sufficiently large @, b and positive
0. Without loss of generality, we may assume ¢ <b. Then we have

_Lxi=202y +y)

P{U>a, V>b) = 24-65 " fudy
on(1— p?)% f f
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25 % _(x—py)*
R J‘ 201-p%) 2 dxdy
27:(1 p“)
(24)
- _(z-pw? _ ys

+ 77}1" J‘ ad—py "2 dxdy

2z(1—p%) ®

1 ; f‘*’ 2be—%—?‘z’§e§%’dxdy
27[(1‘—,0 ) 2Y a

“The first term on the right side is estimated as follows:

20 p2p - =P _ Y
_M_‘_ﬁj‘j' 2a=pn 2dxdy
2n(1— pz)
r—2/a)? 2
(25) < — e T gy
2r(1— pz)
< P{U> (a—2/a)/(1— o)} P(V > 1)
= O(PU > a)P(V > b).

On the other hand, for sufficiently large ¢, the second and third term on the
right side of (24) are trivially smaller than the right side of replaced
¢; by 1. These estimates assure the validity of Q.E.D.

Levmma 4. Let U and V be random variables as in Lemwma 3. If the corre-
dation coefficient of U and V is less than 1/2% and 0< a<b then there exist two
positive constants ¢, and 0, satisfying the following inequality

(26) PU>a, V>b) =c,e ™ PU>a).

Proor. Let € be a positive constant which is less than 1 and let p be
the correlation coefficient of U and V. It suffices to prove Lemma 4 for
sufficiently large ¢ and positive p. Then we have

(x2=202y+Yy?)

PU>a,V>b)=- %jj” P ey
2775(1 .02)
(27)
trefppe 2T _yr
- 4 j' f e 2P o T ey
27f(1 02)
-0y y?

"WBF g
2 % ‘f(l“"e) bf ¢ dxdy
27r(1 p)
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3
(x=(1+€/2) D y?
1 (1+e)%b o~ e e

< i j‘ e MM o 2 dxdy

b

+ 'f(l+e)%b
— O(l){e—(1—(1+s/2)%)2b2/2+ e—E/zbﬂ}P(U> a) .

If we take the minimum of (1—(1+e/2%)2/2 and ¢/2 for 8, then
follows from (27) immediately. Q.E.D.

LemMa 5. Let U and V be random variables as in Lemma 3. Denoting the
correlation coefficient of U and V by p, there exist two positive constants c; and

05 such that
(28) PU>a, V>a)=c,e 0P P(U>a) for a>0.

Proor. By the definition of Gaussian distribution, we have

(£I—-202Y+Y*?)

PU>a, V>a)= __1%_,rre s gy
27;-(]_ p2) ava
Rotating the axes by z/4, we obtain
(x+2%a) _U=-oz2+1+0y?
P ’ 2(1—p3) d dx
(U>a, V>a)= 2)§ L%f A 3
1 -
=7 d
~ ent j‘(2/‘*‘0)%718 *

1-p% 5 1 al

— 0(1) e 2(1+p)“a e 2
a

1-p?

=01)e **”* PU>a).

If we take 1/8 for &,, Lemma 5 follows from (31). Q.E.D.

Now we prove that the condition (iii) of Lemma 2 is satisfied by our
sequence {E,}. For given Ej recalling that E; has another expression FEp,,
we choose a sequence {Ej;;i=1,2,--,s} of events with the properties that
ji> 7, the corresponding superscript p’ is less than (p-5logp) and Ej; is not
independent of E,. If E, is independént of E; then (b) of (ii) holds trivially
for ¢,=1. On the other hand, if E, is not independent of E; we use Lemma
3. Let E;=FEpf and E,=Ep,. If m is not one of the j’s then it follows
from the definition of {Ej;} that (p+5logp) <p’. Considering only the case

of > p , we have by Lemma 1 and for large p,
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(x(“5)-x(5)) (x(*37)-x(3))

P

(! )

IA

(5)'(5)
(30)
1

< T
ST AN
(%) (%)
Since the joint distribution of the two random variables appearing in (30) is

a Gaussian distribution in 2-dimension’s, we may use Lemma 3. Thus there
exists a positive constant ¢ such that

| reEa =Rl -3(4)>o(h), ()XY o(5)
©h = cP(EpP(ER) .

If we take the maximum of ¢ and 1 for ¢, in (b) of (iii) then (b) holds.

In order to verify (a) of (iii), we use the other expressions of the FE}’s.
Let us denote £; by E? and each one of E; by EpZ,. Dividing the sum
of P(E;E;) according to the magnitude of the correlation coefficient of

k-1 k k41 Kk
(X(557) = X(2)) and (X(5—) ~X(or)) we have
(32) El P(EE;) = 2 P(E;E;)+X" P(EE;,) ,
where 3}/ denotes the summation over #’s such that the correlation coefficient
of the corresponding random variables is larger than —1~ and 3/ denotes

V2

the summation of the remainder. Since the correlation is at most

/A 4 i \-12
win( 4 ) ()
and since /27" < /277 by the limitation on the ranges of / and //, we see that
the largest superscript of E;’s appearing in 3 is at most p+2. Moreover,

without loss of generality, we may assume in the computation of P(E;E;,) that
kE _ kK If kL _ R

op =P+ “op = o we have
x5ty x(h B x(E)
PEE;)=P X L %(2 )>w( 2, - <% 2 %< 2*)‘>‘/’(21—f)
3 (2 (2)
(33)
x (2 _x (k. x(*ED _x(E ,
e

2r 27



On the Lipschitz’s condition for Brownian motion. 273

The inequality follows from the definition of ordering and the fact that the
correlation coefficient of two random variables appearing in the last term of
(33) is larger than that. of the second term. Since p’ =p-+2, we obtain by
Lemma 1| and Lemma 3 that

VIR e ] . y4
PEE,) = ce” 55000 pg)
(34)
éce—B’(k'—kzp ) P(Ej),

where ¢, 8 and &’ are positive constants. Here we remark that the number
of E; appearing in the present case is less than (k'—k2?-?) for fixed pair

/4 4
(p’, B') because -5 Lo U . Similarly, for the case of k;, > gp, we have

20 = op7
(35) PEE)<ce®™ "V pE).
Considering the same situation for §a~>%, we have
e+ el =P -p
X' P(E,E,,) = 2cP(E)) E{ (K — k2w =) (o-ia? <Py
2p’ P

36)
127 7P -
+ % 2rr— e L
V=1
< aP(E),

where « is an absolute constant.
For the computation of P(E;E;,) where E;, appears in the summation of

>, we apply Lemma 4. Using the same expression for E; and E;, as before,
k k’ k+l kAU

for the case of o5 =5 <—gr =g We have

k41 k k+1 4

PEEY <P X( )"X<72F>>w(2_p) X(% )‘X(zp')>w(_21)
=38l = l %_ l ’ k+l k, % U
(=) (o —2)
37
-9 7
<ce ) P(E))

= ce " P(E))

where ¢, ¢/, 0 and ¢’ are positive constants. Similarly, for the case of A
oy K+l k+1

= 5w o ="ogp s We obtain the same result. Combining all the cases,

we have
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+5lo
.ZII P(E]Eﬂ) g CP(Ej) P 2 & pp/22p’-—19[e—6/p/
p'=p

+ 5lo;
(38) <cPEY S pred
»’=p
=pBP(E),
where 2 is an absolute constant. (36) and establish the wvalidity

of (iiia). Therefore we may aplly in our case and is
proved completely. Q.E.D.

Syracuse University, Technion, Israel,
and Shizuoka University.
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