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On the Waring problem in an algebraic number field.

By Tikao TATUZAWA

(Received April 24, 1958)

Siegel succeeded in dealing with the Waring problem in an algebraic
number field, and he extended the Hardy-Littlewood theory to the case of
number fields by means of the circle method (see and [5]).

Let K be an algebraic number field of degree » and k2 be a positive
rational integer (k=3). Let o be the integral domain consisting of all integers
in K (the unit ideal of K) and J, be the ring generated by k-th powers of
all integers in K. On account of the identity

k=2 (-0 (B D) G -

for r <o, the ring J; is an order.

Using the Vinogradov method, we shall prove, in the present paper, the
following

Mamn Turorem. Let v be a totally positive integer in Ji, and NV) be suffi-
ciently large. If

s=z8nkn-k),
then the equation
v=2 LA A

is always soluble in totally non-negative integers

Ay (1=r=s),
subject to the conditions
N, =ceNWw),
where ¢ is a positive constant depending on K, k and s.
Let KO(1<I<r,) be », real conjugate fields and K™, K™ (y, L 1<m <y, +v,)
be 7, pairs of complex conjugate fields, so that »,+2r,=xn. We denote by
7D(1=q=n) the conjugates of r, the number of K, and define

trace(r)=> 7,
g=1

Let 7, (1<7=<n) be numbers of K and x, (1<#=<#) be real variables. We set

7 n
E==28 TrXe alui defhle f(q)zzza rﬁpx»,
r=1 r=1

trace(&)=3) £@ |

g=1
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For brevity we write
E(r>:e‘lm‘, trace(y) , E(é’)zezni trace (&) ,
and use the abbreviations

llrll=11\5/[qas>§lr(">l, {l6~r![=11\s/lqglé<">*r(q)l-

A number 7 of K is called totally positive or totally non-negative according
to
rO=>0 or yHz=0 (I=i=r)

respectively. If r is a totally non-negative integer of K and satisfies |7 (=T
for some positive T, then we write

r<T.

We use a letter ¢ (and similarly ¢y c¢;,---) to denote a positive constant
depending on K,k and s. It is not necessarily the same one each time it
occurs. The constant ¢ may well depend on another parameter *. In this
case we write as ¢(*) to plain the meaning. We express by 4 a positive real
number which can be taken arbitrarily small. If /¥ and G are functions of
certain variables and G is positive, then the notation

F=0(G)
means that there exists a positive constant ¢ such that | F|=<c¢G in the domain
designated. In many cases, we use small Roman, Greek and German letters
to denote rational integers, numbers of K and integral ideals of K, respec-
tively.

Finally, I should like to express my warmest thanks to Prof. Siegel for
his valuable advises during his stay in Japan, and also to Mr. Mitsui who
read this paper and gave valuable remarks.

§1. Singular series.

Let ® be the ramification ideal of K, and D be the discriminant of K, so
that N(d)=D. For any number r in K, we can determine uniquely integral
ideals 1, b such that

5
a

Th=—-, (a, b)=0.

We write, then,
r—a,
for convenience. Since, by definition (see [2], p. 131),
b 1'={p: E(pa)=1 for every aco},

we obtain
EQ*r)=E(1*r), (1)
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provided
r—a, 4, #z€0 and A=x (mod qa).

Now, we constitute the sum 3} E(2%7), where the summation being over a
2

complete system of residues to the modulus a. In view of (1), the sum men-

tioned above is independent of the choice of a system. We denote this

exponential sum by

S(r),
and write

S(r)zi Ed aE(l"r) .

Lemma 1. Let 7; (1=j<7) be numbers of K and y;—q; in the sense just
stated. If a; are velatively prime in pairs, then
rl+‘7’2“{""+Tr‘")ala2"'ar
S(ritret+r)=SF S-S .
Proor. The first part of the lemma is obvious. Suppose that
Ay @y =a, by =as0y=---=0q,b,,
and choose f; such that
ﬂjED, (ﬁj):f)]‘(‘.j, ngl) and (Cj, Qj)ZD.

Consequently, if 2; runs over a complete residue system mod aj; then 2,3,
constitute also a similar set. It is now easy to deduce that

r r

> (8" — (3 LB r)ed,

j=1 j=1 j=1
whence follows

S(r)S(rs)--Str ) > E(A lrl) > EQRfry) X E )

Ay med ay A; mod a; Ay mod dp

*? 2;32; LB 1R ) ot (R80T )
=25 202 E((AB1+AsBs b+ 2B (7ot +70)

Since xlﬁl—}—lgﬁg+---+1,ﬁr runs through a complete system of residues to the
modulus a,a,---q,, we get the second part of the lemma.
Let v be an integer and a be an integral ideal in K. Now, we constitute
the sum 3 NMa)=5S(y)E(—vyr), where the summation being over a reduced
T

residue system of (ad)~!, mod d7!, (obviously 7 —a). We denote this sum by
H(a),
and write
H(ﬂ)z?* N(@)=S(r ) E(—vr) .

Lemma 2. Let a; (1=<j7=<v) be integral ideals of K. If a; are relatively prime
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in pairs, then
Hia,ay---0,)=H(a,)H(ay)--- H(a,) .
Proor. By Lemma 1,

Hia)Hiay)-- Hio,) = Najay-,) 5% 3% 3%
T

Ts Tr

S(r)’S(r o) S(r e E(—vr )E(—vra) - E(—vr,)
= N(a,ay---q,) 7 20% 7% 30

71 T3 Tr

SGritrat - +r)B(—v(ritrat-+7.).
If r; runs over a reduced residue system of (a;d)7, mod d7%, then r,-+7,+- 47,
runs through a reduced residue system of (a,a,---a,d)7!, mod d~!. Hence, we
obtain the result stated.
We denote by M(v,a) or M(a) the number of solutions of the congruence

Afp A 2=y (mod a),

when 2, ,,-+, 4, run independently through complete systems of residues to

the modulus a.
LemMma 3. M(a):N(a)s'lfSlj ).
a
Proor. If 7 runs over a complete residue system of (ad)~!, mod d™!, then

Na (asa)
> Elar)=
T 0 (ada, asy)
(see 3], p. 45). Hence,
M(a)N(a)=2r ; E}; E((A 2, 4+ 2 =v)r), (2)

where y runs over a complete residue system (ab)™!, mod d7%, and A (1=r<s)
runs through a complete residue set mod a. Let ¢ be a divisor of a and a=cf.
Choose p and « from ¢ and (da)™! respectively such that

(0)=cm, (m, f)=o,
and

(a)=(0a)™'b,  (a,b)=0.

Then, oaB runs over a reduced residue system F'* of (jp)~!, mod b, if B
runs over a reduced residue system modf{ Let denote by F a complete
residue system mod §. It follows, from (2), that

Ma)N@) =5 (37 ) S B E =), 3)

Cla

where 7 and A run through F* and F respectively. Clearly the right hand
side of (3) is equal to
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Nay’ Py H(Y)=N(a)y %} H(),

whence follows the result.
We can prove that

1S(r) | <c(d)N@)' ™+,

in a similar way as in the rational case (see [6]). The result was also
obtained in more general form (see [3]). We define

Glr)=N@)7S(r)=Na)™ > Ba'T),

mod a
assuming that y —a.
Lemwma 4. For any positive 4,

G =0(c(4)N@) * ).

Lemma 5. Let 9 be a prime ideal of K, p be a prime vational integer con-
tained in p, and NOP)=p'. Let [ be a positive rational integer. There exist
positive rational integers d, q, and 7,0 such that the linear form

41771k+az772k+"‘ ‘|”Cld77ctk

ar:1:2)"') qr (1§7’§d) : (4)
uniquely rvepresents all numbers of J, modulo Y, wherve q, is a power of p and
d=fl.

Proor. Let g be the number of. residue classes to the modulus »* which
contain integers of J,. Suppose that 7,&p and p, is the smallest positive
rational integer x satisfying the congruence

=0 (mod p").
It is plain that ¢, is a power of p. Let 7, be an integer such that
7% am,” (mod pt)

for every a,(a,=1,2,-,q,), and ¢, be the smallest positive rational integer x
satisfying the congruence

wmf=amn,  (mod )

for some a,(¢;=1,2,-,q,). It is plain that ¢, is a power of p. Let 7; be an
integer such that

7 Eam, +am,”  (mod p)

for every pair of a,,a, (@;=1,2,-,q:; @;=1,2,---,q,), and g; be the smallest
positive rational integer x satisfying the congruence

wmsF=amFtam®  (mod )

for some pair of a,,a, (@,=1,2,-+,q,; a;=1,2,-+,¢,). Itis plain that ¢; is a
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power of p. Repeating this process, we are able to prove that every k-th
power of integer in K and so every number of J; can be expressed uniquely
in the form (4). Because of

P =01y qa=g=NO)'=p",
the last assertion is also true.
- We consider a non-archimedean valuation of K induced by a prime ideal
p of K. We denote by K, the completion of K with respect to this valuation.
Let @ be a number of K. We denote by

Ord

the exponent to which p enters into the canonical factorization of «. Suppose
that A is a number of K, and is defined by Cauchy sequence {a,}, a,cK.
Since there exists lim Ord «,, we denote it by

n—>c0

Ord A.

It is independent of a choice of Cauchy sequence. Let p be a prime rational
integer in p and p*{[p. (The notation means as usual that p°[p, and p*+iyp.) It
is well known (see [1], p. 416) that the series

2 3
L At

is convergent in K,, if

OrdA> b (5)

We denote it by exp A. Then, it is obvious that
Ord(exp A—1)=0rd A.
The series

Ar A3
A_JQVA_*___T_...

is convergent in K, if
Ord A>0. (6)

We denote it by log(1+A). Then, it is obvious that
Ord (log(1+A))=0rd A.

Lemma 6. Let p be a prime ideal of K and p be a prime rational integer
contained in p. Assume that y°(|p, p° ||k, and

. 1 b=0)
0=

[ S5 ]tett v=>0).

Let « be an integer of K. If the congruence
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f'=a  (mod p") (7)

is soluble with & not divisible by p, then for any rational integer =1, the con-
gruence
E=a  (modp)
is also soluble.
Proor. Firstly, we assume that & is not divisible by p (b=0), and p||=,
o, If (7) is soluble, then

kfk—lnlonza_gk (mod pla+1)
is also soluble with respect to », since (k&*~1, p)=o0. Then,
(E+zly)f=a  (mod p"*).
Repeating this process we get the result.
Secondly, we assume that % is divisible by p (b>>0). If (7) is soluble, then
—=1 (mod p°).

Hence, by (6), there exists

Since,
ord(,- log %) =0rd(log 3)—Ord &
—ord( e —1)—Ord k=l —ecb > o

there exists also

by (5). If we denote it by A, then we obtain a@=(A&)* by usual computation.
Choose 7 in o such that

Ord(Aé—n)=1,
then
Ord(n*—a)=0rd(n*— (A" =1,
whence follows
7*=a  (mod ).

Lemma 7. Let D be a prime ideal of K and p a prime rational integer
contained in 9. Assume that p°||p, ND)=p’, and p* ||k (k=3), and put

ly=(b+2)e, s,=[8nk(logk-+1)].
If 1=, s=s, and vE ]y, then

M, p)z Np)¢-o e,
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Proor. It is well known (see [6], p. 50) that, if /,=6+2 and r=4k (£=3),
then, for any positive rational integer x, the equation of congruence
=y +y 40k (mod pt)
is soluble with rational integers y; (1=<j=<r),pty,. Using the result just stated,
with the aid of Lemma 5, we can infer that, for any integer v of J,, the
equation of congruence
P=CHC ek Gl (mod 4 ®)
is soluble with pr¢, and
d<fel, . 9)
We put
0, =042, ly=el,=e(b+2), and r=4k.

Since 2°<p’<k, we obtain

Akfl, == Akfe(b-2) <dkn(b-12) <dkn (}%f—m) ,

and so
rd<rfel, <[ 8nk(log k11)]=s,. (10)
It follows, from (8), (9) and (10), that the equation of congruence
VEC1k‘|“C2k‘}"'"“Csk (mOd Dla) (11)

is soluble with pr{, provided s=s,.
Suppose that pl{z, 7o and

Er:C'r—l“ﬁloZ (2§7’§S> ’ (12)
where 2 runs over a complete residue system mod p*-". From [11), we see
that

y—{f—e (¥
is a reduced k-th power residue mod p*. It follows, from that
y_f2k_..._.5sk

are reduced k-th power residues mod P, and the number of such residues is

greater than
N(p)(l«lo) (s-1)

by [12). This implies the result stated.
TureoreMm 1. Assume that k=3, s=s,=[8nk(log k+1)], and v is an integer
of Jw. Then, the series ©S(v)=73] Hla) is absolutely convergent, and therve exists a

constant ¢, such that
S)>c,.

©0

The series X(p):(;) H(YY) is also absolutely convergent, and we obtain the product
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Formula.

S(v)=II x(b). (13)

p
Proor. Since

H(a)=0(c(4)N()' " &4y, (14)

by [Lemma 4, the series ZH(a) and E‘H(pl) are absolutely convergent for
szs,. Hence, by _

II x()= H {E Hp"y= =2 H(a)+2’ Ha)

Np=sx

where 3 runs over all ideals whose prime divisors having norms not
exceeding x Take the limit as x—oo we get (13). It follows, from

3 and that

> Hi) =z N(p)™e¢=n
flot

provided s=s, and /=/,. Take the limit as />, we get

x(P)Z N(p)™e7h
We know, from [14), that there exists ¢ such that

| S H®Y < No)?
provided N(p)=c¢. Then,

€)= IL x) I x(®)=>T1 Np)y™¢™ 11 ( N(lﬁjé*)%.

Np<e Nyze Npzc

§ 2. Basic domain.

Throughout the paper, we write
t=T1" p=Tr1te (0<<a<l),

for sufficiently large positive 7. Let o, w,,-, , be an integral basis of K.
We can choose o, 05, '+, 0n, @ basis of d7f, such that

1 (r=s)
trace(p,w,)= (15)
0 (r+s)

(see [2], p. 133). Let X be the whole n-dimensional Euclidean space and U
be the unit cube
{(xg, 2y, 20) 1 0=x, =1 (I=r=n)}.

We denote by I' the set consisting of

T:plx1+p2x2+"'+pnxn ’
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fulfilling the conditions
(%1, X9y, Xn)E U, x,; rational number (1=<r=<u), Na=<t",

where y—a in the sense defined in the preceding section. Hence for a given
a, the number of (r) in I', subject to y—a, is O(Na). Next consider the num-
ber of y in I' satisfying (y)=(r,), for a given y,&I'. By the theory of units
(see [2], p. 124), we can choose a unit ¢, such that

71=70€0

1 1
n n

NGy =lri? [ =, Nry) (I=r=mn).

. 1 .
Noting that N(ro)zﬁm~ (r,— a), we obtain

c

¥YNa’

If we put r=r,¢ then ¢ is a unit and satisfies
le|<c¥Na

since |[7[|=0(1) and |7{’|"'=0( ¥ Na). Consequently the number of ¢ is O(Na),
and the number of yer' satisfying r-—a is

O(Nu?). (16)

[r{” >

We set
E=p,%,4 0oyt Opny =09+ @Y+ + @ Y0,

with respect to real variables x;, 45,---, 2, and v, ¥5,---, ¥o. We use abbreviations
dx=dx,dxy--dx,, dy=dy,dy,--dy., .
For every rel', we define the basic domain By by

{(xI) Xay* "y xn) : (xb Xoy xn>e U,
1T Max(h[E®—y®@ |, ;=)< N()™!, for any 7,=r (mod d71)}.
g=1

The following fundamental lemmas were proved by Siegel.
Lemma 8 (see [5], p. 326). If ri, 7.1, ri#7s and T>c, then
BT,ﬂBTsZO-
Lemma 9 (see [5], p. 330). If we write
L(&)=3% E(A*¢), é—r=(,
<r
then
LO=GN| EG*Ody-+0(T™).
7<T

Lemma 10 (see [5], p. 335). If we write
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t=T*%,

then
[ Ewro)dy=0(T"NMin(1, || %))
<7

Lemma 11 (see [5], p. 335).

fUN(Min(l,[r] ) dx—O(T %)

for s>F.
Lemma 12 (see [5], p. B37). If we define, for pn<<1 and s>k+1,

= OB nds, 9&=(f En'ody),

then
Jw)y=D 2 ~(1-3) II F<ﬂ(l))mlyl+{[('u(m))
with
1
(14—
F(ﬂ(l)):\w(‘_r_k >( (z)> ,c~—~1
P(L)
k
and

S R
H('u(m)):k_.l Z_)l(k—lurk l)d”1"'d%s—1d¢1'”d§0s—1,

where the last integral extended over the domain
0<wu,<<1 (1=r=s), — <o, <w (1<r<s—1),
A 1 B
us:[u(m) . (ul 2 ew, "}‘uz 2 ew,__l_... -{'uf_lews—l) {2 .
Now we proceed to prove the following

Tarorem 2. Let v be a totally positive integer of K. If

szt nku <0<a g%) y<T*,

then
> | LEPE(—vE)dx=CW)J() T~ +O(T™h),

yeIY Br
where
u="T"y.

Proor. It follows from Lemma 4, Lemma 9 and Lemma 10 that
L(EP=G(r)¢()+O(T*"9)

FO(C( )N~ AT N(Min(1, 2] 8 )T,
where
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=(f LE(n*¢ )dy>s-
2<T
Put 4=1/2 and assume that s=4k-1, then
> N~ % 4 —0q),
rel
by [16) Consequently, if
sz-—-&lr nk+1, (17)
then
% J L B —v&)dn=3 GG B~ ¢(QB(—»C)dx
r&I'Y By
—O(T“"*‘”)+O(T"“‘”*""“)L}N(Min(l, |z l_’s’?—))dx
=3 GOYE(—vr)| $OE—vOds+0(Tm e, (18)
rer By
by Lemma 11
If (%, x5, %) is @ point of X— By, then the inequality
1
@ -
(D> YN (19)

is true for at least one index ¢g. By

[, pOE—O@=0™ | NMin(1 1, el #)dx
X-By

—omf Igy<Min<Ts, 117 #)dx

If we change the variables as follows

(O=y, 1=<I<r), (™ =upe®n (ri+1=m=r,+r,),
then

{ a(x Koy corerecsvereasaens X, ) 1 747y

!7 1 22 P on =D 2 IT (2%

| Oy, U, sras Provt Prosra) m=r,+1 w

hence, by [19),

. JOB(—C) =00 (" wvaw) I

1 1<L*71
R™IN(a)  n

me(T ul‘ du,
<AL 2 ([, ¥ ) g,

—owy({” tl,ql-%f*duq)

-1 1=i=r,
h”N(a) n

or

ij(T w )du,

x dr_ of (j Min(T¥, umk)umdum)dgom.

mxq

333
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Noting that

["Min(rs, wF)du=0(1), [ Min(T¥, 4™ ¥ udu=0(T*¢5),
0 0

we have

s s

jx—y?(c)E(_VC)dx:O(T(n"l) @b Ny (Y )
or
—O(T @2 6=t Ny (1) y
from and [I6), by taking 4=1, we obtain

1/

3 GrrN@=E) o 3 Gl Nay (e
rer t€r

=0( 2 Na))=0(£").

Nast™

Hence,

S GYE(—)|  OE(—vO)dx=0(T #=be-B T=1r (f=1)zim)
rel’ X-B

By
=0Q(Tre—h T-0-a)(F-1-n))
:O(Tn(s—lc) —a) s

if a<(1——a)(~%——1-—3n), which is true provided that and

O<a§*1"

hold.
It follows, from (18) and [20}, that

> | L(erE(—ve)dx=2 G(r)E(—vr)| $(OB(—vC)d
rerl ¢

r€IY By
+O(T™G=k)-a)
Now, we put,
v=T"*u, E=T%, n=Tn,

T*% =% T7'9=Yn (=r=wn),
then we have

[ $OE—vede={ §(T*e)E(— pE) T dx,,
X X

—k — ns §
STe)=1({  EnfEdn),
where
Eo=01%01F 02205+ + OnXony No=001Yo1+ @Yoo+ + @Yo »

with the abbreviations

(20)

(21)
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dxy=dxy A%y AXony AYo=dY01dY93"* AYon -
It is now easy to deduce, from [2I), that

3 f L@ E(—v)dx=3 G E(—vr) T
re

relY Br

x | $UOE(—uE)dr-+O(T e-0) (22)
where
on@=(f _ Eateay).
Since #<{1, we can infer that
J()=0(Q1),
by Further, if s=4%, then

EPGW)“E(—W)=@(V)+O(T'1)

by Lemma 4, whence follows the theorem by and

§3. Supplementary domain.

We define the supplementary domain S by
S= U— 2 Br .

rel’
The following lemmas were proved by Siegel.
Lemma 13 (see [5], p. 326). If (x), Xoy -+, X)) ES, then there exist « and B
in K such that

aco, ped, (laf—pll<h™, t<|a|=h.
Lemma 14 (see [5], p. 326). If |a@|<D 2 in Lemma 13, then
Rla@ED—FDO (=D (1=<q=n).
Lemma 15 (see [5]1, p. 326). In Lemma 13,
N(«, Bo))=D'=.
Lemma 16, Let w,(1=r=n) be basis of all integers in K. Let A, B be
positive functions of T such that A/h—0 (T'—o0). If (X, Xy, X2) ES, then

e fpn _ BTL
M B 1= EEmey)|

=0{ (hBr~ (1447 ) B+l ellog [« D},

1 érén)}

where « is the number satisfying the conditions of above three lemmas.
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Proor. Let

- édr< — (1 §7’§n) ’

trace(fpw,)=a,+d,, — ;

with integral rational ¢,, and define
n n
2. a,0,=0, 2 d;0,=T,
r=1 r=1

then trace((o-}7)w,)=a,+d, and so &x=0-}-t by (15). Then

Min({|1—E( rw,) [)=0(tD [, (1=q=n)). (23)
1=r=n
Define
=10 (1=l=rn)
_tmgEm r(m) __F(m)

Zm'_“ ’\/2_—— » Zm+n:_ /\/'Z_i (71+1§m§r1+7’2) ’

moreover, let g, 2.+, £, be rational integers, and let W= Wi(g, g,,---, &) denqgte
the number of integers g, fulfilling the conditions

(2]<A4,
gr=2D""z, Max(la® |, D™"*)<g,y,  (1=r=n). (24)
Let » and #n—v be numbers of a® and a9 satisfying the inequalities
la®|<<D~2 and |a@|=D"?
respectively, moreover, let |[a||=]a®|, we get

¥ Wign&a e, &u) =0 " R A" [a® ) (25)

L1:83 5 8n

where the summation 3* means to exclude g;,. This may be deduced by a
similar argument as in [5] (p. 333). Since, by (24),

[t® (=07 1a®]),
we have, by (23) and (25),

W B
A (B, [ 15r=0)
:O(hn—v—l +thn—v l a® l—l) 2 {Mll’l(Bn, Bt i a® Ig—l)}

0=22<0(la® 1)
=OUm =+ Ala® (B + B | a® [log | a® )
- A
=0{ By~ (Lt ) Bl log i} .

TuaeoreM 3. If (%, X+, X,) ES and ‘O<a§~417, then

LE)=0(T""5).
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Proor. Because of L(E)=A§, E(A*¢),
Vi

2

| L&) [ =] %3 E(AA)E—2) P QT A4 <T)

(DS BRLATE ) 2

2k—2

é(CT")Qk_Z‘I ; I 2}\ E(klllk“lf-f‘"')[ ,

by Holder’s inequality, and similarly,

where

<(cTmy* 1Ty 223 Blkle— DA 40) [*

(T el S S LS | 3 E(pdé) (26)
Av ke A 4
,Lt:k! ’1122""170—1, [’zrl<2T (7’:1’ 2""yk¢'_1)) (27)

and A runs over all solutions of 2¥~! conditions

A2y g < T
(1§P1 <p2<<pg§k—1; g:O) ]-y"') k—l) .

Let A(ux) denote the number of solutions of (27). It is easy to deduce

that

o(Tm =) (n=0)
Ole(d)T) (u#0).

A(p)=

This, combined with (26), gives

where

| L&) [T =0T =) 40y T T -+ a 3 | 3 B(uag) )
M

| pn| < A=k 28151,

We know from [5] (p. 332) that

? E(p28)=Min(T, |1-E(¢ po,) |7 1=r=n)O(T"),

whence follows, from Lemma 16, that

| L&) P =0(T " ) O 4y - rramra

Now the lemma follows by taking 0<a§—L and A:~—1~.

4n 4

§4. Main theorem.

LemMma 17. Let Q{T) denote the set of integers p of K which can be
expressed in the form
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u=0 40"+ +a/, (28)
where o, (1=r<s) is a totally non-negative integer of K with

0, <T.
Let R/(T) be the number of integers belonging to Q\T), then

1

R(T)zer™ (=)
where I=[s/n].
Proor. There exists an integer # in K such that
1,6, 6%---,0"!

are linearly independent over the rational field. If ¢ is a sufficiently large
positive rational integer, then 8+« is totally positive. Hence, we may assume
that numbers mentioned above are all totally positive. Further we may
assume that

1; ak) 02’6" " g-nE

are totally positive and are linearly independent. Let @ be the set of
integers which can be expressed as at most / sums of 2-th powers of positive
rational integers not exceeding T, It is well known (see [6], p. 63) that the
number of integers in @ is greater than

1

C(I)Tok{l'(l"‘k’)t}

We put
L=ty 1,0 +u 08,
letting #, (1=r<n) run through the set @. Then we get (28) with
0,<cTy, s=in.

Now the assertion follows by putting ¢7T,=T.
PROOF OF THE MAIN THEOREM.
Let v be a totally positive integer in J,. We write

P=¥Np).

Let ¢, be a totally positive unit and y,=ve,*. By the theory of units (see [2],
p. 124), we can choose ¢, such that

¢ P<v,® <c,P 1<igr),

aP<|y,™|<c,P (n+1=m=r+r), (29)
for suitably chosen ¢, and ¢,, We use

s;=nk? and T,=(c,P/4s)"* (30)
in the place of s and T in and put
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O=Vo— 1 — Moy L1, Ko EQs,(T7) .
Then, by [29] and (30},
£2LP<,0(1)<02P»

S P<lo™|<(e+5-) P.

Let ¢ be a totally positive unit and p,=pe,*. By the theory of units, for"
a given 4 (0<<4<1), we can choose ¢ such that.

g P<oO< 4l P,

[0y™ [<cd™P, (31)

for suitably chosen ¢; and ¢,. It should be noticed that ¢; and ¢, can be
taken independently of 4.
We put
T=(c,P/47)\%, (32)
and define
L(E)=A§TE(1’“5), V)= 2 El(pe¢).

#EQ, (T1)
Further, we assume that

1
a=—47 ’ s=4n’k+1 (33)
and ¢¢;=e. Hence, by

[ perverp—vetaz=2 3 [ LErE-pf)ds

= pZ (S(p)J (1) T~ 4O(T "B ~%)) , (34)
where u#,=T"%p,. Consequently,
Cs/cy<<my® <1,
[, ]| <<4, (35)

by [31) and (32} By [Lemma 12| and [(35)

L —-y) T2 Pr14+7g
T =D7 ™ T F(u®) TT H ),

m=r;+1

with
ri})
(%)

Hup™)—>HO0)>c;, (4—0).

Flu®)= oy,

and
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Hence, if we take 4 sufficiently small, then

J(ue)>cr .
It follows, from and [Theorem 1|, that

RS [ LEFVEPE(—vee)dr>c,T O RAT)) (36)
€I By

for T>c¢,, if
s=4n*k+1, [8nk(log k+1)], (37)

where R means taking real part. In virtue of

J LeverB—vena=or™ )| | Ve rdx
=0T™TRf S Bt

ns—-3

=0(T" #*)R.(T)). (38)
We can infer, from and [(38), that, if

Ru(T)>c,,T™ % (39)
then

R LEFVIEPB(—vee)dr>0,
and this implies that there exist integers 2, (1=r<s), 0, and 7, (1=<¢<s,) such
that

vet=2" 4+ A5 +0F 4 ot B b Tk
with
NQ)=T" ey P*=c, Nw)¥*,

N(Uq)§T1n§C12Pn/k=CmN(V)I/k’ N(Tq)§c12N(u)l/k~
On account of [30}, and we see that is true, if

e >nk(1—1)" (40)

and T>c;,. If we put
s=[4n’k+8nk log k-+4nk],

then the inequalities which we imposed on and [(40) are satisfied. Since
5+2s,<<8nk(n+k), we get the main theorem.

Gakushuin University.
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