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Norm of units of quadratic fields.

By Yoshiomi FURUTA
(Received Nov. 13, 1958)

Let P be the rational number field and 2 = P(Wd) a real quadratic field,
where d is a positive square free integer, different from 2. We denote by
¢, a fundamental unit of £; by ¢ an arbitrary unit of £; by N the absolute
norm; and by small Roman letters «, b, -, m, -- rational integers.

In this paper, we shall be concerned with the following problem:

“ For what pair of integers d, m does there exist in 2 a ring unit ¢ mod.
m with a negative novm: Ne=—17"7

Dirichlet gave some criteria on the question by means of power residue
symbols. More recently it was investigated by A. Scholz, L. Rédei and others.
In particular, Rédei etc.?, discussed it in detail by using the quadratic
residue symbol and the fourth power residue symbol of Dirichlet, and finally
Rédei solved it completely as a problem related to the ideal class group
of quadratic fields. On the other hand, Kuroda[5] and Furuta [1], [2] used
the power residue symbol of Dirichlet and a generalized symbol to express
the decomposition law of primes in some meta-abelian extensions, and also
Tsunekawa proved an interesting result concerning our problem. In the
present paper, we shall give relationships between the norm of units of real
quadratic fields and meta-abelian extensions, from which various results on
our problem, in particular some of Rédei’s results and Tsunekawa’s theorem
in a stronger from, can be deduced.

§1. Restricted power residue symbol.

Let 4 be an algebraic number field of finite degree, v a prime ideal of
4 prime to 2 and a a number of 4, prime to p. Then for a non-negative
rational integer » the restricted 2"-th power residue symbol [a/p], is defined as
follows®. For n=0 we set always [a/p],=1. For =1 [a/p], is defined
only when we have [a/p],—; =1, and if this is really the case we set [a/p],
= (—1)?, where a®™"-n2"=(—_1)* (mod.p), # being the smallest natural num-
ber with 2*|Np*—1. For an ideal m of 4 prime to both « and 2 with the

1) Namely, a unit ¢ such that ¢ is contained in the ring class mod. m.

2) See Rédei [9], in which the history and literatures of the subject is stated.

3) See Furuta [2] If 4 containes all the /-th roots of unity for a fixed rational
prime /, we shall have analogous results to this §1 by using / instead of 2.
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prime ideal decomposition m=p*---p we set [a/m],="[a/p,1.%-[a/p].%,
when each [a/p;], (i=1,---,7) is defined. From the definition follows the
following lemma in an analogous manner as in the case of the ordinary
power residue symbol

Lemmva L If 20| Nv—1 and [a/p]. =1, then o= 1 (mod. p)®.

Furthermore, we can prove

Lemma 2. If 27| Np—1% and [a/v]. =1, then [a/v], =1 for all n.

Proor. For m<# we have trivially [a/p], =1 by the definition. Let #>r
and 2| Np"—1, % being as before. Let (Np"—1)/2"= k(Np—1)/2", where £ is
an integer. Then, since a®-92"=1 (mod.p) by assumption, we have
a0/t = qkW-0/" =1 (mod. p).

The next two lemmas follow immediately from Lemma 2 and the defini-
tion.

Lemma 3. If both [a/vl, and [B/v]. are defined, then [«pB/p], is also
defined, and we have [a/p].[8/v]. =B /0],

Lemma 4. If [a¥/p], is defined for some odd rational integer k, then [a/p],
is also defined, and we have [o*/p], =[a/9p],* = [a/P],.

“ Lemwma 5. For any prime ideal » prime to 2 and for any natuval number s,
the next two relations « [:—:] 1 (mod. p) and « [E 1 (mod. p°) are equivalent.

Proor. If a[E] 1 (mod. %), then trivially a[z] 1 (mod.p). Conversely sup-
pose that « {:—] 1 (mod. p), namely a=p82"r,r =1 (mod. p) for some pB,red.

Denoting by S(p°) the group of all x4 such that x=1 (mod. p*), we see that
the order of the factor group S(p)/S(®°) is equal to @(®®)/@@®)=p* where k=
f(s—1), Np=p’. Therefore y**=1 (mod. p*), whence a?* =1 (mod. p). Since

[n]

p is odd, we have « [z] 1 (mod. p°).

Now we have the following

Lemva 6. We have [a/p],=1 for all” n if and only if we have a*=1
(mod. v°) for a natural number s and for an odd rational integer k.
" Proor. From a*=1 (mod.p*) follows a*=1 (mod. p), hence [a¥/p],=1
for all », and by Lemma 4 we have [a/p],=1 for all » since % is odd. Con-
versely, suppose that [a/pl,=1 for all ». If 27| Np—1, then by Lemma 1
a= 1 (mod. p®), i.e. a =B 7, r =1 (mod. p*) for some B,7=d. If we set b=

@(%)/27, then £ is odd and we see that p*" =g?¢" =1 (mod.y"). Hence we

4) For instance, see Hasse, Bericht iiber neuere Untersuchungen und Probleme
aus der Theorie der algebraischen Zahlkorper II (1926), p. 10.
5) a =1 (mod. p) means that « = 2" (mod. p) for some 4.
[n]

6) 27| Np—1 means that 27| Np—1 and 2"+1yNp—1.
7) By Lemma 2 we may write “for » such that 27 || Np—1” instead of “ for all »”.
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have a*=1 (mod. »*) for an odd &.

§2. Norm of ring units of real quadratic fields.

We denote hereafter by small Greek letters «, 8,--- integers of the qua-
dratic field £, and by «’,f’,--- their conjugates with regard to £/P. Let
d=gq,---q, be the prime number decomposition of 4 in P, and gq,,---,q, be all
the prime divisors of ¢,---, ¢, in 2 respectively. Further, assume hereafter
that m is odd.

$ 13
Lemma 7. Let m=TIp% 1Lq,%% be the prime ideal decomposition of m
i=1 j=1

in 2 where (p:,d)=1, 1=e;, and 0=e;. Then « is contained in the ring class
mod. m of 2 if and only if

a=a’ (mod.pf) i=1,-,s,
a=a (mod. q25*1) j=1,-,¢.

Proor. Since we have a—a’ =bvd or a—a’=2bVd with some b ac-
cording as d=1 (mod. 4) or d=2,3 (mod. 4), the lemma is clear.

Tueorem 1. In order that Ney=1 resp. —1 it is mecessary and sufficient
that [e?/q]), =1 resp. [—e?/01.=1 for all n” and for one of the prime divisors
q prime to 2 of d.

Proor. i) Since ¢,=¢, (mod. Vd), we have Ne,=¢,2 (mod. /d), namely
&?=1 or —1 (mod. vd) according as Ne;=1 or —1. Hence, it follows from
Lemma 6 that we have [¢/q],=1 or [—¢,2/q],=1 for all q prime to 2 ac-
cording as Ne,=1 or —1.

ii) Suppose that [—¢,2/q],=1 for one of q|d prime to 2 and for all .
Then by Lemma 6 we have ¢?*=—1 (mod. q) for some odd %, hence (Ne)t=
—1 (mod. q), owing to Ne,=¢,? (mod. q). Since £ is odd, we have Ne¢ =-1
(mod. q), which means that Ne¢y=-—1, because q is prime to 2.

Now we prove the following®

TueoreEM 29 In order that there exists in £ a ring unit € mod. m such that
Ne=—1, it is necessary and sufficient that we have [—¢e?/q),=1 for all n” and
for one of the prime divisors q, prime to 2, of d and [—¢&2/9]), =1 for all n»
and for all prime divisors D of m.

8) Theorem 2 is a result stronger than that of Tsunekawa [10], i.e. we drop his
assumption Ngy =—1.

9) In the excluding cases where d =2 or m is even,.we can show ecasily the
following facts: In case of d =2 we have N¢y =-—1. In case of m being even, if
‘d=1 (mod. 4) and Ney =—1 then e = 50‘0(2) is a ring unit mod. 2 such that Ne =~—1,
where ¢ is Euler’s function in £; if 2|d, then there is no ring unit ¢ mod. 2 such
that Ne =—1; finally, if d == 1-(mod. 4) and 2/d, then always Ngp =—1.
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Proor. Ne=-—1 if and only if Ney=—1 and e¢=¢* for some odd .. On
the other hand, by Lemma 7, ¢ is a ring unit mod. » if and only if Ne=e?
(mod. p;%* and q,**Y) ((=1,--+,s;7=1,-,8. Hence it is necessary and sufficient
for € to be a ring unit mod. » that we have Ne,=—1 and (—¢,2)*=1 (mod. p,%
and q,2*1) for some odd 2 i=1,--,s;7=1,-,8. The theorem follows im-
mediately from Lemma 6 and Theorem 1.

§3. Fields 2(Ve,).

Lemma 8. We have Ney=1 if and only if 2(Ve,)/P is a non-cyclic exten-
sion of degree 4.

We have Ney=-—1 if and only if !2(1/ mo)/P is a cyclic extension of
degree 4.

Proor. Let w be equal to ¢, or Vd ¢ according as Ne,=1 or —1, and
put K=82 (Ww). Let o0 and 7 be the non-unit element of the Galois group
of 2/k and of K/f respectively, and let U, be a representative of ¢ in the
Galois group of K/P. Since ¢°=¢,"! or (Vd &)’ =+Vd &-¢% according as
Ney=1 or —1, K/P is a normal extension. On the other hand we have
Vo =—Vo, N’ =~wr for some re, hence Vo °'=+o Nr. First, let
Ney=1. Then w=¢, (Vo °)=¢°=¢,"'and (Vo' )= (V& 7)=¢r% There-
fore we have y ==¢, Nr=Ne¢,=1, hence U, =1, which means that K/P is
a non-cyclic extension. Next, let Ne,=—1. Then w =+d ¢, (Vo )= (Wde)
=vde, "t and (W' ") =War)?=+de, r>. Therefore we have r ==¢,"!, Ny
= Ne,"! =—1, hence U,®=r, which means that K/P is a cyclic extension.

Now, for a while, suppose that Ne,=—1. Let d=gq,---q, be, as before,
the prime number decomposition of 4 in P. Then we see necessarily that
¢=2o0r ¢g=1 (mod. 4) ¢G=1,-,8. Let K; i=1,--,%) be a cyclic subfield of
degree 4 of the 2"-th cyclotomic extensions over P (#=4) or the cyclic sub-
field of degree 4 of the ray class field mod.q over P according as ¢;=2 or
not. Moreover, let x; be a generating character of the Galois group of K,/P

G=1,-,¢. For aesP we put y,a)= XZ((%%?)) where (!fg) is the Artin

symbol. We set
(%) r=x"x", =13  (@=1-1.

Then £ is the field corresponding to x2. Denote by A the field corresponding
to y. Then all the divisors of d and only these are completely ramified in
A/P, and conversely a cyclic extension A over P of degree 4 with this pro-
perty corresponds to a character y defined by (x).

In the rational number field the symbol [a/p], is defined for p=2 as
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follows!® : [@/2], is defined only when ¢ =1 (mod. 2"*') and if this is really
the case [¢/2], is equal to 1 or —1 according as ¢ =1 (mod. 2""%) or not.
Now we have
Tueorem 3. If Ney=—1, then 2 (V' —1, Ve,)/P is a non-abelian extension,
and, for some x defined by (x) and for any rational prime p with p=1 (mod. 4)
and (d/p) =1V, we have

(¢o/P) = x(D)LA/P];

wherve D is a prime divisor of p in £, and (e,/p) is the quadratic residue symbol
in 2 (V—=1).

Proor. If we put K=20 (/VER) and K'=8 (1/—\/4760), then by Lemma
8 K and K’ are both cyclic extension over P of degree 4, in which all divisors
of d are completely ramified. If we can show that at least in one of them
only the divisors of d are ramified, then by what we have remarked above
we see that (Vde,/p) = x(p), and therefore!® (e,/p) = x(p)[d/p], for some x
defined by (x) and for any rational prime p with p=1 (mod. 4) and (d/p) =1
Hence to prove the theorem we have only to show that at least in one of K
and K’ over P only the divisors of d are ramified. Since both in K and in
K’ over P only divisors of 2d can be ramified, it remains only to prove that
if d is not even, then 2 is not ramified at least in one of K or K’ over P.
Let d be odd, and suppose that 2 is ramified in K. Denote by A4, as before,
the field corresponding to y, and B the quadratic subfield of AK over 2,
distinct both from A and from K. Then, since A and K are both cyclic over
P of degree 4, B is non-cyclic and biquadratic over P and only the divisors
of 2 are ramified. Hence we have B= 82 (Wa) where a=—1 or 2. But ¢=2
does not occur, because otherwise we would have A= 9 (1/ 24 d g,), contrary
to the fact that 2 is not ramified in A/P. Therefore we have A=K’ and our
assertion is proved.

CoroLrary. If we assume in Theorem 2 moreover that (p/q) =1 for all q;|d,
then we have

(o/P)=Lp/d1s[d/p]; -

Proor. If (p/g;)=1, then we have y,(p)=[p/q1,- Thus, our assertion
follows from the theorem at once.

§4. Applications.

If Pell’s equation x*—fy?=—1 is solvable, we call f admissible. Suppose

10) cf. Furuta [1, p. 50].
11) (d/p) is the quadratic residue symbol in P.
12) cf. Furuta [2, Lemma 1 and Lemma 27.
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that d(+#2) is squarefree and let f=m?d. Then f is admissible if and only if

there exists in P(v/d) a ring unit ¢ mod. m such that Ne=—1. By
2 and Corollary to the following result is easily obtained:

a) Suppose that d is admissible and that m is divisible only by primes p
with p=5 (mod. 8) and (p/q)=1 for all q|d. Then m?d is addmissible if and
only if we have [ p/d]s[d/p]s=—1 for all p|m.

b)) Let d, and d, be two positive odd integers and put d=dd, £2,=
P(Wd), 2,=PWd,), 2,=P(Vd). Moveover, let ¢, be a fundamental unit of
2, and suppose that Ne,=—1 (i=1,2,3). Then Ve, is contained in A=
PV =1, Vgq,,--,Vq,) where q,,-, q, are all divisors of d.

Proor. Let p be any rational prime which decomposes completely in A4,
i.e, (p/g)=1 for all g|d, and B, p,, vy, b; be prime divisors of p in 4, 2,, 2,
2, respectively. Then by Corollary to (€,6565/P) = (&1/9,)(€2/D3)(E5/03)
=[p/d 1 [d,\/p1: [ p/ds]s [de/p]; Lp/d]s [d/p];=1. Hence p also decomposes
completely in A(Veg,e;), 1. e. Ve ege, .

o) Let dy and dy be two admissible odd integers prime to each other, and
put d=d,d,. If [p/d;]s[ds/D]e=—1 for omne of the prime divisors p of d,, then
d is non-admissible.

Proor. Notations being as in b), we have Ne, = Ne,=—1 by the assump-
tion for 4, and d,. We now assume that Ne;=-—1. Then by b) the product
€,6,6; 1S a square number in 4. Hence we have (e;/p;) = (6/p)(es/p;) and by
[—e&?/p. 1 =0[—1/p1s (e, /p,) =1. Therefore, we see by Corollary to
that (e;/py) = [—1/p,]; (62/92) = [—1/p, 15 [ p/d ] [da/D 1y, Whence (g5/p;)
=—[—1/p,J,=—[—1/p], by the assumption. On the other hand, we have
C—e?/Psla=[—1/pla(es/p5) =1 by whence (e3/p;) =[—1/p],, which

is a contradiction. Thus our assertion is proved.

Mathematical Institute,
Nagoya University.
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