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1. In a paper of Kuiper-Yano [1], tensor invariants of order =4 of
special orthogonal groups SO(n) are determined, and the results obtained
are applied on the geometry of Riemannian spaces and Finsler spaces.

Using an analogous method on the tensor invariants of the real repre-
sentations of unitary groups U(n), T. Fukami [2] has obtained corresponding
results for U(n), and applied them on hermitian and Kaehlerian spaces.

Now, as we shall show in this note, these problems can be treated more
conveniently by intrinsic method than in using tensor components. Thus
the results of [1], can be easily generalized for tensor invariants of
higher orders, and the cases of groups O(n), SO(n), Un), SU(n) and Sp(n) can
be treated in parallel. In Kuiper-Yano [1], tensor invariants of the sub-
group of SO(») consisting of proper orthogonal transformations which fix a
given vector are also determined, however the corresponding problem is
not treated in [2]. We shall also show that for the groups O(xn), SO(n), Un),
SU(n) and Sp(n), the problem of the determination of tensor invariants of
the subgroup consisting of transformations which fix a subspace element-
wise is reduced to that of original groups.

2. Let G be a group and (o, U) a representation of G on a vector space
U. Then
Ut =U%G)={x<U,; p(o)x=x for every o in G}
is a subspace of U. An element of U* is called invariant of G in the re-
presentation (p, U). Now, let G be a group of linear transformations of a
vector space V, and U the space of all tensors of type (7, s) over V, i.e.
U=Vi=VR-QVRV*Q-QV*,

r-times s-times

where @ means the tensor product and V* means the dual vector space of
V. Then, as is well-known, U becomes a representation space of G under
the representation p defined as follows:

p(0)(%,Q) Q%R 1 Q- Q) =(0%)&) - Q(0%,) (0% ) - R(0*¥f)

where 0€G, x,€V, f;€V* (i=1,--,7; j=1,---,5) and o¢* is a linear transfor-
mation of V* given by



146 N. IwAHORI

(0*f)(x)=/(07"%) (feV* xeV)
i.e.
g¥=tg~! (*o: the transposed of o)
In this case the invariant of G in the representation (p, U) is called tensor
invariant of type (r,s) of G.

3. Now let V be an n-dimensional real vector space with positive
definite, symmetric bilinear form (x, ). Then denoting by GL(V) the group
of all non-singular linear transformations, we consider the following sub-
groups of GL(V):

The orthogonal group:

On)={ceGL(V); (ox, 0y)=(x,y) for every %,y in V},
The special orthogonal group:

SOn)y={o0(x); det(c)=1}.

We remark that, in these cases ¥V and V* give equivalent represen-
tations of O(n), SO(n). In fact, e V defines an element f,&€ V* by f.(x)=(a, x).
Then the linear mapping a¢—f, gives an equivalence of ¥V and V?¥*. Thus,
we can identify ¥ and V* by identifying ¢V and f,e V*.D

Then V{, Vi** and V?,, are also identified.» Hence concerning O(n),
SO(n), it is sufficient to consider only V90, instead of V..

Now, a tensor f of type (0,p), i.e. p-linear form f on V, is invariant of
a subgroup G of GL(V), if and only if

ey J0xy, 5 0%p)=f (X, %) . (0EG, xETV)
We denote by Vp(G)f the subspace of Vp consisting of p-linear forms f on V
which satisfy (1), and put
PP =dim VYO(n))*
viP=dim V(SO(n)).
Then we have immediately
(2) PP =0, if p is odd

(3) P =0, if p is odd and # is even.

1) In tensor components, the components of fy are 2] g;;af, where the ai, g;; are
the components of ¢ and the fundamental covariant tensor (x,y) respectively.

2) For example for a tensor Riy of type (1,3) there corresponds a tensor of
type (0,4) Riju=7Y, giaR¥. More intrinsically, for a tensor of type (1,3) R, i.e.
multilinear mapping R from VX VXV into V, there corresponds a tensor of type
(0,4) R, i.e. 4-linear forms on V, defined as follows:

(21, R(xy, %3, xS)):ﬁ(xh Koy X5 Xy) -

Then R is O(m)-invariant if and only if R is O(#n)-invariant. We identify R and R
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In fact, let flxy, -+, xp)€ VY (O®)): Then, as (—1)/=0#x),» we have
S xp) =1 (=200, —2p)=(—1)2f (x1,7+, %p)
Hence, if p is odd, f=—f. Thus we have f=0 and (2) is proved. (3) is
similarly proved.

Now let us consider PP for even p.
Tueorem 1. If p =< un, we have

BEP = (2p—1)(2p—3)--3-1.

Proor. We shall say that a mapping p from the set of 2p integers
{1,2,---,2p} onto the set of p integers {1,2,--,p} is admissible, if for every
integer i, 1<i<p, p7(i) consists of two integers. Let us identify two
admissible mappings p, v if {7 !(1),---, o7} (P»)} and {z7'(1),--, T7}(p)} coincide
up to their orders. Let us denote by A, the set of all admissible mappings
identified in this way and by N, the number of elements in A,. Then we
have easily N;=1, Ny=N,_+(2p—1) (p=2,3,---). Hence we obtain

Np=(2p—1)2p—3)-++3-1.
Let us associate to pe A, a 2p-linear form F) as follows:
(4) Fp(xl) Xay***y pr):(xkp xkl’)(xkzr xlcg')"'(xkpy xkp')

where k;, k;/ are determined by p7'(j)={k; k3. Then F, is obviously an
invariant tensor of O(z). We shall show that these Fy’s form a base of

3,(0O(m)*. Let ey, e, be a ortho-normal base of V. Let us call an ordered
set {ej, 5+ €0y} Of type p (EAy), if

() p(70)=p(72), P(J5)=p(74)s "> P(Jap-1)=0(Jsp) -
Since p<n, we can select for every p=A, an ordered set
epz{ejp ejgy"'; ejgp}
of type p. We denote Fley, ej, -, €5,,) by F(ep) for FeVY, Then we have
for p, 0’ A,
1 if o=p"
(6) Folep)= .
if FE
From (6) we can deduce that Fy’s are linearly independent. In fact, if

there is a linear relation
Z Cpr:O

pEAp

with real coefficients ¢y, then denoting the left hand side by F, we have
0=F(ep)=cp by (6).

3) [ denotes the identity transformation of V.
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Now it is sufficient to show that, for every Fe VV3,(O(n))* there exist N,
real numbers ¢, (o€ A,) such that

F—_—Z Cpr.

pEAp
Define ¢p by cp=F(ep). Then, putting F/'=F-3 cpFp, we have F’(e))=0
0

for every peA,. Moreover, F’ is obviously an invariant tensor of O(n).
Let us show that F/=0, i.e. for every Chyy*"s Chgp

<7> F/(ekp'": ek2p>:0 .
We distinguish now several cases.
Case 1. {k, ks, kyp} contains a subset {&,, kg, &y} consisting of odd

number of elements such that for every j&{a, 8,--, 7} (1<7<2p) we have
ki&{ky, kg,-+, kr}. In this case, there exists a o=O(n) such that

OCky™ —Chyr OCkg=—Crpy ", 08k, = —Ci,
O'ekj:ekj (]QE{C(, ﬁ,"" T})

Then
Fl(em;"'; elcgp):F/(Uekp“') U€k2p):"F/(€k1,"', ekgp)

hence we have (7).

Thus, in the remaining case, for every j, 1 =j=2p, the number y; of %
such that 14 <2p, ky=Fk; is even. Denote by x the maximum of u,, #y,-,
typ. We remark that in this case the number of different eSs among
Crpys €ry, does not exceed p, and coincides with p if and only if u=2.

Case 2. u=4. There exists an integer 7, 1<i<#, such that i&{k, -,
kyp}. Then we can assume without any loss of generality that pu=u,, k =k,
=k,=k,=1,i=2. Now since F’ is O(n)-invariant, we have for every element
S in the Lie algebra of O(n), and for every x,,--, x,,€V,

F,(th Xay ey xzp)“Jr'F/(xl’ szr"'; x2p>+"'+F/(x1) Xaye*s Sx:zp)zo .
(Remark that a linear endomorphism S of V¥ is in the Lie algebra of O(n)
if and only if the matrix of S with respect to an ortho-normal base of V'
is skew-symmetric.)
Take as S the following linear endomorphism of V:
Se,=—e,, Se,=e,, Se;=0 (j=3,4,---,n)
Then we have
F/(ekp'", ekgp):F/(Sezy €1, €y, el)"')
- —Fl<ez, Sel’ €y, en"')“F/(ez, €1y Sel, 61,"')'—F/(€2, €1, €15 Sel"")— -

ZF/(€2, €y €y, 81,"'>+F/(82, €y, €9y 61,"')+F’(€2, €1 €y, 62)"')+"' 4
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For every term on the right hand side, the number g, is replaced by u,—2.
Thus continuing this process, we reach finally the situation xz=2.

Case 3. u#=2. In this case {e, Cry**» €y} 18 Of type p for some peA,.
Then denoting by {e;, ejp, -, ¢j,,3 the ep which we have selected, we can find
a 0€0(n) such that

0ej,=er, (s=1,--+,2p)
Then, F’(ex, Crop) =F"(ejy,++, €;,,)=F"(ep)=0. Thus the proof is accomplished.

Exampere 1. p=2. A, consists of 3 elements p,, 0, p; (N,=3), which is
shown in the following diagrams:

1 2 1 2 1 2
O—0
Py 3 4 on I 1 O3
o——o0
3 4 3 4

where the existence of a segment connecting two integers means that their
images under p; coincide with each other. We have as a base of V{O(n))¥,
n =2, the following Fp,, Fp,, Fp,:
pr(xb Xy X3y x4):(x1: xz)'(x37 x4) ’
Fo, (%1, Xgy Xgy X4) = (%1, X3)+ (X5, X4)
Fo, (%1, %oy %3, %4) = (X1, Xy)*(Xgy X3)
Tueorem 2. (1) If p<<w, then vP=35P. (i1) If p=n, then vP=0P+1.
Proor. (i) The proof of theorem 1 is easily seen to be valid in this
case also. (ii) Let us orient V by a orthc-normal base e+, e, Then we
denote by [x,, -+, x.] the following #n-form on V:

(%), #n]=det(£), where x;,=3}, &le;  (i=1,--,m)

j=1

Then [x,,--,x,] is an invariant tensor of SO(n) of type (0,#).Y It is seen
that the base of VXO(#))* which was given in the proof of theorem 1 and
[%,,--, x,] form a base of VISO(xn)* repeating an analogous discussion as in

theorem 1.
ExamprLe 2. p=4, n>4. Every invariant tensor F of SO(x) of type (0,4)
is expressed as follows:

F (x4, %9y X3, %4) =1 (%y, 5) (X3, X4)FCal X1y X3) (g, X4)FC5( 21, 24)(Xgy X3)
If moreover, F' is skew-symmetric with respect to x;, x,, then

F(x1, %y, X5, 24) =c{(X1, 23)(Xgy 24) — (X1, X4)(%g, X3)}

4) In [1], the components of this tensor are denoted by e, i,
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Remark 1. By means of analogous discussion, it is shown that theorems
1,2 are also valid for tensor invariants of Lorentz groups i.e. a linear
group of » variables consisting of linear transformations leaving invariant
a quadratic form of type

WA — a2, — e — D
Also, for complex tensor invariants of complex orthogonal group O(z,C),
theorem 1,2 are valid. Of course the condition p < is necessary for all
these cases.

Remark 2. If we use results concerning ‘vector invariants’ of ortho-
gonal groups stated in Chap. II of H. Weyl [3], then, the proof of theorem
1 will be extremely simplified. In fact, the Fy’s (o€ A,) span V§,(On))* for
every p (not only for p=<n) by virtue of theorem (2.9.A) of [3]. Hence the
linear independence of {Fy} was sufficient for the proof of theorem 1. We
remark also we have for any #, p.

- (8) pan < (2p—1)(2p—3)---3-1.
Also for p>n every element F of VJ(SO(n))* is of the form
F(xn"'y xp)’:Fl(xl)"'y xp)"i_(zl): F?fi)(xil)"'; xip-n)'[xip_n+1)"': le)]

where i,,---,i, is a permutation of 1,---,p, and F,e V)Om)), F§’€ VI_.(On))*.

(cf. [3], loc. cit.)

4. Now let V be an n-dimensional complex vector space with positive
definite hermitian form (x,y). We consider the following subgroups of
GL(V):

The unitary group

Un)={oeGL( 17); (0%, 0)=(x, y) for every x,y in V},
The special unitary group

SUn)={c=Un); det(o)==1}.

Now V can be regarded as a 2u-dimensional real vector space. We
denote this vector space by V. As a set, V coincides with V. Then every
linear transformation o of V defines a linear transformation o’ of V, and
the homomorphism o¢—o¢’ is an into isomorphism from GL(V) into GL(V).
Thus we regard GL(V) as a subgroup of GL(V). Then Ux), SU@x) also
become subgroups of GL(V). These subgroups are called the real represen-
tations of Un), SUx). In the following we consider only real represen-
tations of Uln), SUx), so we denote also by U), SU(n) the real represen-
tations of U(n), SU#n).

We denote by £2.(x,), £,(x,y) the real and imaginary parts of the
hermitian form (x, y) respectively:

(%, y)=8¢(x, )+ 2,(x, y)i .
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Then, as is easily seen, £, (resp. £,) is a symmetric (resp. skew-symmetric)
real valued bilinear form on the real vector space V. Moreover, £2,(x, y) is
positive definite. So we can define the orthogonal group O(2z) over V with
respect to £2,(x, ¥). Then it is easily seen that

Un)SO(2n) .

Thus V and V* are equivalent representation spaces of Uln) CGL(V).
Hence, concerning tensor invariant of U(n), SU(n), we may consider only
V3 as in the case of O(n).

5. Before stating analogues of theorems 1,2 for U(xn) and SU(#n), we
shall consider the real representation of symplectic group.

Let V be an n-dimensinal vector space over the field of quaternions
Q=R+ Ri+Rj+Rk (i’=j>=k*=—1, ij=—ji=Fk, jk=—kj=i, ki=—ik=j). We
shall denote by GL(V) the group of all linear transformations of V over Q.

Let (x, ») be a mapping from V¥x V into Q which satisfy the following
conditions:

(ax-+By, )=a(x, 2)+F(5,2) (& FEQ; xy,26 V)

(x,2)>0 for every x& V, x#0

where § means the conjugate of a quaternion g=a+fi+rj+0ok, i.e.
J=a—Li—rj—ok.

Then the symplectic group Sp(n) with respect to the ‘metric form’ (x, y) 1

defined as a subgroup of GL(V) as follows:

Sp(n)={ceGL(V); (ox, 09)=(x, y) for every x,y in V}.

Now, as in n°4, V can be regarded as 4xn-dimensional real vector space.
We shall denote this real vector space by V. As a set, V coincides with
V. Then every element seGL(V) defines a linear transformation o’ €GL( V),
and GL(V) can be regarded as a subgroup of GL(V) using the into isomor-
phism o¢—0¢’. Then Sp(n) can be regarded also as a subgroup of GL(V).
This subgroup is called the real representation of Sp(z). In the following
we consider only real representation of Sp(x), which is also denoted by Sp(n).

We denote by £2y(x, ), 2,(x, ¥), 2,(x, ¥), and £24(x,y) the coefficients of
1,4,7, 2 in the ‘metric form’ (x, y) respestively:

®, 9)=82¢(x, )+ 2:(x, y)i+2:(x, )i+ 2:(x, Yk .

Then, as is easily seen, £,(resp. £,, 25, £;) is a symmetric (resp. skew-sym-
metric), real valued bilinear form on the real vector space V. Moreover,
2.(x, ») is positive definite. So we can define the orthogonal group O(4n)



152 N. IwanoRI

over V with respect to £,(x,y). Then it is easily seen that
Sp(n)CSO(n) .

Thus V and V* are equivalent representation spaces of Sp(n)CGL(V).
Hence, concerning the tensor invariants of Sp(z), we may consider only V3
as in the case of O(n).

Remark. The vector space V can be also regarded as a 2z-dimensional
complex vectorspace V,. Then GL(V) and Sp(n) can be regarded as sub-
groups of GL(V,). Now ‘metric form’ (x, y) in V can be written as follows:

(10) (%, ) =Dy(x, )+ Di(x, ¥)j

where @y (x, v)=24(x, y)+82,(x, )i and O,(x, y)=82,(x,y)+82,(x,y)i are complex
numbers. Then @, is a positive definite hermitian form on 176. Then, Sp(n)
is contained as a subgroup of GL(V,) in the special unitary group SU(2x)
over V, with respect to D,(x,y). Thus the following relation holds for real
representations of Sp(n), U(2n).

Sp(n) C SU(Zn) C U(2n) C SO(4n) .
Now we consider V3(Sp(n))!. Put

an P =dim V)(Sp(n))t.
As in (2), we have
(12) £EP-D=(),
TuroreM 3. If p=<n, we have
(13) 3P =47.(2p—1)(2p—3)---3-1.

Proor. For every peA, (cf. the proof of theorem 1 as to the definition
of A,), and for every ay, a,, -+, ap, (0=@;=3), we denote by Feve» the follow-
ing 2p-form on V:

F‘”“;"‘”P (21,07 Xop) =2, (Xiss X1, ) Doy, xk,’)"'Qap(xkp, xkp’)
where {k;, k/Y=p"'(4), k;<<ky (j=1,---,p). The Sp(n)-invariance of (x,y) im-
plies that of £, (0=a=3), so F* ¥ is also Sp(n)-invariant. Now, to prove
(13), it is sufficient to show that these Favep’s form a base of V3(S,(n)).

As is seen easily by induction on s, there exists a base e, -, e, of V such
that (e;, €;) =0y (1§i,j§n).‘ Then {ee;} (0<i<3,1=<j=n)is a base of V, where
=1, ¢,=1, ¢g=74, e,=k. Now we note that the following relations hold:

'gs(‘fseq: er)zaqr (O§S§3, 1§q, rén)
(14)
2y(eeq €,)=0 O=s#1=3,1=q,7=<n).
Now let us select for every p€A, an ordered system e,={e;, ', ¢;,,} of type
o in the sence of n°3. This is possible by the assumption p=<#n. Then we
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denote by e the following ordered system consisting of {ee;}
emlg.w” :{emeku Cry’s €asClyr Cha’s™ "y €wpekp’ ekp’}
where {kj, k' y=p7'(j), k;<<kj (1=j=p). Then we have by
(15) Foh‘;ump (e(?x!-)-l.ﬁp ) :5!,,,,5“1315%82...5%% ,

for p, '€ A, and 0=, ;3. From the linear independence of { oo }
follows as in the proof of theorem 1.

Next we must show that any Fe V§,(Sp(n))* is a linear combination of
the F'”l‘;"“p ’s. To show this, it is sufficient to prove the following lemma as

in the proof of theorem 1.
Lemma. Let Fe V,(Spn)f and

F(ewll;"“p )=0
for every e 0=2a,=3, peA,). Then F=0, i.e.
(16) F(en.e,s €nsliar s Ethezzp) =0

Sfor every 0=m, =3, 1=[;=n.

Proor or LEmma. We distinguish several cases.

Case 1. {l,,05+-,l5p} contains a subset {k,, kg, kr} consisting of odd
number of elements such that for every j&{a, f,--,r} (L =<j=2p) kjeE{ka, kg,
---,kr}. Then we see as in the case 1 of the proof of theorem 1 that the
left hand side of (16) is equal to zero.

Now define z;(j=1,2,--,p) and g just as in the proof of theorem 1.
Then as in theorem 1, the proof reduces to the following

Case 2. u=2. Then {e, - ey} is of type p for some p&A,. We may
limit ourselves only to the typical case p7'(1)={1, 2}, 07'(2)={3,4},---, p™(p)
={2p—1, 2p}. Then we have to show

an F(€n.e15 €n.€1 €1€3y €125 "5 Engy—1Cpo ehypep):O, 0=ns3).
There is a 0&=Sp(n) such that

0, =€p,ey, 0e3=¢j\e1, ", 08py=C7} @ -
Then the left hand side of (17) is equal to
F(en,nley, €15 enenles, g0y Engp_ 1€ nbyCrs €p)
which in turn is equal to iF(e“*;%) for some ay, -, @, So it isequal to

zero by our assumption. Thus the proof of the lemma is completed, and
theorem 3 is also proved.

Exampre 3. p=2,n=2. VYSpn))* has the following base consisting of
48 elements
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Fglﬁ(xlr Xy X35 x‘i):gw(xb xz)‘Qﬁ(x37 x4)
(18) F‘;F(xl’ Xy X3y x«l):‘gw(xl’ xa)gﬁ(xza x4) (Oéa) ﬂég)
F2B(xy, %y, Koy £0)=82a(%1, £)2(%5, %3) -
To determine a base of the subspace VQ(S])(n))fg’” of ViSp(n)) consisting
of Fe VY(Sp(n))* such that
}P(xb Xoy X3, X4): _ F(xl, Xy X4, x?,) ’
we apply the alternation operator A,, on every Fgﬁ, where
19 (A5 (X015 Xy, X35 X)) = F (K, X9y X3, 2) — F (%1, X3y Xy, %)

Then
Ay Fa=0, A, Fef=2F8 (0=a<3, 1<8=3)
(20) ,
AMF’;”ZB: —A34Fz3:Fgﬁ~Fgﬁ .
Thus 4x3+16=28 elements F*¥ (0=a=3, 1=4=3), Fef—Fef (0=a, f=3) form
a base of the subspace Vi(Sp(n))f, g of ViSpi)*.

6. Analogous theorems hold for the real representations of U(xn), SU(n)
(cf. n°4). Put

(21) 2P =dim VY (Un))
and

(22) @ =dim VISUn)):.
Then we have like (2), (3)

(23) figro=0
and

24) g =0.

Tureorem 4. If p=mn, then we have
10D = 2P o (2p—1)(2p—3)-+-3+1.

Tueorem 5. (1) If p<<m, then pP=pfgP. (i) If p=n, then p@P=pP+2.

These theorems are analogously proved as theorems 1,2,3, namely, we
can define Fova (o€ A, a;=0,1) just as in theorem 3. Then these 2?(2p—1)-
(2p—3)---3:1 forms are linearly independent and span Vi, (Ux))*. We only
remark about (ii) of theorem 5. Let us fix an ortho-normal base e, ey -, e,
of V (n-dimensional complex vector space with positive definite hermitian
form (x,%). Then for x,& V (i=1,---,%) we define [x,, %3y, %1z and [%;,++, %alr
as follows:

(25) [x,, x.lp=real part of det (&),

(26) [x;.--, #x];=imaginary part of det (&%)
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where xi:il Ede; (i=1,+-,m). Then [x, -, 2,1z and [x,,---, x,1; are in VISU))".
It is easily seen as before that the base of VI Um)), [xy,, %, ]z and [x,,
%, 1r form a base of VXSU#))*
Examrie 4. p=2, n=2. VY Um))* has the following base consisting of
12 elements:
Fz,ﬁ(xu Xy X3y X4) = Lo, X9)2(%5, X4)
(27) Fff?@p Xay X3y %)= 2,(%,, %3)82 (%5, %) (a, =0, 1)

F‘:f;(xn Xy Xy X4)=82,(%, x4)!23(x2, %) -
The subspace V{Un)), ; of VU@ consisting of Fe VYUm))* which is
skew-symmetric with respect to x,,x, is also determined as in example 3.
Namely, 2+4=6 elements Fat (a=0,1), F‘ﬁﬁ—Fgﬁ (a, 3=0,1) form a base of
the subspace Vi{(Um)), , (cf. [2D.

7. Let V be an n-dimensional complex vector space with positive
definite hermitian form (x,y), and U an r-dimensional complex subspace of
V. Then we denote by U(n), the subgroup of U(n) given by

(28) Un),={c€Um); ox=x for every x in 0y.
Put
(29) 1P =dim V(U(n) )t

i.e. £ is the dimension of the space of invariant tensors of type (0,p)
under (the real representation of) the group U), In the following we

shall show that the determination of £ is reduced to that of x%{,, 22, -,

n,Tr
(D)
n—r-

Let W be the orthogonal complement of U:
W={xc V; (x,»)=0 for every y in 0.
Then W is an (n—#)-dimensional subspace of ¥ and
V=0U+W  (direct sum).
Every o= Un), induces a unitary transformation ¢’ on W, and 6—o’ is an
onto isomorphism from U), onto U —7) (the unitary group of W). Let
V, U and W be real vector spaces associated to V, 7 and W respectively.
Then we have obviously V=U+W (direct sum). Taking into consideration
that we have identified V, U and W with their dual spaces respectively, we

obtain by a well-known rule of tensor product the following decomposition
of Vp into direct sum of subspaces:

(30) V3:X0+X1+“'+Xp
where
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( X=Up=UQ~QU
X, =WRUR QU+ UQWRUR-@UA+ UQ - QUIW
G { X,=WRWRUR QU+ WRURWR- QU+ U QUSWRW

\ X, =W)=WR QW
where every tensor product consits of p factors. Then VY(Un) )=
ﬁqu(U(n),)"’. Now since U(n), leaves invariant every element of U, we
q;:ave easily

(32) (WLQUNUm)) =W LU QU
Then the dimension of the left hand side of is equal to ££,(2¥). Since
X, is a direct sum of (Z;) U(n),-invariant subspaces each of which is equi-

valent as a representation space of U(n), to W,'QUS)_,, we have
H {2 p @ o (D\P—2
(33) dim X(Uln) )= (7 ) e,y

Thus we arrive finally at the following

TrEOREM 6.
340 =3 (2) i @y, =1,
Tog=0 \g

We remark that above consideration contains not only the determination of
1P, but also that of a base of V(U(n).)¥, as is explained in the following.

From we see that, if (f}),(g,) form bases for WS (U),), U’ respec-
tively, then (f;®g,) form a base for (WL QU YUn),)*. For example, taking
p=4,s=t=2, we exhibit bases for U),-invariants of WRWRXURXU and of
WRQURQWXU. For simplicity we assume nz—r=1. Let (-, %,,) be a base
of U over the field of real numbers. Then (#;Q#;):<i, ;<2 form a base for
URU. On the other hand, W,%(U(n),)* has the following base (since n—r=1)
by theorem 4:

Ro(x1, %5),  L2,(x5, %) -
Then the following 2x(2r)* elements
(35) Fi§(xy, X9y X35 %)= 24(%1, %2)2(2t:, %5)82(ug %4)
(a:O, 1 > i:j:L 2;"') 27’)

form a base of (W' QU,)(U(n),)t.
Remark 1. Let (p,,--.0,) be a base of U over the field of complex num-
bers. Then (v, v,, @0, ++,,) is a base of U over the field of real numbers.
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Then, using the relation
L(iv, x)=—£2,(, %)
we have, instead of [35), following base.
(36) F/?;Br(xn Xy, X5, %) =81, xz)gﬁ(vs, %3)2:+(v, %)

((X, ﬁ: T:O: 1) S, t:]; 2"": 7’} .

Remark 2. Theorem 6 has analogues for O(n), SO(n), SU(n), Sp(n).

fining similarly 9@}, v®,., #®), £{?) we have in fact

€0 sp=3 (0 )s,re,
69 =, (2,
(39) 2= (D) uecnre,
(40) x;’,’i-::o ( f]’) K@, o (47)P1

The determination of bases is also done analogously.
ExamrLe 5. p=4, r=1, =3, for Umn),.

~;4,’1:24+<%)ﬂ;}ll-zg%—(g)N,(fll-ZQ < );m) 2 i

214 DA | D =76
Base of V,%(Ux),)*: Let u be a (complex) base of U}, then

base of U,°: Fopro(xy, %5, %3, %) = 8, (1t, £)25(18, %) 2:(1t, %) R0(us, x,)

(&, B,7,0=0,1)
afr

afr

afly

afy
((X, .B) T :O) 1)
F‘:f;(xn Xy X3y %)= Ra(%1, %)L p(x5, %)

base of (W, : Ffffa(xn Ky Xgy %)= 82X, %5)25(%3 %) (a, =0,1)

FabB(xy, %9y %5, 2)=824(%1, %) 25(3, %5) .

( base of (UQURQWRQW)t 1 FU2(x;, %o, %5, %) = Lo(18, %) 2504, %) 2:(%5, %,)
base of (UXQWRQURQW ) 1 F{D(x, %9y %3, %) = 82 5 (t8, %,)25(%, %3)2:(%5, %)
base of (UQWQRWRQU 1 FUD(x, % %5, £0= 2414, %,)2 (28, 20212, %5)
base of (WRQURQURQW ) @ F&(xy, X9, %3, %) =242t %) 2(, %3) (1, %)
base of (WRQUKQIWRU)* : F(24)(x1,x2, Xy X0) =82,(tt, %) 25008, £)21(%,, %5)
\ base of (IWQWRURQU) : FCD(xy, %5, %5, %) = 2(tt, %) 25(1t, £)2:(x,, %,)

157
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To find a base of the subspace V,'(U(m).);,; of V,°(UG),)* consisting of
skew-symmetric forms with respect to 3 x,, we only need to apply the
alternation A,;, with respect to x;,x, on these bases. Then we have

dim T/4°(U(n)1)‘f3,4]:32 (n=3).
ExamrerLe 6. p=3, r=1, n=4, for SOx),.

v=1+ (5 )it (5 vt v,
Thus,
4 (n=5)

5 (n=4).
For n=5, V,%(SO),)* has following base (# being a base of U)

3)
Vn,1—‘

Fo(#1s %oy 25)=(at, 2,)+ (at, %5)+ (0, %)
Fi(xy, %4, )= (10, %)+ (%, %3)
1
Fo(xy, %o, 23) =0, %)+ (%4, X5)
F3(x17 Xoy x3):(u’ x3)'(x1’ x2> .
For n=4, V;(SO(4),)* has as base besides F,, F}, F,, F; in (41) the following
(42) Fy(xy, %9, 25) =21, %, %5, %3] -
8. Now we shall give formulas of v, f®P, uP, kP for any n,p.
Let G be a compact group and (o, U) a representation of G. Then as

is well-known, the dimension 7 of the space of invariants of G in the
representation (o, U) is given by

r=fGXp(a)do

where x,(c) is the character of the representation (o, U) and the Haar
measure do of G is normalized by fada=1.

When G is one of the classical compact Lie groups SO(), SU(x), Un),
Sp(n) and f(o) is a class function on G i.e. f(ror™")=f(0) for every o,7 in G,

then the value of the integral ff(o)da is calculated by the following
(¢
formula (cf. Weyl [3], Chap. VII or [4], ‘exposé’ n°21)

1
[ r@do——-f rowan
where H is a maximal torus of G and di is a Haar measure of H such that

de/¢=1,
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and the function @(%) is given by
O(h)=TI (e*™ 1),
o

the product being extended for all non-zero root forms « of the complex
form ¢° of the Lie algebra g of G, and w is the order of the Weyl group
of ¢°. () is defined by
ad(ME,,=e*™ Es

where £, is a root vector for the root a.

Let us consider in particular SO(2n-+1). Then the root forms are
+2; (I=i€n); =), 2+, (IZi<k=n). A maximal torus H consists
of matrices of the form:

g1 (cosf; —sin@,\; ; (cos@, —sinb,
h—1+<sin€1 cos¢‘)1>Jr +<Sin0,,, coson>

and we have
O(h)=2"" f[l (1=cos ) T (1—cos(B;— 0)(1—cos(,+0,)).
Now the character y(%) of the representation of SO(2n+1) on (0, p)-tensors
is given by
x(B)=(142(cos 0+ ---+cos 0,))"
and the order w of the Weyl group is given by

w=2"n!.
Thus, putting
F)=F@®,, -, 0,)=cos 0,~+---+cos 8,,

G(O)=G0,,, 0n)=£[k(1—COS(0¢—9k)) ,
H(0)=H(6,,,0,) =_]gc (1—cos(0;+6x)
we have the following formula:
2”’ 2T porr n
(12} 9= gy T j - f (A+2F@)'GOYIO) TT (1—c0s 6,)d0, o,

Analogously we obtain the following formulas:

2n(n—-1)

43) R = gy o | 2FOYCOHO)B, -db.,,

n(n—1)

@y =2t (T (" reyGo)as, -do

5) The root forms are considered with respect to the Cartan subalgebra of ge
associated to H.
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n(n—~1)
2

O 22 o (IR A (TR e
0 0

(P) —

where F*(0,, -, 0,.,) and G*{0,, -, 0,_,) are given by

{ F*(ﬁly”‘; ﬁn_l):F(ﬁl,'", ﬁn—n “01"""0n—1)
G*(ﬁu"', 0n-1):G(01""y On-1, '“‘91""‘—67»—1),

o 2" ' (1— c0s20,)d0, -
46)  KP= gy jo fo PEQOYGOHO) T (1 cos0,)d0;---db.

£1]

£21

[3]
[4]

Exampre 7. Let us calculate (42)~(46) for small values of #:

yp— 1 f“"’(Hzcosa)p(kcosa)da
s 275 0

[2] . [';ﬂ] j
=% ({;)(2;)—%“ pH (2]"31)(2;)’

2
vm= g [ cosoan—= (L), epr=0),

2 2T
yep z@%ﬁz j 0 j 227(c08 0,+cos 0:)7(1— cos(0,— 0:))(1— cos(6,+0.))d0,df

= L EFNG)-E GGG AY).

7 ——p(2
A=y,

e GG S G A

j=0

ez (o)~ (1),

kP =u2P (Note that the real representations of Sp(1) and SU(2)
coincide.)

The College of General Education,
University of Tokyo.
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