Norm of units of quadratic fields.

By Yoshiomi FURUTA

(Received Nov. 13, 1958)

Let P be the rational number field and $\Omega = P(\sqrt{d})$ a real quadratic field, where d is a positive square free integer, different from 2. We denote by ε_0 a fundamental unit of Ω ; by ε an arbitrary unit of Ω ; by N the absolute norm; and by small Roman letters a, b, \dots, m, \dots rational integers.

In this paper, we shall be concerned with the following problem:

"For what pair of integers d, m does there exist in Ω a ring unit¹⁾ ε mod. m with a negative norm: $N\varepsilon = -1$?"

Dirichlet gave some criteria on the question by means of power residue symbols. More recently it was investigated by A. Scholz, L. Rédei and others. In particular, Rédei [6], [7] etc.²), discussed it in detail by using the quadratic residue symbol and the fourth power residue symbol of Dirichlet, and finally Rédei [9] solved it completely as a problem related to the ideal class group of quadratic fields. On the other hand, Kuroda [5] and Furuta [1], [2] used the power residue symbol of Dirichlet and a generalized symbol to express the decomposition law of primes in some meta-abelian extensions, and also Tsunekawa [10] proved an interesting result concerning our problem. In the present paper, we shall give relationships between the norm of units of real quadratic fields and meta-abelian extensions, from which various results on our problem, in particular some of Rédei's results and Tsunekawa's theorem in a stronger from, can be deduced.

§ 1. Restricted power residue symbol.

Let Δ be an algebraic number field of finite degree, $\mathfrak p$ a prime ideal of Δ prime to 2 and α a number of Δ , prime to $\mathfrak p$. Then for a non-negative rational integer n the restricted 2^n -th power residue symbol $[\alpha/\mathfrak p]_n$ is defined as follows³). For n=0 we set always $[\alpha/\mathfrak p]_n=1$. For $n\geq 1$ $[\alpha/\mathfrak p]_n$ is defined only when we have $[\alpha/\mathfrak p]_{n-1}=1$, and if this is really the case we set $[\alpha/\mathfrak p]_n=(-1)^x$, where $\alpha^{(N\mathfrak p^h-1)/2^n}\equiv (-1)^x$ (mod. $\mathfrak p$), h being the smallest natural number with $2^n|N\mathfrak p^h-1$. For an ideal $\mathfrak m$ of Δ prime to both α and 2 with the

¹⁾ Namely, a unit ε such that ε is contained in the ring class mod. m.

²⁾ See Rédei [9], in which the history and literatures of the subject is stated.

³⁾ See Furuta [2]. If Δ containes all the l-th roots of unity for a fixed rational prime l, we shall have analogous results to this §1 by using l instead of 2.

140 Y. FURUTA

prime ideal decomposition $\mathfrak{m} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t}$ we set $[\alpha/\mathfrak{m}]_n = [\alpha/\mathfrak{p}_1]_n^{e_1} \cdots [\alpha/\mathfrak{p}_t]_n^{e_t}$, when each $[\alpha/\mathfrak{p}_i]_n$ $(i=1,\dots,t)$ is defined. From the definition follows the following lemma in an analogous manner4) as in the case of the ordinary power residue symbol

Lemma 1. If $2^n | N\mathfrak{p} - 1$ and $[\alpha/\mathfrak{p}]_n = 1$, then $\alpha \equiv 1 \pmod{\mathfrak{p}}^5$.

Furthermore, we can prove

Lemma 2. If $2^r \| N\mathfrak{p} - 1^{6} \| \alpha / \mathfrak{p} \|_r = 1$, then $[\alpha / \mathfrak{p}]_n = 1$ for all n.

Proof. For $n \le r$ we have trivially $[\alpha/\mathfrak{p}]_n = 1$ by the definition. Let n > rand $2^n | N\mathfrak{p}^h - 1$, h being as before. Let $(N\mathfrak{p}^h - 1)/2^n = k(N\mathfrak{p} - 1)/2^r$, where k is an integer. Then, since $\alpha^{(N\mathfrak{p}-1)/2^r} \equiv 1 \pmod{\mathfrak{p}}$ by assumption, we have $\alpha^{(N\mathfrak{p}^{h}-1)/2^n} \equiv \alpha^{k(N\mathfrak{p}-1)/2^r} \equiv 1 \pmod{\mathfrak{p}}.$

The next two lemmas follow immediately from Lemma 2 and the definition.

Lemma 3. If both $[\alpha/\mathfrak{p}]_n$ and $[\beta/\mathfrak{p}]_n$ are defined, then $[\alpha\beta/\mathfrak{p}]_n$ is also defined, and we have $[\alpha/\mathfrak{p}]_n[\beta/\mathfrak{p}]_n = [\alpha\beta/\mathfrak{p}]_n$.

Lemma 4. If $[\alpha^k/\mathfrak{p}]_n$ is defined for some odd rational integer k, then $[\alpha/\mathfrak{p}]_n$ is also defined, and we have $[\alpha^k/\mathfrak{p}]_n = [\alpha/\mathfrak{p}]_n^k = [\alpha/\mathfrak{p}]_n$.

Lemma 5. For any prime ideal p prime to 2 and for any natural number s,

the next two relations $\alpha \equiv 1 \pmod{\mathfrak{p}}$ and $\alpha \equiv 1 \pmod{\mathfrak{p}}$ are equivalent. Proof. If $\alpha \equiv 1 \pmod{\mathfrak{p}}$, then trivially $\alpha \equiv 1 \pmod{\mathfrak{p}}$. Conversely suppose that $\alpha \equiv 1 \pmod{\mathfrak{p}}$, namely $\alpha = \beta^{2^n} \gamma$, $\gamma \equiv 1 \pmod{\mathfrak{p}}$ for some $\beta, \gamma \in \Delta$. Denoting by $S(\mathfrak{p}^s)$ the group of all $x \in \mathcal{A}$ such that $x \equiv 1 \pmod{\mathfrak{p}^s}$, we see that the order of the factor group $S(\mathfrak{p})/S(\mathfrak{p}^s)$ is equal to $\varphi(\mathfrak{p}^s)/\varphi(\mathfrak{p}) = p^k$ where k =f(s-1), $N\mathfrak{p} = p^f$. Therefore $\gamma^{p^k} \equiv 1 \pmod{p^s}$, whence $\alpha^{p^k} \equiv 1 \pmod{\mathfrak{p}^s}$. Since p is odd, we have $\alpha \equiv 1 \pmod{\mathfrak{p}^s}$.

Now we have the following

Lemma 6. We have $[\alpha/\mathfrak{p}]_n = 1$ for all n if and only if we have $\alpha^k \equiv 1$ (mod. \mathfrak{p}^s) for a natural number s and for an odd rational integer k.

Proof. From $\alpha^k \equiv 1 \pmod{\mathfrak{p}^s}$ follows $\alpha^k \equiv 1 \pmod{\mathfrak{p}}$, hence $[\alpha^k/\mathfrak{p}]_n = 1$ for all n, and by Lemma 4 we have $[\alpha/\mathfrak{p}]_n = 1$ for all n since k is odd. Conversely, suppose that $[\alpha/\mathfrak{p}]_n = 1$ for all n. If $2^r || N\mathfrak{p} - 1$, then by Lemma 1 $\alpha \equiv 1 \pmod{\mathfrak{p}^s}$, i. e. $\alpha = \beta^{2^r} \gamma$, $\gamma \equiv 1 \pmod{\mathfrak{p}^s}$ for some $\beta, \gamma \in \Delta$. If we set k = 1 $\varphi(\mathfrak{p}^s)/2^r$, then k is odd and we see that $\beta^{k_2r} = \beta^{\varphi(\mathfrak{p}^s)} \equiv 1 \pmod{\mathfrak{p}^s}$. Hence we

⁴⁾ For instance, see Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper II (1926), p. 10.

⁵⁾ $\alpha \equiv 1 \pmod{\mathfrak{p}}$ means that $\alpha \equiv \beta^{2^n} \pmod{\mathfrak{p}}$ for some $\beta \in \Delta$.

⁶⁾ $2^r \parallel N\mathfrak{p}-1$ means that $2^r \mid N\mathfrak{p}-1$ and $2^{r+1} \not \setminus N\mathfrak{p}-1$.

⁷⁾ By Lemma 2 we may write "for n such that $2^n \parallel Np-1$ " instead of "for all n".

have $\alpha^k \equiv 1 \pmod{\mathfrak{p}^s}$ for an odd k.

§ 2. Norm of ring units of real quadratic fields.

We denote hereafter by small Greek letters α, β, \cdots integers of the quadratic field Ω , and by α', β', \cdots their conjugates with regard to Ω/P . Let $d = q_1 \cdots q_t$ be the prime number decomposition of d in P, and q_1, \cdots, q_t be all the prime divisors of q_1, \cdots, q_t in Ω respectively. Further, assume hereafter that m is odd.

Lemma 7. Let $m = \prod_{i=1}^{s} \mathfrak{p}_i e_i \prod_{j=1}^{t} \mathfrak{q}_j e_j$ be the prime ideal decomposition of m in Ω where $(\mathfrak{p}_i, d) = 1$, $1 \leq e_i$ and $0 \leq e_j$. Then α is contained in the ring class mod. m of Ω if and only if

Proof. Since we have $\alpha - \alpha' = b\sqrt{d}$ or $\alpha - \alpha' = 2b\sqrt{d}$ with some b according as $d \equiv 1 \pmod{4}$ or $d \equiv 2, 3 \pmod{4}$, the lemma is clear.

Theorem 1. In order that $N\varepsilon_0 = 1$ resp. -1 it is necessary and sufficient that $[\varepsilon_0^2/\mathfrak{q}]_n = 1$ resp. $[-\varepsilon_0^2/\mathfrak{q}]_n = 1$ for all n^7 and for one of the prime divisors \mathfrak{q} prime to 2 of d.

PROOF. i) Since $\varepsilon_0 \equiv \varepsilon_0'$ (mod. \sqrt{d}), we have $N\varepsilon_0 \equiv \varepsilon_0^2$ (mod. \sqrt{d}), namely $\varepsilon_0^2 \equiv 1$ or -1 (mod. \sqrt{d}) according as $N\varepsilon_0 = 1$ or -1. Hence, it follows from Lemma 6 that we have $[\varepsilon_0^2/\mathfrak{q}]_n = 1$ or $[-\varepsilon_0^2/\mathfrak{q}]_n = 1$ for all \mathfrak{q} prime to 2 according as $N\varepsilon_0 = 1$ or -1.

ii) Suppose that $[-\epsilon_0^2/\mathfrak{q}]_n = 1$ for one of $\mathfrak{q} \mid d$ prime to 2 and for all n. Then by Lemma 6 we have $\epsilon_0^{2k} \equiv -1$ (mod. \mathfrak{q}) for some odd k, hence $(N\epsilon_0)^k \equiv -1$ (mod. \mathfrak{q}), owing to $N\epsilon_0 \equiv \epsilon_0^2$ (mod. \mathfrak{q}). Since k is odd, we have $N\epsilon_0 \equiv -1$ (mod. \mathfrak{q}), which means that $N\epsilon_0 = -1$, because \mathfrak{q} is prime to 2.

Now we prove the following⁸⁾

Theorem 2^9) In order that there exists in Ω a ring unit ε mod. m such that $N\varepsilon = -1$, it is necessary and sufficient that we have $[-\varepsilon_0^2/\mathfrak{q}]_n = 1$ for all n^7) and for one of the prime divisors \mathfrak{q} , prime to $\mathfrak{2}$, of \mathfrak{d} and $[-\varepsilon_0^2/\mathfrak{p}]_n = 1$ for all n^7) and for all prime divisors \mathfrak{p} of \mathfrak{m} .

⁸⁾ Theorem 2 is a result stronger than that of Tsunekawa [10], i.e. we drop his assumption $N_{\epsilon_0} = -1$.

⁹⁾ In the excluding cases where d=2 or m is even, we can show easily the following facts: In case of d=2 we have $N_{\epsilon_0}=-1$. In case of m being even, if $d\equiv 1\pmod 4$ and $N_{\epsilon_0}=-1$ then $\epsilon=\epsilon_0^{\varphi(2)}$ is a ring unit mod. 2 such that $N_{\epsilon}=-1$, where φ is Euler's function in Ω ; if $2\mid d$, then there is no ring unit ϵ mod. 2 such that $N_{\epsilon}=-1$; finally, if $d\equiv 1\pmod 4$ and $2\nmid d$, then always $N_{\epsilon_0}=-1$.

142 Y. Furuta

PROOF. $N\varepsilon=-1$ if and only if $N\varepsilon_0=-1$ and $\varepsilon=\varepsilon_0{}^k$ for some odd k. On the other hand, by Lemma 7, ε is a ring unit mod. m if and only if $N\varepsilon\equiv\varepsilon^2$ (mod. $\mathfrak{p}_i{}^{e_i}$ and $\mathfrak{q}_j{}^{2e_j+1}$) $(i=1,\cdots,s\,;\,j=1,\cdots,t)$. Hence it is necessary and sufficient for ε to be a ring unit mod. m that we have $N\varepsilon_0=-1$ and $(-\varepsilon_0{}^2)^k\equiv 1\pmod{\mathfrak{p}_i{}^{e_i}}$ and $\mathfrak{q}_j{}^{2e_j+1}$) for some odd k $(i=1,\cdots,s\,;\,j=1,\cdots,t)$. The theorem follows immediately from Lemma 6 and Theorem 1.

§ 3. Fields $\Omega(\sqrt{\varepsilon_0})$.

Lemma 8. We have $N\varepsilon_0 = 1$ if and only if $\Omega(\sqrt{\varepsilon_0})/P$ is a non-cyclic extension of degree 4.

We have $N\varepsilon_0 = -1$ if and only if $\Omega(\sqrt[4]{\sqrt{d} \varepsilon_0})/P$ is a cyclic extension of degree 4.

Proof. Let ω be equal to ε_0 or \sqrt{d} ε_0 according as $N\varepsilon_0=1$ or -1, and put $K=\mathcal{Q}$ ($\sqrt{\omega}$). Let σ and τ be the non-unit element of the Galois group of \mathcal{Q}/k and of K/\mathcal{Q} respectively, and let U_{σ} be a representative of σ in the Galois group of K/P. Since $\varepsilon_0{}^{\sigma}=\varepsilon_0{}^{-1}$ or $(\sqrt{d}\ \varepsilon_0)^{\sigma}=\sqrt{d}\ \varepsilon_0\cdot\varepsilon_0{}^{-2}$ according as $N\varepsilon_0=1$ or -1, K/P is a normal extension. On the other hand we have $\sqrt{\omega}{}^{\tau}=-\sqrt{\omega}$, $\sqrt{\omega}{}^{U_{\sigma}}=\sqrt{\omega}$ γ for some $\gamma\in\mathcal{Q}$, hence $\sqrt{\omega}{}^{U_{\sigma}^{\sigma}}=\sqrt{\omega}$ $N\gamma$. First, let $N\varepsilon_0=1$. Then $\omega=\varepsilon_0$, $(\sqrt{\omega}{}^{U_{\sigma}})^2=\varepsilon_0{}^{\sigma}=\varepsilon_0{}^{-1}$ and $(\sqrt{\omega}{}^{U_{\sigma}})^2=(\sqrt{\omega}\,\gamma)=\varepsilon_0\cdot\gamma^2$. Therefore we have $\gamma=\pm\varepsilon_0$, $N\gamma=N\varepsilon_0=1$, hence $U_{\sigma}{}^2=1$, which means that K/P is a non-cyclic extension. Next, let $N\varepsilon_0=-1$. Then $\omega=\sqrt{d}\ \varepsilon_0$, $(\sqrt{\omega}{}^{U_{\sigma}})^2=(\sqrt{d}\ \varepsilon_0)^{\sigma}=\sqrt{d}\ \varepsilon_0{}^{-1}$ and $(\sqrt{\omega}{}^{U_{\sigma}})^2=(\sqrt{d}\ \varepsilon_0)^{\sigma}$. Therefore we have $\gamma=\pm\varepsilon_0{}^{-1}$, $N\gamma=N\varepsilon_0{}^{-1}=-1$, hence $U_{\sigma}{}^2=\tau$, which means that K/P is a cyclic extension.

Now, for a while, suppose that $N\varepsilon_0=-1$. Let $d=q_1\cdots q_t$ be, as before, the prime number decomposition of d in P. Then we see necessarily that $q_i=2$ or $q_i\equiv 1\pmod 4$ $(i=1,\cdots,t)$. Let K_i $(i=1,\cdots,t)$ be a cyclic subfield of degree 4 of the 2^n -th cyclotomic extensions over P $(n\geq 4)$ or the cyclic subfield of degree 4 of the ray class field mod q over P according as $q_i=2$ or not. Moreover, let χ_i be a generating character of the Galois group of K_i/P $(i=1,\cdots,t)$. For $a\in P$ we put $\chi_i(a)=\chi_i\Big(\Big(\frac{K/P}{a}\Big)\Big)$ where $\Big(\frac{K/P}{a}\Big)$ is the Artin symbol. We set

(*)
$$\chi = \chi_1^{n_1} \cdots \chi_t^{n_t}, \ n_i = 1, 3 \quad (i = 1, \dots, t).$$

Then Ω is the field corresponding to χ^2 . Denote by A the field corresponding to χ . Then all the divisors of d and only these are completely ramified in A/P, and conversely a cyclic extension A over P of degree 4 with this property corresponds to a character χ defined by (*).

In the rational number field the symbol $[a/p]_n$ is defined for p=2 as

follows¹⁰⁾: $[a/2]_n$ is defined only when $a \equiv 1 \pmod{2^{n+1}}$ and if this is really the case $[a/2]_n$ is equal to 1 or -1 according as $a \equiv 1 \pmod{2^{n+2}}$ or not.

Now we have

THEOREM 3. If $N\varepsilon_0 = -1$, then $\Omega(\sqrt{-1}, \sqrt{\varepsilon_0})/P$ is a non-abelian extension, and, for some χ defined by (*) and for any rational prime p with $p \equiv 1 \pmod{4}$ and $(d/p) = 1^{11}$, we have

$$(\varepsilon_0/\mathfrak{p}) = \chi(\mathfrak{p}) [d/\mathfrak{p}]_2$$

where \mathfrak{p} is a prime divisor of p in Ω , and $(\varepsilon_0/\mathfrak{p})$ is the quadratic residue symbol in $\Omega(\sqrt{-1})$.

Proof. If we put $K = \Omega$ ($\sqrt{\sqrt{d} \varepsilon_0}$) and $K' = \Omega$ ($\sqrt{-\sqrt{d} \varepsilon_0}$), then by Lemma 8 K and K' are both cyclic extension over P of degree 4, in which all divisors of d are completely ramified. If we can show that at least in one of them only the divisors of d are ramified, then by what we have remarked above we see that $(\sqrt{d} \, \epsilon_0/\mathfrak{p}) = \chi(\mathfrak{p})$, and therefore¹²⁾ $(\epsilon_0/\mathfrak{p}) = \chi(\mathfrak{p})[d/\mathfrak{p}]_2$, for some χ defined by (*) and for any rational prime p with $p \equiv 1 \pmod{4}$ and (d/p) = 1. Hence to prove the theorem we have only to show that at least in one of K and K' over P only the divisors of d are ramified. Since both in K and in K' over P only divisors of 2d can be ramified, it remains only to prove that if d is not even, then 2 is not ramified at least in one of K or K' over P. Let d be odd, and suppose that 2 is ramified in K. Denote by A, as before, the field corresponding to χ , and B the quadratic subfield of AK over \mathcal{Q} , distinct both from A and from K. Then, since A and K are both cyclic over P of degree 4, B is non-cyclic and biquadratic over P and only the divisors of 2 are ramified. Hence we have $B = \Omega(\sqrt{a})$ where a = -1 or 2. But a = 2does not occur, because otherwise we would have $A = \Omega$ ($\sqrt{2\sqrt{d}\,\varepsilon_0}$), contrary to the fact that 2 is not ramified in A/P. Therefore we have A=K', and our assertion is proved.

Corollary. If we assume in Theorem 2 moreover that $(p/q_i)=1$ for all $q_i|d$, then we have

$$(\varepsilon_0/\mathfrak{p}) = [p/d]_2 [d/p]_2$$
.

PROOF. If $(p/q_i) = 1$, then we have $\chi_i(p) = [p/q_i]_2$. Thus, our assertion follows from the theorem at once.

§ 4. Applications.

If Pell's equation $x^2 - fy^2 = -1$ is solvable, we call f admissible. Suppose

¹⁰⁾ cf. Furuta [1, p. 50].

¹¹⁾ (d/p) is the quadratic residue symbol in P.

¹²⁾ cf. Furuta [2, Lemma 1 and Lemma 2].

144 Y. Furuta

that $d(\neq 2)$ is squarefree and let $f = m^2 d$. Then f is admissible if and only if there exists in $P(\sqrt{d})$ a ring unit ϵ mod. m such that $N\epsilon = -1$. By Theorem 2 and Corollary to Theorem 3 the following result is easily obtained:

- **a)** Suppose that d is admissible and that m is divisible only by primes p with $p \equiv 5 \pmod{8}$ and (p/q) = 1 for all $q \mid d$. Then m^2d is addmissible if and only if we have $\lfloor p/d \rfloor_2 \lfloor d/p \rfloor_2 = -1$ for all $p \mid m$.
- **b**)¹³⁾ Let d_1 and d_2 be two positive odd integers and put $d=d_1d_2$, $\Omega_1=P(\sqrt{d_1})$, $\Omega_2=P(\sqrt{d_2})$, $\Omega_3=P(\sqrt{d})$. Moreover, let ε_i be a fundamental unit of Ω_i and suppose that $N\varepsilon_i=-1$ (i=1,2,3). Then $\sqrt{\varepsilon_1\varepsilon_2\varepsilon_3}$ is contained in $\Lambda=P(\sqrt{-1},\sqrt{q_1},\cdots,\sqrt{q_t})$ where q_1,\cdots,q_t are all divisors of d.

PROOF. Let p be any rational prime which decomposes completely in Λ , i. e., (p/q)=1 for all $q\mid d$, and $\mathfrak{P},\mathfrak{P}_1,\mathfrak{P}_2,\mathfrak{P}_3$ be prime divisors of p in $\Lambda,\mathfrak{Q}_1,\mathfrak{Q}_2,\mathfrak{Q}_3$ respectively. Then by Corollary to Theorem 3 $(\varepsilon_1\varepsilon_2\varepsilon_3/\mathfrak{P})=(\varepsilon_1/\mathfrak{P}_1)(\varepsilon_2/\mathfrak{P}_2)(\varepsilon_3/\mathfrak{P}_3)=[p/d_1]_2[d_1/p]_2[p/d_2]_2[d_2/p]_2[d/p]_2[d/p]_2=1$. Hence p also decomposes completely in $\Lambda(\sqrt{\varepsilon_1\varepsilon_2\varepsilon_3})$, i. e. $\sqrt{\varepsilon_1\varepsilon_2\varepsilon_3}\in\Lambda$.

 \mathbf{c})¹⁴⁾ Let d_1 and d_2 be two admissible odd integers prime to each other, and put $d=d_1d_2$. If $\lceil p/d_2 \rceil_2 \lceil d_2/p \rceil_2 = -1$ for one of the prime divisors p of d_1 , then d is non-admissible.

PROOF. Notations being as in **b**), we have $N\varepsilon_1 = N\varepsilon_2 = -1$ by the assumption for d_1 and d_2 . We now assume that $N\varepsilon_3 = -1$. Then by **b**) the product $\varepsilon_1\varepsilon_2\varepsilon_3$ is a square number in A. Hence we have $(\varepsilon_3/\mathfrak{p}_3) = (\varepsilon_1/\mathfrak{p}_1)(\varepsilon_2/\mathfrak{p}_2)$ and by Theorem $1 \left[-\varepsilon_1^2/\mathfrak{p}_1\right]_2 = \left[-1/p\right]_2 (\varepsilon_1/\mathfrak{p}_1) = 1$. Therefore, we see by Corollary to Theorem 3 that $(\varepsilon_3/\mathfrak{p}_3) = \left[-1/\mathfrak{p}_1\right]_2 (\varepsilon_2/\mathfrak{p}_2) = \left[-1/\mathfrak{p}_1\right]_2 \left[p/d_2\right]_2 \left[d_2/p\right]_2$, whence $(\varepsilon_3/\mathfrak{p}_3) = -\left[-1/p\right]_2 = -\left[-1/p\right]_2$ by the assumption. On the other hand, we have $\left[-\varepsilon_3^2/\mathfrak{p}_3\right]_2 = \left[-1/p\right]_2 (\varepsilon_3/\mathfrak{p}_3) = 1$ by Theorem 1, whence $(\varepsilon_3/\mathfrak{p}_3) = \left[-1/p\right]_2$, which is a contradiction. Thus our assertion is proved.

Mathematical Institute, Nagoya University.

References

- [1] Y. Furuta, A reciprocity law of the power residue symbol, J. Math. Soc. Japan, 10 (1958), 46-54.
- [2] Y. Furuta, On meta-abelian fields of a certain type, Nagoya Math. J., 14 (1959), 193-199.
- [3] T. Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J., 10 (1956), 65-85.

¹³⁾ cf. Kuroda [4, Satz 11] and Kubota [3, Satz 1].

¹⁴⁾ This criterion c) is somewhat different from that of Rédei [7].

- [4] S. Kuroda, Über den Dirichletschen Körper, J. Fac. Sci. Imp. Univ. Tokyo, Sec., I, 4 (1943), 383-406.
- [5] S. Kuroda, Über die Zerlegung rationaler Primzahlen in gewissen nicht-abelschen galoischen Körpern. J. Math. Soc. Japan, 3 (1951), 148-156.
- [6] L. Rédei, Über die Grundeinheit und die durch 8 teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper. J. Reine Angew. Math., 171 (1934), 131-148.
- [7] L. Rédei, Über die Pellsche Gleichung $t^2-du^2=-1$, J. Reine Angew. Math., 173 (1935), 193-211.
- [8] L. Rédei, Bedingtes Artinsches Symbol mit Anwendung in der Klassenkörpertheorie, Acta Math. Acad. Sci. Hung., 4 (1953), 1-30.
- [9] L. Rédei, Die 2-Ringklassengruppe des quadratischen Zahlkörpers und die Theorie den Pellschen Gleichung, ibid., 31-85.
- [10] M. Tsunekawa, On the multiple solutions of $x^2 dy^2 = -1$, Bull. Nagoya Inst. Technology, 8 (1956), 1-7 (Japanese).