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§1. Introduction.

Let X and Y be finite dimensional compact metric spaces. It is well
known that the equality

(4) dim(Xx V)=dim X4-dim Y

does not hold generally. The known cases for which the equality (4) holds
are as follows:
1) X is a polytope and Y is any space [1].
2) X is a l-dimensional space and Y is any space [10]
3) X is a 2-dimensional ANR and Y is any space [12]
4) X is an n-dimensional ANR containing a point which is HL"? and
(n—1)-HS, and Y is an m-dimensional ANR containing a point which
is HL™ % and (m—1)-HS [12]
5 X and Y are spaces which have the property 4 in the sense of K.
Borsuk [6]
The following problem is proposed by P. Alexandroff [1], Problem XII, p. 236
(cf. Hurewicz and Wallman [11], p. 34).
o To determine a finite dimensional compact metvic space X such that, when-
ever Y is a compacl metric space, the equality (A) holds.
~In this paper, we shall give an answer to this problem by determining a
necessary and sufficient condition which a compact metric space X should
satisfy in order that the equality (A) holds for every compact metric space Y.
A scquence a={q, g,--} of positive integers is called a k-sequence if g,
is a divisor of ¢, i=1,2,---, and ¢;>1 for some i. There exists a natural
homomorphism /A(a,:) from Z,,,, onto Z,,, i=1,2,--, where Z, means the factor
group Z/qZ and Z means the additive group of all integers. Let us denote
by Z(a) the inverse limit group of the inverse system {Z,: Z(a,7)}. Let (X, A)
be a pair of compact metric spaces. We shall denote by H,(X, A: Z(a)) the
n-dimensional Cech homology group of (X, A) with Z(a) as a coefficient group.
Consider the following property P for an zn-dimensional compact metric space

X.
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For every k-sequence a there exists a closed subset A, of X such that

(X, A,: Z(a))+0.

A 1-dimensional space has the property P (cf. §5, [Lemma 24). If X contains
a closed subset A such that H,(X,A:Z)+0,X has the property P (cf. §5,
Lemma 20). Accordingly, if X is a space in the above-mentioned cases 1)-5),
X has the property P (cf. §5, Lemmas B1-23). Our main theorem is stated
as follows.

Tueorem. Let X be a finite dimensional compact melvic space. In ovder
that the equality (A) hold for every compact metric space Y it is necessary and
sufficient that X have the property P.

In §2 we shall prove several lemmas and introduce the notations that
are used later. In §3 we shall construct some examples that are used in the
proof of the main theorem and may be of interest in itself. These examples
are modifications of Pontrjagin’s surfaces (cf. and [7]). Our main theorem
will be proved in §4. In § 5 we shall give some consequences of the main
theorem.

§ 2. Lemmas and notations.

Let X be a topological space. By a covering of X we mean a covering
by a finite collection of open sets. By the nerve of o covering we mean the
nerve realized as a space with the Euclidean metric as defined by S. Lefschetz
[13], p. 5. Let N be a covering of a space X and let K be the nerve of 1l
A mapping? ¢ of X into K is called a cannonical mapping® of X into K if
the inverse image of the open star of each vertex is contained in the open
set of U corresponding to this vertex. If X is a normal space and U is a
covering of X, it is well known that there exists a canonical mapping of X
into the nerve of W (cf., for example, [9] Chap. X, 11.8). A
covering Il of X is a refinement of a covering B (this rclation we denote by
B<<N), if every open set of U is contained in some open sel of V. Let V=
{Vs} and U={U,} be two coverings of X such that B< U and let L and K
be the nerves of B and U respectively. Let us denote by {vg} and {u,}
the vertexes of L and K corresponding to the open sets Vg and U, of ¥ and
U respectively. A simplicial mapping I} of K into L is called a projection®
if, in case Iy (u,)=vg we have U,C Vs A collection U={U,} of coverings
of X is called a cofinal collection of coverings of X if for any covering 08 of
X there exists a member U, of U such that B<<ll,. If X is a compact metric

1) Throughout this paper we mean by a mapping a continuous transformation.

2) Cf. [3] p. 202 :
3) Cf. for example [9], p. 234.
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space, there exists a countable and cofinal collection {Il;} of coverings of X

such that W, <<U;.,, :=1,2,---. We shall mean by a cofinal collection of cover-
ings of a compact metric space a countable cofinal collection {lI;} of coverings
such that W,<<U;.,i=1,2,--. The order of a covering is the largest integer

n such that there exists z+1 members of the covering which have a non-
empty intersection. The nerve of a covering whose ocder is n is n-dimen-
sional. By the dimension® of a normal space X, which wc shall denote by
dim X, we mean the least integer = such that every covering of X has a
refinement of order #. If X is a separable metric space, this dimension is
equal to the usual Brouwer-Menger-Uryschn’s dimension®.

Let (X, A) be a pair® of topological spaces. We shall denote by //,(X, A:
G) the n-dimensional Cech homology group with coefficients in G”. Let R,
be the additive group of rational numbers mod 1. The following lemmas are
proved in [3]

Lemma 19, (Hopf’s extension theorem). Let A be a closed subset of an
(n+1)-dimensional compact metric space X. In order that a mapping f of A
into the n-dimensional sphere S* be extensible to a mapping of X into S", it is
necessary and sufficient that the condition f0H,. (X, A: R)=0 holds, where fy
is the homomorphism® of H(A: R)) into H,(S: R,) induced by the mapping f
and 0 is the boundary homomorphism® of H,. (X, A: R)) into IT,(A: R).

Lemma 28, Let X be a compact metric space. In order that dim X=n it
is necessary and sufficient that

(1) there exists a closed subset A of X such that H(X, A: R)+0,

(2)  for every closed subset A and every integer j=>n we have Hy (X, A: R,)=0.

The’ following lemma is a consequence of [I1], Chap. III, §4,
111, 4.

Lemma 3%, Let X and Y be two compact metric spaces. Then dim(XXY)
=dim X-+dim Y.

Let (X, A) and (Y, B) be pairs of compact metric spaces. By (X, A)x (Y, B)
we mean a pair of spaces (XX Y, XXBUAXY). Let U={l;|i=1,2,---} and
V={%B;|i=1, 2,---} be cofinal collections of coverings of X and Y respectively.
Let us denote the nerves of I; and B; corresponding to (X, A) and (Y, B) by

4) Cf. [8] p. 206 and [15], p. 7.

5) See, for instance, [11], Chap. V, V7.

6) By a pair of topological spaces (X,A4) we mean a pair of X and a closed
subset A of X.

7) See, for instance, [9], Chap. IX.

8) It is known ([15], Theorems 5.2 and 5.3 and [I7]) that Lemmas 1, 2 and 3
hold in case X is a more general space, but we do not nced these generalizations in
this paper.

9) Cf. [9], Chap. I and Chap. IX.
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(K, Ly) and (M;, Ny) respectively. There exist projections ¢it': (K, Liv)—
(K, L) and &t (M, Niy)— M, N;) for i=1,2,---. Let us denote by IItH!
the product mapping!® ¢ ixX it of the pair (K., Liw) X (Mieq, Niyy) of cell
complexes into the pair (K, L)X (M, N;) of cell complexes. Since IT{*! is a
cellular mapping!V, it induces a homomorphism (76 1 Ho(Kiwy, L) X (M1,
Ny G)— H (G, Lyx (M, Ny G).  Let us denote by (S;, Ty) the pair of the
nerves of the product covering'™ W x B, of Xx Y corresponding to (X, A)X
(Y, B). The following lemma is proved in the same way as [4], Theorem 12.42.

Lemma 4. For each i, there exist a homeomorphism into 0;: (K, L)< (M;, Ny)
(S, Ty and a homoiopy 7. (S, T — (S, Ty) such that Fi=identity, F't]0,(K;X
M) =identity, F'{(S,)CO0UGX M) and FHT)COK; X N;UL; X M). Moveover, com-
mutativity rvelation holds in each squarve of the following diagvam:

o ir I
oy L) X (Mygy Niy) —— (Sivn, Ta0) — Sigty Tigr)
I P l hy Fi l h,

Ko L)% My N)  — SaT) — SaTd

where hy is the simplicial mapping of (Si., Tivy) tnto (S;, Ty induced by ITEH.
The following lemma is proved, in view of by a straightforward
computation. :
Lemma 5. Let (X, A) and (Y, B) be pairs of compact metric spaces. Then
we have the following isomorphism :

HA(X, AX(Y, B): G)=Um{H,((IG, L) X (Mg, Ny G) = (TF)s 3

For each positive integer p let us denote the factor group Z/pZ by Z,,
where Z is the additive group of all integers. A sequence a=(q,, ¢s,--) of
positive integers is called a k-sequence if ¢, is a divisor of ¢;,, for each i
and ¢;>1 for some i. If a=(q,, qs--) is a k-sequence, there exists a sequence
of natural homomorphisms {%(a,?)]i=1, 2,---}, where 2A(n, i) is a natural homo-
morphism from Zy,,, onto Z,,. Let (X, A) be a pair of compact metric spaces.

10) Let f and g be mappings of (X, A) and (Y, B) into (X', A’) and (Y’,B’). By
the product mapping fxg of f and g we understand the mapping ¢ of (X, A)x(Y,B)
into (X', A") x (Y, B") defined by ¢(x,3)=(f(x),g()) for (x,y)€XxY.

11) A mapping f of a cell complex K into a cell complex M is called a cellular
mapping if FI(KY) M, where K* means the i-scction of K.

12) Let u={U,} and B={V,} be coverings of X and Y respectively. By the
product covering WxB of U and B we mean the covering {U,x V) of Xx Y.

13) It is proved that this lemma holds in case X and Y are compact Hausdorff
spaces.

14) By lim{X;: 1"} we mean a) the inverse limit space if X; is a space and 1it!
is a mappi;; and b) the inverse limit group if X; is a group and n#*! is a homo-
morphism.



384 Y. Kopama

For each k-sequence a=(q,, ¢---) let us define a group I,(X, A:a) as follows:
Let {I;} be a cofinal collection of coverings of X. There exists a projection
it (K, Liy)— (K, L), where (K, L)) means the pair of the nerves of 1
corresponding to (X, A). Define a homomorphism P! : (K, Livit Zayor)—
H,(K;, L;: Zy;) by a composition of homomorphisms (%(q, i)}y and ([I¢"Y),, where
(7(a,7))5 is the homomorphism of H, (K, Livy: Zy;,,) into (Ko, Lyt Zyy)
induced by the homomorphism /4(a,i) and (II¥'), is the homomorphism of
Hy(Kyiy Liyy : Zy,) into H (K, L;: Zy,) induced by the mapping /7i*!. The group
(X, A:a) is defined to be the inverse limit group of the inverse system
(K, Ly Za)): B

Lemma 6. The group H(X, A: ) is independent of the choice of a cofinal
collection {W;} of coverings of X.

Proor. Let {1I;} and {¥B,} be two cofinal collections of coverings of X.
By H.(X, A:aq,{};}) and H,(X, A:q,{8;}) we denote the groups defined by
means of {II;} and {¥;}. Since {II;} and {¥B,} are cofinal, there exists a se-
quence of coverings {U;,, B, Uy, U;,, ‘Bjk_,-u} such that U;, <%, <U;, <<y,
<B;, < and §<j<iy<<<ip<jp<<---. For the pairs (i, ) and (Foe1y t)
there exist natural homomorphisms v;: Hn(l\ j],Njk:Z,,j) — I (K;,, :Zqik)
and e, H(K;,, L, Zq%)%Hn(/l/[,/ o Nj quk_l), where (K, L;,) and (M;,, N;,)
are pairs of the nerves of coverings U;, and %; respectively. It is obvious
that Pirri=viee,, 0 MK, Li, Z’li/-+1>() (K, L, Z% ) and Pk —ewy:
H,(M, P Zyj,) — Hn(M, 0 Ny,
phisms used in the definition of the groups H.(X, A:q, {1;}) and H.(X, A:
a, {%,}) respectively. Therefore we have H,(X, A:q, {ui})zlim{Hn(Ki, Li:Zq,):
SB”‘}—hm{H (K, Ly, : Z, D ikt ‘hm{H (Mj,, Ny, : Zq ,IWH *:(Iiril{lﬂ([\éf,-k,

N]k.ij Bf'cﬂ}tlml{]]n(M], Ni: Zgj): Pt *hm[]n(X,A.a, {B,}). This com-
pletes the proof.

Lk)

oy quk_ ) where %+t and L are homomor-

Ji? ch Jk—1

Lemma 7. Let X be an n-dimensional normal space. Let G be an abelian
group. Suppose that H (X, A:G)=0 for every closed subset A of X. Then we
have H,(B, C: G)==0 for every pair (B,C) of closed subsets of X.

Proor. Let {II,} be a cofinal collection of coverings of X. Assume that
each covering U, has the order ». Then we have H(B,C: G):(liin{]]n(Mw, N,:

G)Yy=lim{Z.(M,, N,: &)}, where (M, N,) is the pair of the nerve of U, cor-

responding to (B,C) and Z,(M, N:G) is the group of n-dimensional cycles of
(M, N) with coefficients in G. Similarly, H,(X,C:G) is considered 'as the
inverse limit of {Z.(K,, N,: G)}, where K, is the nerve of 1,. Therefore the
homomorphism i, : H.(B,C: G)— H,(X,C: G) induced by the inclusion mapping
i:(B,C)—(X,C) is an isomorphism into. Since H,(X,C:G)=0, we have H,(B,
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C:G)=0. This completes the proof.

Let a={q,, qs -} be a k-sequence. By Z(a) we denote the inverse limit
group of the inverse system {Zy,: /Z(a, i)}, where A(a,7) is the natural homo-
morphism from Z,, . onto Z,. Consider two groups H,(X, A: Z(a)) and H,(X,
A:a). We have the following lemma.

Lemwma 8. There exists an isomorphism H(X, A: Z(0)=H,(X, A:a).

Before proving this lemma it is convenient to prove the following lemmas.

Lemma 9. Let (K, L) be a pair of n-dimensional simplicial complexes. There
exists an isomorphism J.: H(K L: Z()=H (K, L:a). Moreover the isomorphism
Jx is matural in the following sense: Let [ be a simplicial mapping of (K, L)
nto another pair (M, N) of n-dimensional simplicial complexes. The following
commutative diagram holds:

H(K, L: Z(«) —fL H(M, N: Z(w))

| |
H,K L:a) —— HyM, N:a)

Proor. Let us denote by (K(j+1), L(j41)) the j-th barycentric subdivision
of (K, L) and by II}*' a simplicial mapping from (K(j4-1), L(j+1)) into (K(s),
L(7)), j=1,2,--, with the usual property, where (K(1), L(1))=(X, L). Let P}*!
be the homomorphism of ,(K(j+1), L(j+1): Zy;,,) into H(K(j), L(j): Zs;)
defined by PI'==(IIi"Y),(k(a, 7))4, where (%(q, f))s is the homomorphism of
H(K(j+1), L(j4-1): Zy,.) into H(K(G+1D), L(j+1): Z;;) induced by the homo-
morphism /%(a,7) and (JI§*')y is the homomorphism of H.(K(j+1), L(j+1): Zqy;)
into H(K(j), L(j): Z;;) induced by the mapping II5*'. Since the homology
group is invariant by a subdivision [2], the homomorphism (II{!), is an
isomorphism. Therefore we have an isomorphism ©,: H,(K, L: a)z}ig{fln([(,

L:Zy): (h(a,9)s}, which is natural in the sense of the lemma. Put G=
Ilnl{ffn(KL: Zg;): (Mo, 1)y}, Take an element g={g;} of G. Since dim K=z,

we have g,=2>%  t,0)0,Z(K, L: Z,,), where ¢,(i)e Z,, and o, is an n-dimensional
simplex of K—L, j=1,2,---, k. Since (A(a, i))42:i.1 =8 we have A(a, 1)t (i+1)=1,0)
for j=1, 2,---, k and i=1, 2,---. Accordingly the sequence {¢,(i)|i=1,2,---} deter-
mines an element ¢; of Z(a). Put g=23%_, t;0;, Obviously we have g=Z,(K, L:
Z(a)). Define a transformation ©, of G into H, (K, L: Z(a)) by 0,g=¢q. It is
obvious that ©, is a homomorphism. Let ©,g=0. We have ¢;=0 in Z(a) for
j=1,2,---,k. Therefore we have ¢;i)=0 in Z,, for j=1,2,--,k and i=1, 2,---.
Thus 6, is an isomorphism. Take an element geZ (K, L:Z(1). Let g-—
>k tjo; where t;&Z(a) and o; is an n-dimensional simplex of K—L for j=
1,2, k. Let t;={¢;())]i=1,2,---}, where ¢;,()eZ,,. Put g;=2"%_t,i)o; It is
obvious that gy Z, (K, L: Zy,). Since A(a, i)t;(i+1)=t,i), we have (ila, (0)s8Qirs
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=g;,1=1,2,---. Therefore {g;|i=1,2,--} determines an element g of G. By
the definition of ©, we have ©,g=q. It is obvious that 6, is natural. Put
J5+=6,0,. Then J, is an isomorphism required in the lemma. .

Lemma 10. Let (X, A) be a pair of n-dimensional compact melric Sspaces
and let {W;} be a cofinal collection of coverings of X each member of which has
the order n. Let us denote by (K, L;) the pair of the nerves of W, corresponding
to (X, A). Then there exists an isomorphism [y :

Hm{ (K, Ly: a)Y=IL(X, A:a).

Proor. By Lemma 9 there exists a natural isomorphism ©,: H,(K, L;: a)
~Im{H,(K;, L;: Zy;): (Ia, 7))s}, where a=(q,, ¢,,--). Take an element g={g;} =

Im{H(K;, Ly o)}, Then we can assume that gielim{H.(K;, L0 Z;)}. Let

gi={g(®)}, where gl (K, L;: Zyp}y and (i(a, 1)s g5 ()=g5(@), j=1,2,--- and
i=1,2,---. Then the element g,i) belongs to [,(K;, L;:Zy). Moreover we
have Pitlgy . ((4+1)=UTE )0, )5 8is1 (G- =T} )£+ 1)=g:(). Accordingly
{g;(0)} determines an element g of H,(X, A:q). Define a transformation I, of
EE{[[n(ICL, L;: o)} into H,(X, A:qa) by [,e=q. It is obvious that [, is a homo-

morphism. Let /,£=0. Then g,G)=0,i=1,2,--. Since II;)yg,(j)=g;@) for
j>i, where II/=II*..1I7_,, we have g;=0 for i=1,2,---. This shows that I,
is an isomorphism into. Take an element a={g;} of I,(X, A:q), where g;c
H (K, Ly Zq,),i=1,2,---. For each j>i, consider the element g;(i)=(I)sg; of
H(Ki, Li: Zqp).  We have  ((a, 7)) &) =0, 7)1 ") 58540 = L) (0, 1)
(I35 g =UI)5g;=g;@) for each j=i. Therefore {g;(#)} determines an ele-
ment g, of MK, L;:a). Since 6, is natural, we have (4(q, ) i1 =8, Ac-
cordingly {g;} determines an element g of (l'gxz{Hn(K,-, L;:0)}. It is obvious

that I,g=¢g and I, is the required isomorphism.
We have the following isomorphisms:

H.(X, A: Z()=lim{H(K;, L;: a)} by Lemma 9,
=[(X, A:a) by Lemma 10.

This completes the proof of Lemma 8.

Let X be a metric space and let ¢ be a positive number. By an e-mapping
of X into a topological space Y we mean a mapping f of X into Y such that
for each point ¥y of ¥ we have the diameter of f~'(y)<<e. The following
lemma is well known.'®

Lemma 11. Let X be a compact melric space. In order that dim X=n it
is necessary and sufficient that, for each positive number ¢ there exists an e-map-
ping of X into an n-dimensional polytope.

15) = See, for instance, [1I], Chap. V.
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The following lemma is a consequence of [9], Chap. X, Lemma 3.7.
Lemma 12. Let {X,;: [Ty be an inverse system of n-dimensional compact

metric spaces and let X be the limit space of {X;: Iy, Then we have dim X
=un.

§ 3. Examples.

In L. Pontrjagin has constructed two dimensional compact metric
spaces P, and P, which we call Pontriagin’s surfaces, such that dim(P, x P,)—=3.
In this article we shall construct 2-dimensional compact metric spaces which
are considered as generalizations of Pontrjagin’s surfaces.

1) Mobius band mod (p, ¢)—M(p, ¢).

Let (p,q) be a pair of positive integers. Let S be the 1-dimensional
sphere and let I be the interval [0,1]. By a Mdbius band mod (p,q) we
understand the continuum M(p,q) obtained from the product space SXI by
identifying on the circumference S,=Sx(0) points corresponding to each other
under the rotation of angle 2z/p and by identifying on the circumference
S;=Sx (1) points corresponding to cach other under the rotation of angle
2r/q. Let f be an identification mapping. Put T,=£S,) and T,=£(S,). We
shall call 7, and 7 the outer- and inner-boundaries of M(p,q) respectively.
The outer- and inner-boundaries are homeomorphic to a circumference. In
general, Mobius band M(p,q¢) mod (p,q) is a homogeneously 2-dimensional
curvilinear polytope'®. TFor each pair (p,q) of positive integers we shall
consider M(p, q) as a simplicial polytope with a fixed triangulation.

Lemma 13. Let M(p, q) be @ Mobius band mod (p, q) with the outer-boundary
Ty Let us give an orientation to each 2-dimensional simplex oj, j=1,2,--, k, of
M(p, @) such that the integral chain which has the value 1 on each 2-dimensional
simplex—we call the fundamental chain of M(p,q)—is a cycle mod g velative to
7o Then an element C=2Y%_t;0; of Co(M(p,q), Ty: R,) belongs to Z,(M(p, q),
To: R) if and only if t;=t for j=1,2,---, k and gt=0 mod 1, where C,(K, L:G)
means the group of n-dimensional chains of (K, L) with coefficients in G. More-

over Hy(M(p, q), Ty: R)) is genevated by the chain Cl] 010, where 0 is a funda-

16) Cf. [7], p. 56.

17) Let G, and G, be two abelian groups paired to a third group G, that is, there
is given a function ¢ of G, xG, into G which is distributive in both variables and
whose values are in G (cf. [14], p. 59). Let c==;/,0; be an clement of C,(K,L:G),
where #EG, and os are n-dimensional simplexes of a complex K and let ¢ be an
clement of Gy,. By ¢gec we understand the chain =07, @)o; of (K, L) with coefficients
in G. Let d=3;s;7; be an clement of C, (M, N:G,), where s;EG, and t’s are m-dimen-
sional simplexes of a complex M. By e¢xd we understand the (s-+m)-dimensional
chain =, 3; ¢4, $;) (6, X ;) of the pair (K, L) < (K, N) of cell complexes with coefficients
in G.
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mental chain of M(p, q).

This lemma is a consequence of [2], Kap. IV, 5, Satz VIL

Lemwma 14. Let t be a 2-dimensional element'® with the boundary ¢. Then
there exists a mapping f of (M(p,q), Ty) into (v,T) such that the restricted map-
ping 1T, is topological and f(T)) is a point of v, where T is the inner-boundary
of M(p,q). The fundamental chain 6 of M(p, q) is mapped by f onto the integral
chain pz, where z is a generator of the group Hy(t,t:Z).

Proor. Since 7 is contractible in itself'®, it is obvious that there exists
a mapping f such that | T, is topological and f(T)) is a point x of z. Con-
sider the following commutative diagram:

1.
HM(p, @), ToUT,: Z) ——>  Hyc,7Ux: Z)

1o izur. |9
H(T,UT,: 2) —  H(@Ux:2),
where 0 and 9, are the boundary homomorphisms®». Since 9, is an isomor-
phism onto and 9(0)=pv,-+qv,, where v, and v, are generators of the group
H(Ty:Z) and H(T,: Z) respectively, we have f4(0)=0)"'(f|T,UT)x0(0)=pz.
This completes the proof.

Lemma 15, Let p and q be two integers such that 1<<p<<q and p is a
dwisor of q. Put P=M{1,p) and Q=M(p,q). Let v and n be 2-dimensional
elements. Let f and g be mappings of P and Q into v and p which are topo-
logical on the outer-boundaries of P and Q, constructed in Lemma 14, vespectively.
Then the product mapping® ¢=fxg of PXQ into the 4-dimensional element
TX (1S inessential®®.

Proor. Let S; and S, be the outer- and inner-boundaries of @ and let T,
be the outer-boundary of P. Consider the group H,(P, Ty)x (Q,Sy: R)). Take
an element ¢ of Z,(P,Ty)x(®,Sy): Ry). Let a=>k, 2%, t;;7(@) X u(j), where
ti;€ Ry, v(d) and u(j) are 2-dimensional simplexes of P and Q,i=1,2,---,k and
j=1,2,---, [, respectively. Since 0a*®=3; > t;;(0t(@)x n(7)+ 35y 24 t3;(r (@)

18) ByAa*nv n-dimensional element we understand a set homeomorphic to an #n-dimen-
sional closed simplex.

19) Let A and B be subsets of a topological space such that AcB. It is called
that A is contractible in B if there exists a mapping F of Ax[I into B such that
F(a,0)=a and F(a,1)=a point @, of B for each point a of A.

20) See footenote 9.

21) See footenote 10).

22) A mapping f of a topological space X into an n-dimensional element ¢ is
called inessential if there exists a mapping F of X7 into ¢ such that F(x, 0)=r(x)
and F(x,1)co for xeX, F(x',t)=7f(x") for x'€f~1(¢) and t<l, where ¢ is the boundary
of the element g¢.

23) Let @ be a chain or an oriented simplex. By 9da¢ we mean the boundary chain
of a.
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X ou(f))* belongs to Cy(PXS,UT,XQ: Ry), the chains X%, £,;7() and 24_i#:;u(7)
“are elements of Z,(P, T,: R) and Z,Q,S,: R)) respectively. By we

m; . 7 . ]
have t,;,= p"t for j=1,2,--,/, and ¢;;= q"— for i=1,2,---, k, where m; and »; are

integers. Therefore we have tijr«; for i=1,2,---,k and j=1,2,---,/, where

. . . S
s is an integer, and we can write a=

b2

fundamental chain of P and @ respectively. Since 99,=pv,-+qv,, we have

Pa=>-

b2
H\(T,: Z) respectively. Accordingly the chain f(0@)*» has a carrier®” #xu
and it is homologous to zero in rx gUJ#x g That f is inessential is a con-
sequence of Hopf’s extension theorem for polytopes®.

2) Polytope P(p,,-, p,) and continuum P(p,, ps, ).

Let (py,p.-+) be a sequence of positive integers. Let P(p,)) be a Moibius
band mod (1,p,)). Let us denote by 7,,(1), 2, =1, 2,---,{,, all 2-dimensional sim-
plexes of P(p,). We replace every triangle 7,,(1) of P(p,) by a Mobius band

(0,%0,),” where §, and 8, are the

(v'xd,), where v, v, and v’ are generators of IH,(S,: Z2), H(S,: Z) and

hi=£h, where S,, and S,,, are the outer-boundaries of M, (1, p,) and M, (1, p)).
Put P(p, p,)=>0_ M, (1,p). The polytope P(p, p,) contains the l-section 4,
of P(p,). By there exists a mapping 1}: P(p,, p,)— P(p,) such
that 17} 4, is a homeomorphism. Let us suppose that a 2-dimensional sim-
plicial polytope P(p,, -, p;) consisting of Mobius bands M,,..,_,(1, ) mod (1, p),
=120, h=1,2,, by By, =1,2,--,1;,_, and a mapping IIi_: P(p,, D)
— P(py,-+, piey) such that ITi_ | 4;_, is a homeomorphism, where 4,_; is the
1-section of P(p,,--, p._1), are constructed for some i. Let us denote by 7y,.,,(),
hi=1,2,-,[; all 2-dimensional simplexes of M, .., (1, p) for h=1,2,---, 1, h,
=1,2,-, 0oy -+, Bi_y=1,2,---,1;_,. We replace every triangle t,,.,,(f) by a Mobius
band Mu-nm (1, pisy) mod (1, pyyy) such that My, (Lﬁi-u)ﬂﬂfn,/...ni/ (lrpi-u):sny--ni
NSnarnyr =Thsor; DN Thyrony (@) for By, h) =Ry b)) Put P(py, poye, i) =
St Do 2oy My, (L pos)- - Then P(py,+-, piys) contains the 1-section 4,

24) Cf. [2], Kap. VII, §3.

24a) Strictly speaking, f;;=#;/q (mod 1), but we shall write simply #;=»;/¢ when
there is no danger of confusion.

25) See footnote 17.

26) Let (K,L) and (M, N) be pairs of simplicial complexes. Let f be a simplicial
mapping of (K, L) into (M, N). For any abelian group G we denote by f; a homo-
morphism of C,(K,L:G) into C,(M,N:G) induced by f. We shall use the same
notation for groups with different coefficients too.

27) Let ¢=3%;1;,0; be a chain of (K, L) with coefficients in G. By a carrier of the
chain ¢ we mean a subcomplex M of K such that g;&M if #;+0.

28) See, for instance, [2], Kap. XIIL
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of P(p,,,p:). By there exists a mapping IIit: P(p,,+, pis)—
P(p.,, ps) such that ITi*!| 4; is a homeomorphism. Put P(p,, ps,---)=lim{P(p,,

P Y. 4, defines a subset of P(py, py,-+-) which is homeomorphic to 4;;
this set will be denoted by the same letter 4;,. By II; we denote the projec-
tion from P(py, ps--) onto P(p,p;). Then the restricted mapping I7;|4; is
topological. If the integers p,, j=i,¢-F1,---. have no common divisor for each
i=1,2,---, then we have dim P(p,, p,,---)=1 and each projection II,,i=1, 2,---, is
a monotone dimension-raising mapping from P(p, ps, ) onto PPy, pos-+y Do)
If the integers p;,i=1,2,---, have a common divisor, then we have dim P(p,,
Pa)=2. We omit the proof since these facts will not be used in this paper.
Especially if p,=p for all i, P(p, ps--+) is Pontrjagin’s surface mod p (cf.

and [7].

3) Polytope Q(gi,, ¢») and continuum Q(a).

Let a=(q,, qs--) be a k-sequence. Put p;=q;s/q:,1=1,2,--. Let Q(g,) be a
Mobius band mod (1,q,). Let 6(1) be a fundamental chain of Q(gq,)
13). Let us denote by u,,Q), 2 =1,2,---,,, all 2-dimensional simplexes of Q(g,).
We replace every triangle u,,(1) of Q(g,) by a Mobius band M, (p,, q,) mod
(p1,qs) such that M,,(p), q2) N\ My, (D15 @2)=Sn NS =ttn, (1) 20, (1)  for hy+h,
where S,, and S,,, are the outer-boundaries of M, (p,,q.) and M, (p;, q,) re-
spectively. Put Q(q, ¢.)=>% -1 My.(p1, ). Let 8, be the fundamental chain
of M, (p,,q,) (Cemma 13). Define an integral chain §(2) of @Q(g;,q,) by 06(2)=

b _10n,. Then the chain _&L 3(2) is a cycle mod 1 relative to S, where S is
2

the outer-boundary of Q(g,). By [Lemma 14 there exists a mapping 6%: Q(q, g.)
—Q(g,) such that (6}:0(2)=p,6(1). To proceed by induction, let us suppose
that for some { we have constructed a 2-dimensional simplicial polytope
Q(q1,++, q;) consisting of Mobius bands My,.n;_(Pi-i, @) mod (ps_y, qs) by =1, 2,--

Ly ho=1, 2, lpy, By =1, 2,---, [;_y, the integral chain 6()=3} -1 2f-p A1

Opyni—y and a mapping 0, : Q(q, ¢:)—Q(q1,++, ¢:-1) such that (0i~1)#6<1)—pi~,10(z—1),
where 8,,.n,_, is the fundamental chain of M., (Dici, @), 21=1, 2, 1}, -+,
i =1,2,---,0;_;. Let us denote by pgy,.0,@,7;=1,2,---,1;, all 2-dimensional
simplexes of My,.q;_(Piet, @) Iv=1, 2,2+, 11y o =1, 2, Ly, =+, D=1, 2, [;_;. We
replace cvery triangle ,,.,,() by a Mdobius band M., (P @ivr) mod (Pi @iry)
such that My, (Do Qo) N Morcny(Dis @i00) =Sty (VSnaregr = L veon; @) N Ly (2)
for (i, )+, 1)), where S5, and Sy,...;, are the outer-boundaries of
My (P @) and My, (Pis Qi) 1cspcctwolv, =120, =12, 1,
hi=1,2,, 1. Put Q@i+, i) =2 =1 hL—l My, Pis @inr). Let 8y, bC the

fundamental chain of M,,..,(ps ¢ir)) (Lemma 13). Put 6G-+1)=>k_, -3k

Onny.  Then 8(G4-1) is an integral chain and ~ql— 0@+1) is a cycle mod 1
141
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relative to S, where S is the outer-boundary of Q(g,). By [Lemma 14 there
exists a mapping 6§"': Q(g;,*, @ir1) > Q(qs, 7, ¢:) such that (6771),0G+1)=p.0(),
i=1,2,---. Put Q(a):}_igi{@(ql,---,qi)i 6i*1}.  Let us denote by 4; the 1-section
of Qq,,--,q:) and by 0; the projection from Q(a) onto Q(g,;---,q;). IFor each
i=1,2,---, the restricted mapping 0;|4; is a homeomorphism, where we assume
that 4,CQ(q).

Levmma 16, The continuum Q(a) is 2-dimensional.

Proor. Let us denote by S the outer-boundary of Q(g,). By the continuity
theorem of Cech homology groups [9], Chap. X we have an isomorphism

H,(Q(aY, S: R)=1im{H,(Q(q,,-*+, q:), S: R,): (6i1),}. Consider the chain c,i:f;rﬁ 0(7)
< i

of CoQ(qi,++,q:),S: R) for i=1,2,---. It follows from our construction of the
polytope Q(g,,-++, ¢;) that ¢; belongs to Z,(Q(q,, -+, q:), S: R)). Moreover, we have
(68" 4¢;=c;. Therefore, the sequence {c;|i=1,2,---} determines an element «
of Hy(Q(a),S: R,) which is not zero. By Lemma 2, this shows that dim Q(a)
=>2. Since dim Q(@)=2 by Lemma 12, we have dim Q(a)=2.

Let {p;]i=1,2,---} be a sequence of positive integers such that p,>1 for
some i. Put q,=pps-pyi=1,2,--. Then a={q,, q., -} is a k-sequence. We
have the following lemma.

Lemma 17. The product space P(p, P, )X Q) is a 3-dimensional con-
tinuum.

Proor. In the above notations P(pl,pg,'--)zlign{P(pl,pz,---,j)i):II%“} and
Q(a):li_gn_{Q(q1,q2,---,q.i): g1y, Let v and x be 2-dimensional simplexes of
P(py, ps, pp and Qqy, ¢oye++, q0). Put A=I¥)~'t and B=(6{"")"'p#. Then A
and B are subcomplexes of P(py, Py, pin)) and Qgy, gy, ¢iry) which are
homeomorphic to Mobius bands mod (1, p;.) and (P, ¢s4) Tespectively.
Consider the restricted mapping g=IIi"'x "' |AX B of AXB into txu. By
Lemma 15 the mapping g is inessential. Accordingly there exists a mapping
fof P(pye, pis) XQUq1y ) @isy) into P(py, oy, pi) X ;U 4:X Q(g,,-++, g;) such that
fix, erx gUexp for (x, »)eIF)1ex(@it)'p. This shows that for each
positive number ¢ there exists an e-mapping of P(p, ps--) X Q(a) into a 3-
dimensional simplicial complex. Since dim(P(p,, ps-)X Q(a)=3 by [10], we
have dim(P(p,, pay---) X Q(a))=3 by Lemma 11. This completes the proof.

§4. Main theorem.

Turorem. Let X be a finite dimensional compact metvic space. In order
that the equality (A) holds for every compact metric space Y it is necessary and
sufficient that X has the property P.

PROOF OF THE SUFFICIENCY.

Let Y be an m-dimensional compact metric space. By Lemma 2, there
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exists a closed subset B such that H,(Y,B:R)+0. Let {8B,} be a cofinal
collection of coverings of Y each member of which has the order m. Let us
denote by (M;, N;) the pair of the nerves of U, corresponding to (Y, B) and
by &t a projection of (M;.,, N;y,) into (M;, N;). Then H.(Y, B: Rl):(lrilir_li{Zm(]Wi,
N;: R): (v Y, Since H (Y, B: R)+0, we can find a non-zero element d=1{d;}
of I1,(Y,B: R) such that d,eZ,(M,; N;: R) and (¥i*Y.d;.,=d; for i=1,2,---.

e T . . . . . " s
Let d,=Xk, ,rrftb«o]-(z), where »;* and ¢,/ are coprime integers and o;(i) is an
"

m-dimensional oriented simplex of A;—N; for j=1,2,---, k, and =1, 2,---. Since
dim M;=m and d; is an m-dimensional chain, the order of the element d,,
which we denote by ¢;, is the least common multiple of a finite number of
integers {¢,'|j=1,2,--, k;}. Then ¢, is a divisor of ¢;,, for i=1,2,--. There-
fore, the sequence a==(g,, ¢,,---) is a k-sequence. Since X has the property P,
by there exists a closed subset A of X such that H,(X, A:a)+0.
Let {11;} be a cofinal collection of coverings of X such that the order of U,
is n for i=1,2,--.. Let us denote by (K, L;) the pair of the nerves of I,
corresponding to (X, A) and by ¢! a projection of (XK., L;.,) into (K, L;) for
1=1,2,---. Let ¢c={c¢;} be a non-zero element of H,(X, A:q). Since dim K,=n,
we can suppose that ¢; belongs to the group Z,(K;, L;: Zy,). Let ¢;=3}%, sit,(i),
where sie=Z,, and 7,({) is an oriented »-dimensionak simplex of K;—L; for
[=1,2,--+, h; and i=1, 2,---. Take an integer §} such that hqi(gi =si for [=1, 2,--+,
h; and i=1, 2,---, where /%, means the natural homomorphism from Z onto Z,.
Put @,=¢,xd*", where ¢; is the integral chain X, 8ir,(¢) of (K, L;) for i=1,
2,--. Then the chain «; is an element of the group C,..((K;, L)X (M;, N,):
R)). Moreover, a; belongs to the group Z,..((K;, L)X M;, N;): R). For, we
have 0a;=0¢;xd;+ &, X0d?". Suppose that an (z—1)-dimensional simplex of
K;—L; has a coefficient / in 0¢;. Since ¢; belongs to Z,(K;, L;: Z,,), we have
/=0 mod g¢;. Accordingly the chain 9¢;xd; is an integral chain, since the
integer ¢; is the least common multiple of #;* for j=1, 2,---, k.. Moreover any
(m—1)-dimensional simplex of M;—N; has an integral coefficient in dd; since
d; belongs to Z,(M;, N;: R)). Therefore any (m-+n—1)-dimensional cell of
K xX M;—(K; X N;UL; < M;) has an integral coefficient in de,. This shows that
A E Ly, L)X (M, Ny): Ry). The cycle a; is independent of the choice of
an integer s} such that %,,(s)=s{ for /=1, 2,---, k. For, take another integer
‘st such that fhg(sp)=s] for [=1,2,--, h. Put '&; =30, ‘sit(i) and ‘a,='¢; X d,,
i=1,2,---. Then we have a,—'a,=¢ Xd;—'¢;Xd;=;—'¢)xd;. Since sj—'si=0
mod ¢; and ¢;d; is an integral chain, we have @;='e; mod 1. Let ITi*! be the

29) See footnote 17,
30) See footnote2d.
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product mapping?®) @it X it of (Kiyy, Livy) X (M, Nisy) into (IG, L) < (M, Ny).
Consider the chain (IT#')a;.,—a; for i=1,2,---. Since ;.= Xd;p, Wwe have
T D = (D7 Nl X (W5 Nydige Since P e =cs, we have (9i)f0—c;=0
mod ¢;, where P! is the homomorphism of H,(K,,, Ly : Zy,,,) into H(K;,
L;: Z,;) used in the definition of the group I7,(X, A:a) (cf. §2). Since (Y7 ')
d; ., —d;=0 mod 1 and ¢,d; is an integral chain, we have

T sy —ay
= (P it X (WF Dds oy — &}
= (B sl X (PE i — (D5 il X dg
4‘(¢§>‘;1)#6i+1><di’“5~'i><di
== ((/’; (_l)ﬁgmq X ﬂﬁ“)@fim —d;}
B iy — T3 X d==0 mod 1.
This shows that (II¥Y.a;,.,=a; for i=1,2..-. Therefore {q;} determines an
element a of H,.(X, A)x(Y,B): R,) by Lemma 5. Suppose that ¢=—0. Then

we have @,=0 for i=1,2-. Therefore we have 7;]1 X s;/=0 mod 1 for j=1,2,
J

v kg [1=1,2,-, 1, and i=1,2,---. Accordingly we have si=0 mod ¢; for /=1, 2,

<o, by and i-=1, 2,---. This shows that ¢,=0 for /=1, 2,--.. This contradicts our

assumption ¢+#0. Thus we have proved that I7,,,(X, Ax(Y, B): R)=0.

Therefore we have dim(Xx Y)=m+n by Since dim(Xx Y)<m+n

by Lemma 3, we have dim(Xx Y)=dim X+dim Y. This completes the proof
of the sufficiency part of the theorem.

To prove the necessity part of the theorem, it is sufficient to prove the
following lemma. ‘

Levmma 18, If X has wnot the property P, there exists a 2-dimensional com-
pact metric space 'Y such that dim(X X Y)=dim X+1.

Proor. Let dim X=n. Since X has not the property P, by Lemma 7
there exists a k-sequence a=(q, ¢y--) such that for every pair of (A, B) of
closed subsets of X we have H,(A, B: Z(0))=0. By Lemma 8, we see that
H,(A, B:a)=0 for each pair (A4, B) of closed sets of X. Let us construct the
continuum Y=0@(a) described in 3) of §3. We shall prove that dim(XxY)
=dim X+1. Let {11} be a cofinal collection of coverings of X each member
of which has the order n. Let K; be the nerve of Il; and let ¢, be a canonical
mapping of X into K, i=1,2,--. Let us denote by ¢i*! a projection of K.,
into K;. Lect f; be the product mapping ¢;x6; of Xx YV into the cell complex
K xQq,+, qp), i=1,2,---, where 0, is the projection from Y-=@Q(a) onto Q(g,, -,
q;) described in 3) of §3. Take a positive number . There exists some
integer 7 such that for each cell e of K;xXQ(q,, -+, q;) we have the diameter of

31) See footnote 19,
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fille)y<<e. Let ¢ be an n-dimensional simplex of K; and let # be a 2-dimen-
sional simplex of Q(gqy, -+, q:;). Put A=¢;7 o), B=¢;4s), C=0; () and D=071(f).
Let us denote by (A, B)) the pair of the subcomplexes of K; corresponding
to (4, B). By o), k=1,2,---,k;, we mean all n-dimensional and oriented
simplexes of A;—B;. Let us denote by (C; D;) the pair of the subcomplexes
of Q(q,,+-,¢,) which is the image of (C, D) under ¢; for each j>i. Then we
have (Ciyyy Do) =M(py, @ivr), T), where M(p;, qi) is 2 Mobius band mod (p;,
¢+ and T is its outer-boundary, and we have D,=T, j=i+1,i+2,--. We
shall use similar notations as in 3) of §3. Let us denote by pu, (G-+1),2=1,2,

., l;, all 2-dimensional and oriented simplexes of M(p;, ¢:+). Then we have
O+ 1) =38y ttn,(i-+1), where 8(i+1) is the fundamental chain®» of M(p;, q;..).
In general, for j=>>1, we have C;.;=>} Zhj_l My, njy(Piri-t1, @irj), Where
Myonje(Pivj1, Qi) is @ Mobius band mod (pirji, @iap)s 2i=1, 2,--, 1, By =1, 2,---,
Loy iy =1,2,-,0;.,. Let us denote by p,,.,(+7) all 2-dimensional and
oriented simplexes of My ;1 (Divj-1r Qist)s =1, 2, 1; hy=1, 2,--, Iy--+, By_ =1,
2,---,1;_;. Then we have 6,”...,”_142%'=1 UnyngG-+7), where 8.5, is the funda-
mental chain®® of M5, (Pisj-1> Qs =1, 2,2, Ly, By =1, 2,--+, [; ;. Consider
the restricted mapping flo, )=fi|AXDUBXC: AXDUBXC—(oX f)U (6 X p).
We shall prove that there exists an extension of f(g, ) over AXC. By Lem-
ma 5 we have H, (4, BYX(C, D): R1)~11m{Hn+9((Aj,B)X(Cj,D) (IT5+Y) =
X 09th,}, where ¢! and @§"' are the restricted projections ¢i*'|A;,, and
G371\ Cyyy of Ajyy and Cy, into A; and C; respectively. Take an element
a={a;} of Hy((A, B)x(C,D): R;). Then @a; is an element of H,,,((4,, B)X
(C;, Dyp): R). Since dim(A;xCp=n-+2, we can consider that ¢;&7,,,((4;, B;)x
CpDp:R).  Let a;y =2k 20 ot (0p(G+ 1D Xy (141)), where tiile R, We
have®™ Oa; ., =2 230 - 1thhl(aak(l“i‘l)xﬂn1(2+1))+24k7’” Do N onG+ 1) X Oy, (i
+1). Put b@E-+1)=2fn 3k 500G HD Xy, (+1)) and ¢ =3 ki b
Uil op@4+1) X Oy, (i41)).  Since da;,, is a chain of C,p(Aiy XDy UBip XCiyy
R)), if an (n+1)-cell e in ¢(i+1) has a non-zero coefficient then e must belong
to Ajy X Diyy. Since (iD= 0,0+ 1) X 0(Xk oy fhnlun, (i+1)), the chain
by tihiuy, (41 is an element of the group ZQ(CHI,DPrl :R). By
we have il =", =1, 2,+, [, and ¢;.,t5"'=0 mod 1. Put d(i+41)=3Fir1 10,0
+1). Since b@+1)=320%_, 0dE+1)X s, G4+1)3*, the chain d(GE+1) belongs to
Z(Aser, Biast R). Put a(i-+1)=gi,,d(i+1). Then we have a;,,=u(i-+1)x - 1“ 50
+1). The chain #(i-+1) is an integral chain and, since 0u(i-+1)=g;,,(0d{i41))
and 0d(i+1) is an integral chain, the chain #(i4+1) determines an element

32) cf. CommaT3, §3.
33) See footnote 2D,
34) See footnote 10,
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i(i+41) of the group Z,(Ai1, Bivi: Ze.,). Consider the cycle @;,. Let @;,,=
ke 3 Sk a2 (06 2) X i, (i+2)), where o04(i42) is an n-simplex of
Aii— By, k=1, kyyy and  py,5,(G+2) is a 2- simpleX of My (Pswis Givo) By =1,
[, and Ah,=1,--,/,. We have aaiMZZk”ZZ D3 ch;rb?hz(dok(l+2)>\ﬂn,ng(lJrr)))
4>k Sk 2k 1 i (0k (G 2) X O e, (E4-2)). Put  0,,G+2)=2 k2 by 1%,
Qok(i+2) X p,n,(i+2)) and ¢, (i++2)= Zk”lz 1 Linina (ki +2) X O i, (i1-2)), By =1,
0. Then we have ¢, (i+2)=3k+420,0 |—2)V6(E,le S . (G12)).  Since
0a;., is a chain of C,y(Aira X DisaUBisgXCiyy: R, ¢, (i+2) is a chain of
Cri1(AiweX Tyt R,), where T}, is the outer-boundary of M, (piri, ¢iys). There-
fore the chain X% ¢i%. tr.n.G+2) belongs to Zy(My (piri, @ivs)s Thy: R). By
Lemma 13 we have #42,=142 and ¢;4,¢52=0 mod 1, £,=1,2,---,/; and 4,=1, 2,
oy by Put dy, ((4-2)=2k2 63320, (i+2), by =1, 2,---, [,. Since by, (i+2)=2k, -y 0dp, (i+
2)X tn,(i+2) and by, (i+2) is a chain of Cpy((Biro X My (Pirer ¢ive) + Ry), the chain
dn, (i+2) belongs to Znu(Ajry Bivs: R, 2i=1,2,-+, 1. Put u, (+2)=g;.0dy,(i+2),
h=1,2,--,1,. The chain u,(i+2) is an integral chain and determines an
element #,,(i12) of Zu(Airs, Bira: Zay,). Since ajy=—Sh 1(uh1(z+2)><7~1 O, (i1

2)), where 0,,(i4+2) is the fundamental chain of M, (pii, @iss)s WE have
(Dt rs— i1 =0

= S (T4t (i-2) X 4_1 B, (i12)

42

Ul D)X 86D
Qi+2
1 .

=k o B Dt (DX O88Ds | 0u,(i42)

— Sy WX G
=201 ( 21%)#(”h1(2+2)>\ — ﬂhl(l'+ D

— Sy i 1) X q‘-l;f‘ PRCAS)
=Sy (@Dt ()~ DIX | - GHD mod 1.

Therefore we have (¢iiDsuy, ((42)—u(@+-1)=0 mod g;41, 2,=1, 2,-+, ;. This shows
that Pidi, G+2)=0G+1), h,=1,2,, [, where Pi{} is the homomorphism of
ZalAiray Biva: Zayyy) into Zn(Airi, Bisi: Zagyy), (cf. §2). To proceed by induction,
suppose that we can find integral chains u,.4,_,(i4+7) of (Asys Bivy), which
are considered as cycles mod g, such that a;,;=3F- M1 tnyny_y(E47)
><~--~—_1— Onponj_(E+7), where 0,4, ,(@+j) is the fundamental chain of M, .»;_,

T+j

(Divj-v» QGovp) and by=1,2,---, 01y, By =1, 2+, 1. The, chain #,..5;_,(i+j) deter-
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mines an element #,.,;_,((+7) of Zy(Airj Bivj: Zay,;)- Moreover let us assume
that  Bi7_ 1y, G+ =Upns_ i+ —1D). Let @y — 2kt 300 Zn]“ﬂ
ﬁuﬁ}u 1(%(2 +-7--1)% S Hpye /LJ[[(Z j-F1), where l‘/’c;..ﬁ}uuQR k=1, 2, kiwj—H)hl“l
2yeny lyy oo /Zjuzl 2, lj+1 Put bm hj(l+]+1) Ek”]” Zhlﬁ} 74;174]11/,1—!‘1(()0-7»(1%]4[—1)
X gy GHFHD) and cppog @ j-1- D)= St Shey a7 (0p@ 17 1) X 0ty n s
G74+D), fey=1,0, oo, Iy=1,---, I;. Then we have Odypjn =200 =1 21 Oy
i+ Leppn,G-Hi-+1). Since da;jp, is a chain of Cuy (s ji X Dy U Bija
X Cipjar: Ry cppeny(@-Fi+1) 1s a chain of Cpy(Ayrjey X Thponjt R1), where Ty o
is the outer-boundary of M, (Divp Qiwjer)s u=1,++, Ly, hy=1,---,1;,  Since
Chgeon U7 D)= 2000450 044 1) K O ey G h oy gy @ 171D), - the chain
Znﬁ} Icn:*/m;ﬂm hju(l"H"l‘l) belongs to A’z(annj(Pi-m Givjr1) Y‘Iq-'-hj: k). By
Lemma 13 we have (505, ==tihith, and gyt ,=0 mod 1, k=1,--, Riyjp,
]ll:]-r”') llv"'v //Zj»u:ly 2, ;lj+1- Put d/l,]-~-/Lj<i"|‘j*|“]-)’:EJZ[ZZF{Hl ti;u”/lbﬂlc\l +-7-+-1), /71 =
Loy by ooy ly=1,0--, 0 Since by, -4 4+1) ECpiy (B X My (G- 17+1) « R,) and
Oppoon G5 +1)= 2_},{;;1 1 Ol G X ey, GH7-+1), the chain dy, G4 +1D)
belongs 10 Z(Asrjury Bisjr s R, y=1,-, 4, -+, hy=1,, ;. Put uy,.,;G151F1)=
Givjrrnpn GHIAD), ly==1,--- 0,y o, Iy==1,---, [, Then chain ., ,(G--j-1-1) is an
integral chain and determines an element .., 17-F1) of Z(Assjirs Bisges:

. . ' ‘ . 1 -
Zaggyjp)- Moreover we have @i == 2001 2ty tppoon (-HJ +1)><~q— S Ot
(R E N

j+1), where 0,..4,G-+j+1) is the fundamental chain of M, .. (Pirp Qivie)-
Consider the chain ([ )@, —aivj We have

T a1 —@i0j==0

S UGADTOY TR I Y IS (S ] H)XFL Op e -F-1D)

i+j+1
"*zhx 1" Lh]_l luhl whyj- 1(2 ])X 5ILL hj— 1<Z {_]))

1 S
- /Ll— 24! 5=l ((/);,T:/] l)#”hl /L_/(Z |_] I—])X(ﬁiilj;l "q_—‘ el 6h1--<hj(l_+']+1)
PEN RS

. s - L 1 ..
MZI%L11=1...L]£]~:_%:1 lej-zl ”h,lu-hjul(z'}"]) Ko om /lelr-'hj(l“l’])
J J i+y
j [ 1 R
=30 }_nggq ((/)'LHH)#”hphj(l'“1“]”"“1)><' ﬂh[whj(l +-7)
Givj
. 1 ..
vZ%ﬁﬂ--'Zé] 1 ®ngnj (7)< q ‘ﬂhl--'hj(l"}"])

= ‘2‘1 1’ _41%:1 {(¢§i§+1)ﬁ7¢/4,[---ILj(i+j _}- ]-) - uhl-'»hj—lﬁ_}‘j)}

w1 Lngon GHD) mod 1.
Qivj
This shows that (@13 eutn,..n;G4-7+1)=tp;;_,(@+7) mod gy Therefore, we

have S-B%i';f“1(11;”..,/”(2"]"]-]—1)):11,”,,./”;1(Z‘”I*].), hl:‘lr 2:"'! ljy Ty hj::]-: 2: ’ lj' Thus
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there exist sequences {#(i+1), @iy, (i42), fpn,(i+3)s 7, fpgen;(i+7+1),+-} such that
pgoen j @71 E Zp(Asgits Bivjur Zsyjit) and q3§¢'§+l(ﬁlzl'~hj(ijl“j’l’1)):ﬁhlmhj—l(ijt'j)!
=1, 2y, 1y, ho=1,2,, 1y, -+, B;=1, 2,--, [;,-~- and j=1,2,---. FEach sequence
{ilpn,(i+7+1)} determines an element w(k,, /iy, -, /2j,---) of the group H,(A, B:
a). Since H,(A, B: a)=0, we have wulhy, hs,--, bj--)=0,hy=1,--+, 1, hy=1,---, 15, -
Especially we have #({+1)=0. This shows that #(+1)=0 mod g¢,.,. Since

a,5+1:u(i-+—1)><blr~6(i—1~1), we have ;=20 mod 1. Let us denote by & the
i1

boundary homomorphism of H,.,((4, B)x(C,D): R,) into H,. . (AxDUBxC: R)).
Consider the element (f(o, #))s0a of Hyu(oxXpUdxp: R). Let us denote by
g the restricted mapping fi, |AXC: AXC— A1 XCiy.  Since the mapping
Mgl AXDUBXC: AXDUBXC—ox glJox ¢ is homotopic to the mapping
flo, 1), we have

(flo, w)sDa=UT+'g| AX DU BXC)y0a
= Agis X Dy U By X Ciy )81 AX DU BX C)yda
=TT Ay X Dy U By X Cii)5085a
=F | Aiy X D U By X Gy )40, 44
=0T ¥ =0

Since @ is any element of the group H,..((4, B)x(C, D): R\, we have (f(o, )
OH,..((A, BYx(C,D): R)=0. By Hopf’s extension theorem (Lcmma 1) there
exists an extension g(o, #) of f(o, #) over AxC such that g(o, p)(AXC)Tox s
Uéxu. Thus, for each (n-2)-dimensional cell oxX g of K;xXQ(,, -, q:;), we
have a mapping g(o, 1) of ¢;7 (o)X 8;' (1) into oX fz2Ud X ¢ which is an extension
of the mapping f(o, #). Define a mapping g of XX Y into the (n-1)-section
of K;xXQq, -, q:) by g y)=glo, m)x,3) for (x,y)=¢;'(0)x0;'(n). For each
point (x,y) of XXY, it is obvious that the diameter of g '(x,y)<2e. Thus,
for each positive number ¢, we have constructed a 2e-mapping of XX Y into
an (n--1)-dimensional polytope. By we have dim(XxY)=n-+1.
Since it is obvious that dim(XX Y)=#n-|19, we have dim(XX Y)=#n--1. This
completes the proof of

§5. Some consequences of the main theorem.

Let (X, A) be a pair of normal spaces. Let ¢={c,} be an element of the
n-dimensional Cech homology group H,(X, A: Z):li_El{Hn(Kw L,:Z)} with
coefficients in Z. By pc, where p is an integer, we mean the element of
(X, A: Z) whose a-coordinate is pc,. An integer p is called a divisor of an
element b of H (X, A:2Z) if there exists an element ¢ of H(X, A:Z) such

35) Cf. [9], Chap. IX, Theorems 4.4, 5.1 and 7.4.
36) See, for instance, [10].
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that b=pa. An element @ of H,(X, A:Z) is called irreducible if there exists
no divisor of @ except --1.

Lemma 19. Let (X, A) be a pair of n-dimensional normal spaces. Lf H(X,
A:Z2)Y#0, there exists an itrreducible element of H, (X, A:Z).

Proor. Let Hn(X,A:Z):Li_ri{Hn(Kw, L,:2)}. We can assume that each
K, is an n-dimensional simplicial complex. Take a non-zero element ¢={a,}
of Hy(X,A:Z). Let 0+#a,=X%.,p,0;, where p; is an integer and o; is an n-
dimensional simplex of K,—L,j=1,2,---,k. If an integer p is a divisor of ¢,
p is a common divisor of integers {p;|j=1,--, k} since K, is nm-dimensional.
Therefore there exist only a finite number of divisors of @. Accordingly we
can find an irreducible element & of IT,(X, A:Z) and a divisor p of @ such
that @=pb. This completes the proof.

Levmma 20. Let X be an n-dimensional compact metvic space. If H (X, A:
Z)#0 for some closed subset A of X, then the space X has the property P.

Proor. Let a={q, g, -} be any k-sequence. Let us denote the natural
homomorphism from Z onto Zy,=Z/q;Z by hq. Let {lI;} be a cofinal collection
of coverings of X each member of which has the order ». By our assumption
we have H,(X, A: Z):li_gl_{Hn(Ki, L;: Z)}:l_i_nl{Zn(Ki, L;:Z)}+0. Let {¢;} be a
non-zero element of H,(X, A:Z). We can suppose that {¢;} is irreducible by
Lemma 19 and ¢,#0. Let ¢,=>, p,(i)o,(i), where p,() is an integer and o,(i)
is an s-dimensional simplex of K;—L;, j=1,2,--,/; and i=1,2,--. Put ¢f;=
ho (D), 1=1,2,++, 1;,i=1,2,--- and k=1,2,--. Since the homomorphisms /g,
and /%(a, k) are natural, we have A(q, R)hg,, =hq, k=1, 2,--, where A(a, k) is a
natural homomorphism of 7, onto Z,. Accordingly the sequence {¢;;|k=
1,2,---} determines an element #,(i) of Z(a). Define an element ¢; of Cu(K;, L;:
Z0) by ¢;=2%,¢,())o,G) for i=1,2,---. Obviously each ¢; belongs to Z,(K;, L;:
Z(a)). Moreover, since (Ii')yc;4,%0 =c;,1=1, 2,---, we have (IIi")yc;0, "0 =T} "),
(X1 8,0+ Do+ D) =2 fit £,G+1) (T 0,(+1)) = 2y ()0, =c,. Therefore
{¢;} determines an element ¢ of IH,(X, A: Z(a)). If ¢=0, we have #;()=0 in
Z(a) and fq,(p[0)=0 in Z;,. Therefore we have p;i)=0 mod g, 7=1,2,---, 1,
i=1,2,--- and k=1, 2,---. Since ¢, is a divisor of g, for £>1 and ¢q,#1,¢, is a
divisor of the element {¢;}. This contradicts the assumption that {¢;} is
irreducible. This completes the proof.

The following corollary is a consequence of the main theorem and Lemma
20.

CororLary 1%, Let X be an n-dimensional compact metric space. If there

37) See footnote 20,

38) It is proved that Corollary 1 is generalized as follows:

Corollary 1’. Let X be an n-dimensional compact space. If there exists a closed subset
A of X such that H,(X,A:Z)+#0, then the equality (A) holds for every locally compact
Jully normal space Y.
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exists a closed subset A of X such that H(X, A: Z)#0, then the equality (A)
holds for every compact metvic spacé Y.

A metric space X is called an ANR?® if, whenever X is a closed subset
of a metric space Y, there exists a mapping from some neighborhood of X
in Y into X which keeps X point-wise fixed. A point x, of a topological
space X is »#-JIIL'*® in X when for every neighborhood U of x, there exists a
neighborhood V' of x, which is contained in U and satisfies the following
condition: Let E™! be an (z-+1)-dimensional element whose boundary is an
n-sphere S*. Then every mapping f:S"— V—x, is extended to a mapping
friE" s U—x,. A point x, of X is called #»-HS' in X if it is not »-HL in
X. If a point x, is k-HL for £=0, 1,---,#n, the point x, is called HL" in X.
The following lemma is proved easily in a similar way as [12], Theorem 6.

Lemma 21. Let X be a locally compact and m-dimensional ANR containing
a point x, which is HL™ ™ and (m—1)-HS in X. Then there exists a pair (A, B)
of compact subsets of X such that x,= A and H(A, B: Z)+0.

By K. Borsuk [6], a topological space X is said to have the property 4
if for each point x of X and each neighborhood U of x there exists a neigh-
borhood V of x such that 1) VCU and 2) every compact subset A of Vis
contractible® in a subset of U of the dimension =<dim A+1. If a finite
dimensional and locally compact metric space X has the property 4, then X
is an ANR®™. The following lemma has been proved in [6], p. 92.

Lemma 22. Let X be a locally compact n-dimensional metric space which
has the property A. Then theve exists a pair (A, B) of compact subsets of X
such that H.(A, B: Z)+0.

The following lemma has been proved in [12], Theorem 8.

Lemma 23. If X is a 2-dimensional locally compact ANR, there exists a
pair (A, B) of compact svbsets of X such that H (A, B: Z)+0.

Finally, we shall prove the following lemma.

Lemma 24. A 1-dimensional compact metric space X has the property P.

To prove this lemma, we need the following lemmas.

Lemma 25. Let {G;: IIt*'} be an inverse system of finite abelian groups G
and let G be its limit group. Lel us denote by Il; the projection of G into G;
Jor i=1,2,---. For each i=1,2,-, there exists an inleger k,;>1i such that II,(G)
=I%(Gy,), where IT/=IT--II3_,, > 1.

The proof is obvious.

Lemma 26. Let K and L be 1-dimensional connected simplicial complexes.

39) Cf. [5]
40) Cf. [12], p. 172.
41) See footnote 19.

42) See Y. Kodama, On LC"™ metric spaces, Proc. Japan Acad., 33 (1957), 79-83.
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Let u, and u, be different vertexes of K and let v, and v, be different vertexes
of L. Let f be a simplicial mapping of K into L such that f~(v)=u; for i=1,2.
Let G, and G, be non-trivial abelian groups and let h be a homomorphism from
G, onto Gy. Then the homomorphism II of (I, u,Ju, : G)) into H (L, v,Uv: G,)
induced by the mapping [ and the homomorphism h is non-trivial.

Proor. Since K is connected, there exists a 1-dimensional integral chain
c=X% 0, such that dc=u,—u, u,=0, u, <0, and o;No;=¢ for |i—j|=1, where
o’s are 1-dimensional oriented and closed simplexes of K. There exists an
element g of G, such that A(g)#0, since % is a homomorphism onto. Then
gc is a non-zero clement of Z(K, u,Uu, : G,). Since dim K-=1, we can consider
gee (K, uyUun,: G). Let H(gc)=3k, g7, where 0#g,G, and 7, is a 1-
dimensional oriented simplex of L, /-=1, 2,---, A. Since f~(vy)=u, and f@,)=u,,
the simplexes f(g,) and f(o;) are non-degenerate. Therefore we can assume
that f(o,)=t, and f(oy) =1, If i#1 and ik, we have f(o;)# 1, and f(0;)# Tp.
Accordingly we have g;=+:A(g) for j=1,4 Since dim L=1, this shows that
H(gc)#+0. This completes the proof.

Proor or Lemma 24. Since dim X=1 by [11], Chap. 1I, §2, D) X is not
totally disconnected'®. Accordingly there exists a connected closed subset X,
of X such that dim X,=1. Let x, and x, be different points of X,. Let {1I;}
be a cofinal collection of coverings of X, such that the order of U, is i=1, 2,

We can assume that there exists two open sets U, and U, of lI; such
that x,€U; and x;¢ U for every open set U+ Uj of U, 7=1,2 and i=1, 2,---.
Let K; be the nerve of l;,i=1,2,---, and let =y, be the vertex of K, corre-
sponding to the open set U, of W, s5=1,2 and i=1,2,--. Each K; is a 1-
dimensional connected complex. Let II¥ be a projection of K, into K; for
{>i. We can assume that (JIY 'u;=uwu;, j=1,2 and />i. Assume that X has
not the property P. By Lemmas 7 and 8, there exists a k-sequence a={q,, ¢»,"--}
such that I1(A, B:a)=0 for every pair (4, B) of X. Since a={gq,, g, -} is a
k-sequence, there exists a positive integer i such that g;>1. Since K; is a
1-dimensional connected complex, (1Y) 'u;=u; and Zy;+#0,j=1,2 and [=i-|1,
i+2,++, by Lemma 26 we have 0+ P (Ky, 1y, Uty 1 Zo) CH (K, s Uty Zoy) fOr
[=i+1,i42,--, where P! is the homomorphism of H(K;, w,Uuy: Zy) into
H\(K;y u;Uuy: Zy;) defined in §2 for />i. On the other hand, by our assump-
tion, we have H (X, x,Uxy: O)=1im{H, (K}, u;,Uu,,: Z;)}=0. Since each H,(K,
wyUus: Zyg) 1s a finite group, by L.emma 25 there exists a positive integer
ly>i such that PLH (K, wu,,Uy,: Z;,,)=0. Thus we have obtained the con-
tradictory relations. This completes the proof of Lemma 24.

Since every polytope has the property P, by Corollary 1, Lemmas 21-24

43) A topological space is called totally disconnected if no connected subset contains
more than one point.
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and the main theorem we have the following corollary which is a generali-
zation of [12], Theorem 9 and [6], Corollaire 16, p. 93.

CororLLaryY 2. In the following five cases the equality (A) holds for every
compact metvic space Y.

1) X is a polytope.

2) X is a l-dimensional compact metric space.

3y X is a 2-dimensional locally compact ANR.

4y X is a locally compact m-dimensional ANR containing a point x, which

is HL™ 2 and (m—1)-HS. ‘

5 X is a locally compact and finite dimensional ANR which has the

property 4.

Remarx. The following lemma is a consequence of [16], Theorem 3.2.

Lemma 27. Let X be a fully normal'V and locally compact space. In ovder
that dim X=n it is necessary and sufficient that for every compact subsel A of
X we have dim A=n.

By this lemma, our main theorem is generalized in the following form.

Tueorem. Let X be a locally compact n-dimensional metrvic space. In order
that the equality (A) hold for every locally compact metric space Y it is necessary
and sufficient that X have the following property P’

For every k-sequence a therve exists a pair (Ay, Ba) of compact subsets of X
" such that H,(As By a)#0.

The following lemma is proved in a similar way as the main theorem.

LemMa 28. Let X be an n-dimensional fully normal and locally compact
space. If the equality (A) holds for every fully normal and locally compact space
Y, then for cach prime number p there exists a pair (A(p), B(p)) of compact
subsets of X such that H.(A(p), B(p): Zp)+0.

But the condition of is not a sufficient condition, that is, there
exists a 2-dimensional compact metric space X satisfying the following condi-
tions:

1) For each prime number p there exists a closed subset A(p) of X such

that H,(X, A(p): Z,)#0.
2) There exists a 2-dimensional compact metric space Y such that dim(X
X Y)=3.
To prove this, let {p,, p,,---} be a sequence of all prime numbers such that

[>/

44) A topological space is called fully normal ([19] and [20]) if for every (finite
or infinite) open covéring 1 of X there exists an open covering B of X satisfying
the following conditions:

1) % is a refinement of 1.
2) Each point x of X has a neighborhood V(x) intersecting only a finite number
of open sets of RB.
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Di#Epy i#j. Put gu=p,ps+-p; for i=1, 2,-++, and X=P(py, ps,--), where P(py, ps, )
is the 2-dimensional continuum described in 2) of §3. It is obvious that the
space X satisfies the above-stated condition 1). Put §;=g¢,q.---q; for i=1,2,---.
The sequence a={qd, ds, -} is a k-sequence. Put Y=@Q(a), where Q(a) is the
2-dimensional continuum described in 3) of §3. By we have
dim(Xx Y)=3.

Addendum. After this paper had been submitted for publication, I have
learned by a letter from Prof. Bauer that the problem XII of Alexandroif
was already solved by Boltyanskii: (1) On the dimensional fullvaluedness of
compacta, Doklady Akad. Nauk SSSR (N.S.) 67, 773-776 (1949), (Russian); (2)
On the theorem of addition of dimensions, Uspehi Mat. Naut (N.S.) 6, no. 3
(43), 99-128 (1951), (Russian). ((2) seems to be a detailed exposition of (1)).
To our great regret these papers of Boltyanskii are not accessible to us in
our country. There seems to be a little difference between Boltyanskii’s
solution and ours, but these two solutions are equivalent as will be proved
below.

Bovryanskir’s Turorem. Let X be a finite dimensional compact wmetvic
space. In ovder that the equality (A) hold for every compact metvic space Y it
is necessary and sufficient that for each prime number p theve exists a pair
(Ay, By) of closed subsels of X such that H"(Ay, By: Qp)+0, where Q, means the
additive group of all vational numbers of the form m/p* reduced modulo 1 and
H"(A,, By: G) means the n-dimensional Cech cohomology group of (Ap, B,) with
G as a coefficient group.

Consider the following two properties:

For every prime number p and every k-sequence a each member of which
P,. is a power of p there exists a closed subset Aq of X such that H (X, A.:
Z(a))=0.
p For every prime p there exists a closed subset A, of X such that
o H (X, A, Z(a,))#0, where a, is the k-sequence (P, p%-+).

Lemma 1. The character group of the group Q, is the group Z(a,) for each
prime number p.

Proor. For each integer 7, let us denote by G; the subgroup of @, con-
sisting of all rational numbers of the form m/p’. If j=>i, we have G,DG;.
The group Q, is considered as the direct limit group of the derected system
{G;;i=1,2,---}. Since G;~Char G;=Z,, we have Char @,~Char l_igl{Gi}z
Li_rp_{Zpt Y=2(a,).

Lemma 2. An n-dimensional compact metvic space X has the property Py if
and only if X has the property P,.

Proor. It is sufficient to prove “if” part. Let a=(p™,-,p%, ) be a



On a problem of Alexandroff concerning the dimension of product spaces I. 403

k-sequence. If lim a;=c0, the proof is easy. Let lim a;=m. We can assume
k2 i

that a=(p™, p™,---). Since X has the property P, there exists a closed subset
A of X such that H(X, A: Z(a,))#0. Since H,(X, A: Z(a,)=H,(X, A: a,)=
gn_{[—[,,([{i, L;iZyu)}y by in §2, we can find a non-zero element {z;}
of im{H.(K;,L;: Z,)}, where (K;, L;) is the nerves of the i-th member %;
fron<1 a countable cofinal system {8;} of coverings of X. For i=m, let us
denote by /%() the natural homomorphism from Z, onto Z,». The homomor-
phism /%() induces a homomorphism A(i) from H,(K;, L;: Z,) onto H,(K;, L;:
Zym). The sequence {A()z;} determines an element z(1) of the group H,(X, A:
)=H(X, A: Z,m). If 2(1)+0, the proof is completed. Let 2(1)=0. Then 2,=0
mod p™ for i=m. Put z%D:—rlﬁ; Ziwmy 1=1,2,---. Since z{’ is a cycle mod p?

?
i=1,2,-,{2{"} determines an element of H,(X, A:a,). Therefore the sequence

{h()z{"} determines an element z(2) of H,(X, A:a). If 2(2)#0, the proof is
completed. If z(2)=0, by using the same process as above, we can find an
element z(3) of H,(X, A:a). If we can repeat this process infinitely, we have
z;=0 for each i. This contradicts {z;}+#0. This completes the proof.

Lemma 3. An n-dimensional compact metvic space X has the property P if
and only if X has the property P,. :

Proor. It is sufficient to prove “if ” part. Let a=(g,, ¢.,---) be a k-sequence
such that ¢g,#1. Let ¢,=p%r;,i=1,2,---, where p is a prime number, p and 7;
are coprime numbers. Since ¢; is a divisor of ¢, {p*} is a k-sequence,
which we denote by 5. Since X has the property P,, there exists a closed
subset A of X such that H.(X, A: Z(Iw))z(lim{Hn(Ki, L;: Z2)y+0.  Let {z} be
a non-zero element of lm{H,(K;, L;: Z,#)}. We can assume z;#0. Since z;
is a cycle mod p*, 7,z ig?cycle mod ¢; and determines an element Z; of the
group H,(K;, L;: Zy,),i=1,2,---. Since p and 7; are coprime numbers and z,#0,
we have P}--PiiPé_(2,)+0, where ¢_; means the homomorphism from H,(K,
L;:Z,) into H.(K;—y, Li_y: Zy;_,),1=2,3,---, defined in §2. Since the group
H.(K,, L,: Z,,) is finite, there exist a non-zero element {; of H.(K,, L,: Z;,) and
a sequence {7, <<i,<<---} of integers such that Riiz,;={,, j=1, 2,---, where Pii=
Pi--- P, Since the group Hu(K,, L,: Zs,) is finite, we can find a non-zero
element ¢, of H(K,, L,: Z,;,) and a subsequence {i,/<i,’<C---} of {4, <Tiy<<---}
such that Pii'z;;, =y, j=1,2,--. Obviously Pi{,={,. By using this process
repeatedly, we have a non-zero element {{;} of the group (]Ell{ffn(f(i, L;:Zy)}.

This completes the proof.
By Lemma 1 the cohomological dimension of X relative to the group

@, is equal to the homological dimension of X relative to the group Z(a,).
Lemmas 2 and 3 shows that Boltyanskii’s solution and ours are equivalent.
National Defence Academy.
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