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1. In a paper of Kuiper-Yano [1], tensor invariants of order $\leqq 4$ of
special orthogonal groups $SO(n)$ are determined, and the results obtained
are applied on the geometry of Riemannian spaces and Finsler spaces.

Using an analogous method on the tensor invariants of the real repre-
sentations of unitary groups $U(n)$ , T. Fukami [2] has obtained corresponding
results for $U(n)$ , and applied them on hermitian and Kaehlerian spaces.

Now, as we shall show in this note, these problems can be treated more
conveniently by intrinsic method than in using tensor components. Thus
the results of [1], [2] can be easily generalized for tensor invariants of
higher orders, and the cases of groups $O(n),$ $SO(n),$ $U(n),$ $SU(n)$ and $sp(n)$ can
be treated in parallel. In Kuiper-Yano [1], tensor invariants of the sub-
group of $SO(n)$ consisting of proper orthogonal transformations which fix a
given vector are also determined, however the corresponding problem is
not treated in [2]. We shall also show that for the groups $O(n),$ $SO(n),$ $U(n)$ ,
$SU(n)$ and $sp(n)$ , the problem of the determination of tensor invariants of
the subgroup consisting of transformations which fix a subspace element-
wise is reduced to that of original groups.

2. Let $G$ be a group and $(\rho, U)$ a representation of $G$ on a vector space
$U$. Then

$U\#=U^{*}(G)=$ {$x\in U;\rho(\sigma)x=x$ for every $\sigma$ in $G$ }

is a subspace of $U$. An element of $ U\#$ is called invariant of $G$ in the re-
presentation $(\rho, U)$ . Now, let $G$ bc a group of linear transformations of a
vector space $V$, and $U$ the space of all tensors of type $(r, s)$ over $V,$ $i$ . $e$ .

$ U=V_{s}^{r}=\cdots V\otimes^{*}\frac{V\otimes}{f- ti}\overline{m}\frac{\otimes}{es}\vee\frac{V^{*}\otimes\cdots\otimes V}{rtimes}\rightarrow$

where $\otimes means$ the tensor product and $V^{*}$ means the dual vector space of
V. Then, as is well-known, $U$ becomes a representation space of $G$ under
the representation $\rho$ defined as follows:

$\rho(\sigma)(x_{1}\otimes\cdots\otimes x_{\gamma}\otimes f_{1}\otimes\cdots\otimes f_{s})=(\sigma x_{1})\otimes\cdots\otimes(\sigma x_{\gamma})\otimes(o^{*}f_{1})\otimes\cdots\otimes(o^{*}f_{s})$

where $\sigma\in G,$ $x_{i}\in V,$ $f_{J}\in V^{*}(i=1,\cdots, r;j=1,\cdots, s)$ and $\sigma^{*}$ is a linear transfor-
mation of $V^{*}$ given by
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$(\sigma^{*}f)(x)=f(\sigma^{-1}x)$ $(f\in V^{*}, x\in V)$

$i$ . $e$ .
$\sigma^{*}=^{\iota}\sigma^{-1}$ ( $\sigma$ ; the transposed of $\sigma$)

In this case the invariant of $G$ in the representation $(\rho, U)$ is called tensor
invariant of type $(r, s)$ of $G$ .

3. Now let $V$ be an n-dimensional real vector space with positive
definite, symmetric bilinear form $(x, y)$ . Then denoting by $GL(V)$ the group
of all non-singular linear transformations, we consider the following sub-
groups of $GL(V)$ :

The orthogonal group:
$O(n)=$ {$\sigma\in GL(V);(\sigma x,$ $\sigma y)=(x,$ $y)$ for every $x,$ $y$ in $V$ },

The special orthogonal group:
$SO(n)=$ { $\sigma\in O(n)$ ; det(a) $=1$ }.

We remark that, in these cases $V$ and $V^{*}$ give equivalent represen-
tations of $O(n),$ $SO(n)$ . In fact, $a\in V$ defines an element $f_{a}\in V^{*}$ by $f_{a}(x)=(a, x)$ .
Then the linear mapping $a\rightarrow f_{a}$ gives an equivalence of $V$ and $V^{\star}$ . Thus,
we can identify $V$ and $V^{*}$ by identifying $a\in V$ and $f_{a}\in V^{9\epsilon.1)}$

Then $V_{s^{r}},$ $V_{0}^{r+s}$ and $V_{r+s}^{0}$ are also identified.2) Hence concerning $O(n)$ ,
$SO(n)$ , it is sufficient to consider only $V_{r+s}^{0}$ instead of $V_{s^{\gamma}}$ .

Now, a tensor $f$ of type $(O,p),$ $i$ . $ep$-linear form $f$ on $V$, is invariant of
a subgroup $G$ of $GL(V)$ , if and only if

(1) $f(\sigma x_{1},\cdots, ox_{p})=f(x_{1},\cdots, x_{p})$ . $(\sigma\in G, x_{i}\in V)$

We denote by $ V_{p^{0}}(G)\#$ the subspace of $V_{p^{0}}$ consisting of $p$-linear forms $f$ on $V$

which satisfy (1), and put
$\tilde{\nu}_{n}^{(p)}=\dim V_{p^{0}}(O(n))\#$

$\nu_{n}^{(p}‘=\dim V_{p}^{0}(SO(n))\#$ .
Then we have immediately

(2) $\iota\sim_{1_{n^{p)}}^{(}}=0$ , if $p$ is odd
(3) $\nu_{n}^{(p)}=0$ , if $p$ is odd and $n$ is even.

1) In tensor components, the components of $f_{a}$ are $\sum g_{ij}a^{j}$ , where the $ai,$ $g_{cj}$ are
the components of $a$ and the fundamental covariant tensor $(x, y)$ respectively.

2) For example for a tensor $R^{i_{ijk}}$ of type $(1,3)$ there corresponds a tensor of
type $(0,4)$ $R_{ijkl}=\sum g_{i\alpha}R\alpha_{jkl}$ . More intrinsically, for a tensor of type $(1,3)$ $R$ , $i$ . $e$ .
multilinear mapping $R$ from $V\chi V\times V$ into $V$, there corresponds a tensor of type
$(0,4)$ $\tilde{R,}i$ . $e$ . $4$-linear forms on $V$, defined as follows :

$(x_{1}, R(x_{1}, x_{2}, x_{3}))=\tilde{R}(x_{1}, x_{2}, x_{3}, x_{4})$ .
Then $\tilde{R}$ is $O(n)$ -invariant if and only if $R$ is $O(n)$ -invariant. We identify $R$ and $\tilde{R.}$
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In fact, let $f(x_{1},\cdots, x_{p})\in V_{p^{0}}(O(n))^{i}$ . Then, as $(-1)I\in O(n)^{3)}$ we have
$f(x_{1},\cdots, x_{p})=f(-x_{1},\cdots, -x_{p})=(-1)^{p}f(x_{1},\cdots, x_{p})$ .

Hence, if $p$ is odd, $f=-f$. Thus we have $f=0$ and (2) is proved. (3) is
similarly proved.

Now let us consider $\tilde{\nu}_{n}^{(p)}$ for even $p$ .
THEOREM 1. If $p\leqq n$ , we have

$\tilde{\nu}_{n}^{(2p)}=(2p-1)(2p-3)\cdots 3\cdot 1$ .
PROOF. We shall say that a mapping $\rho$ from the set of $2p$ integers

$\{1, 2,\cdots, 2p\}$ onto the set of $p$ integers $\{$ 1, 2, $\cdots$ , $p\}$ is admissible, if for every
integer $i,$ $1\leqq i\leqq p,$ $\rho^{-I}(i)$ consists of two integers. Let us identify two
admissible mappings $\rho,$ $\tau$ if $\{\rho^{-1}(1),\cdots, \rho^{-1}(p)\}$ and $\{\tau^{-1}(1),\cdots, \tau^{-1}(p)\}$ coincide
up to their orders. Let us denote by $A_{p}$ the set of all admissible mappings
identified in this way and by $N_{p}$ the number of elements in $A_{p}$ . Then we
have easily $N_{1}=1,$ $N_{p}=N_{p-1}\cdot(2p-1)$ $(p=2,3,\cdots)$ . Hence we obtain

$N_{p}=(2p-1)(2p-3)\cdots 3\cdot 1$ .
Let us associate to $\rho\in A_{p}$ a $2p$-linear form $F_{\beta}$ as follows:

(4) $F_{\beta}(x_{1}, x_{2},\cdots, x_{2p})=(x_{k_{1}}, x_{k_{1^{\prime}}})(x_{k_{2}}, x_{k_{2^{\prime}}})\cdots(x_{k_{p}}, x_{k_{p}^{\prime}})$

where $k_{j},$ $k_{j^{\prime}}$ are determined by $\rho^{-1}(j)=\{k_{j}, k_{j^{\prime}}\}$ . Then $F_{p}$ is obviously an
invariant tensor of $O(n)$ . We shall show that these $F_{\rho}’ s$ form a base of
$V_{2p}^{0}(O(n))^{*}$. Let $e_{1},\cdots,$ $e_{n}$ be a ortho-normal base of $V$. Let us call an ordered
set $\{e_{j_{1}}, e_{j_{2}},\cdots, e_{j_{2p}}\}$ of type $\rho(\in A_{p})$ , if

(5) $\rho(j_{1})=\rho(j_{2}),$ $\rho(j_{3})=\rho(j_{4}),\cdots,$ $\rho(j_{2p-1})=\rho(j_{2p})$ .
Since $p\leqq n$ , we can select for every $\rho\in A_{p}$ an ordered set

$e_{\rho}=\{e_{j_{1}}, e_{j_{2}},\cdots, e_{j_{2p}}\}$

of type $\rho$ . We denote $F(e_{j_{1}}, e_{j_{2}},\cdots, e_{j_{2p}})$ by $F(e_{\rho})$ for $F\in V_{2p}^{0}$ . Then we have
for $\rho,$ $\rho^{\prime}\in A_{p}$

(6) $F_{\rho/}(e_{\beta})=\left\{\begin{array}{l}1 if \rho=\rho^{\prime}\\0 if \rho\neq\rho.\end{array}\right.$

From (6) we can deduce that $F_{\beta}’ s$ are linearly independent. In fact, if
there is a linear relation

$\sum_{\rho\in\Lambda_{p}}c_{\rho}F_{\rho}=0$

with real coeflicients $ C\rho$ , then denoting the left hand side by $F$, we have
$0=F(e_{\rho})=c_{\beta}$ by (6).

3) $I$ denote@ the identity transformation of $V$.
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Now it is sufficient to show that, for every $ F\in V_{2p}^{0}(O(n))\#$ there exist $N_{p}$

real numbers $C\rho(\rho\in A_{p})$ such that

$F=\sum_{\iota_{p}\rho\in 4}c_{\rho}F_{\beta}$
.

Define $c_{\beta}$ by $c_{\rho}=F(e_{p})$ . Then, putting $F^{\prime}=F-\sum_{\rho}c_{p}F_{p}$ we have $F^{\prime}(e_{p})=0$

for every $\rho\in A_{p}$ . Moreover, $F^{\prime}$ is obviously an invariant tensor of $O(n)$ .
Let us show that $F^{\prime}=0,$ $i$ . $e$ . for every $e_{k_{1}},\cdots,$ $e_{k_{2p}}$

(7) $F^{\prime}(e_{k_{1}},\cdots, e_{k_{2p}})=0$ .
We distinguish now several cases.

Case 1. $\{k_{1}, k_{2},\cdots, k_{2p}\}$ contains a subset $\{k_{a}, k_{\beta},\cdots, k_{\gamma}\}$ consisting of odd
number of elements such that for every $j\not\in\{\alpha, \beta,\cdots, \gamma\}(1\leqq j\leqq 2p)$ we have
$k_{j}\not\in\{k_{a}, k_{\beta},\cdots, k_{\gamma}\}$ . In this case, there exists a $\sigma\in O(n)$ such that

$\sigma e_{k}\alpha=-e_{k}a$ $\sigma e_{k}\theta=-e_{k}\theta’\cdots,$ $oe_{k_{\Gamma}}=-e_{k_{\gamma}}$

$\sigma e_{k_{j}}=e_{k_{j}}$
$(j\not\in\{\alpha, \beta,\cdots, \gamma\})$

Then
$F^{\prime}(e_{k_{1}},\cdots, e_{k_{2p}})=F^{\prime}(\sigma e_{k_{1}},\cdots, \sigma e_{k_{2p}})=-F^{\prime}(e_{k_{1}},\cdots, e_{k_{2p}})$

hence we have (7).
Thus, in the remaining case, for every $j,$ $1\leqq j\leqq 2p$, the number $l_{J}$ of $h$

such that $1\leqq h\leqq 2p,$ $k_{h}=k_{j}$ is even. Denote by $\mu$ the maximum of $\mu_{1},$ $\mu_{2},\cdots$ ,
$\mu_{2p}$ . We remark that in this case the number of different $e_{j}’ s$ among
$e_{k_{1}},\cdots,$ $e_{k_{2p}}$ does not exceed $p$ , and coincides with $p$ if and only if $\mu=2$ .

Case 2. $\mu\geqq 4$ . There exists an integer $i,$ $1\leqq i\leqq n$ , such that $ i\in\in\{k_{1},\cdots$ ,
$k_{2p}\}$ . Then we can assume without any loss of generality that $\mu=\mu_{1},$ $k_{1}=k_{2}$

$=k_{3}=k_{4}=1,$ $i=2$ . Now since $F^{\prime}$ is $O(n)$ -invariant, we have for every element
$S$ in the Lie algebra of $O(n)$ , and for every $x_{1},\cdots,$ $x_{2p}\in V$,

$F^{\prime}(Sx_{1}, x_{\underline{o}},\cdots, x_{2p})+F^{\prime}(x_{1}, Sx_{2},\cdots, x_{2p})+\cdots+F^{\prime}(x_{1}, x_{2},\cdots, Sx_{2p})=0$ .
(Remark that a linear endomorphism $S$ of $V$ is in the Lie algebra of $O(n)$

if and only if the matrix of $S$ with respect to an ortho-normal base of $V$

is skew-symmetric.)

Take as $S$ the following linear endomorphism of $V$ :

Se $1^{=-e_{2}}$ ’
$Se_{2}=e_{1},$ $Se_{j}=0$ $(j=3,4,\cdots, n)$

Then we have
$F^{\prime}(e_{k_{1)}}\cdots, e_{k_{p}}\urcorner)=F^{\prime}(Se_{2}, e_{1}, e_{1}, e_{1},\cdots)$

$=-F^{\prime}(e_{2}, Se_{1}, e_{1}, e_{1},\cdots)-F^{\prime}$ ( $e_{2},$ $e_{1}$ , Se1’ $ e_{1},\cdots$ ) $-F^{\prime}$ ( $e_{2},$ $e_{1},$ $e_{1}$ , Se $ 1’\cdots$ ) $-\cdots$

$=F^{\prime}(e_{2}, e_{2}, e_{1}, e_{1},\cdots)+F^{\prime}(e_{2}, e_{1}, e_{2}, e_{1},\cdots)+F^{\prime}(e_{2}, e_{1}, e_{1}, e_{2},\cdot\cdot’)+\cdots$ .
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For every term on the right hand side, the number $\mu_{1}$ is replaced by $l\ell_{1}-2$ .
Thus continuing this process, we reach finally the situation $/x=2$ .

Case 3. $\mu=2$ . In this case $\{e_{k_{1}}, e_{k_{2}},\cdots, e_{k_{2p}}\}$ is of type $\rho$ for some $\rho\in A_{p}$ .
Then denoting by $\{e_{j_{1}}, e_{j_{2}},\cdots, e_{j_{2p}}\}$ the $e_{\rho}$ which we have selected, we can find
a $0\in O(n)$ such that

$\sigma e_{j_{S}}=e_{k_{S}}$ $(s=1,\cdots, 2p)$

Then, $F^{\prime}(e_{h_{1}},\cdots, e_{\kappa_{2p}})=F^{\prime}(e_{J\iota},\cdots, e_{J_{\sim}^{y}p})=F^{\prime}(e_{\rho})=0$ . Thus the proof is accomplished.
EXAMPLE 1. $p=2$ . $A_{p}$ consists of 3 elements $\rho_{1},$ $\rho_{2},$ $\rho_{3}(N_{2}=3)$ , which is

shown in the following diagrams:

1 2

$\rho_{1}$ ;
$\mapsto^{34}$

$\rho_{2}$ ;
$I3$ $I4$

$\rho_{3}$ :

3 4
where the existence of a segment connecting two integers means that their
images under $\rho_{i}$ coincide with each other. We have as a base of $ V_{4}^{0}(O(n))\#$,
$n\geqq 2$ , the following $F_{\rho_{1}},$ $F_{\rho_{2}},$ $F_{\rho_{8}}$ :

$F_{\rho_{1}}(x_{1}, x_{2}, x_{3}, x_{4})=(x_{1}, x_{2})\cdot(x_{3}, x_{4})$ ,

$F_{\beta_{2}}(x_{1}, x_{2}, x_{3}, x_{4})=(x_{1}, x_{3})\cdot(x_{2}, x_{1})$ ,

$F_{\beta_{\epsilon}}(x_{1}, x_{2}, x_{3}, x_{4})=(x_{1}, x_{4})\cdot(x_{2}, x_{3})$ .
THEOREM 2. (i) If $p<n$ , then $\nu_{n}^{(p)}=\tilde{\nu}_{n}^{(p)}$ . (ii) If $p=n$ , then $\nu_{7\ell}^{(p)}=\tilde{\nu}_{n}^{(p}‘+1$ .
PROOF. (i) The proof of theorem 1 is easily seen to be valid in this

case also. (ii) Let us orient $V$ by a orthc-normal base $e_{1},\cdots,$ $e_{n}$ . Then we
denote by $[x_{1},\cdots, x_{n}]$ the following n-form on $V$ :

$[x_{1},\cdots, x_{n}]=\det(\xi_{j}^{i})$ , where $x_{i}=\sum_{j=1}^{n}\xi_{t^{j}}e_{j}$ $(i=1,\cdots, n)$

Then $[x_{1},\cdots, x_{n}]$ is an invariant tensor of $SO(n)$ of type $(0, n)^{4)}$ It is seen
that the base of $ V_{n}^{0}(O(n))\#$ which was given in the proof of theorem 1 and
$[x_{1},\cdots, x_{n}]$ form a base of $ V_{n^{0}}(SO(n))\#$ repeating an analogous discussion as in
theorem 1.

EXAMPLE 2. $p=4,$ $n>4$ . Every invariant tensor $F$ of $SO(n)$ of type $(0,4)$

is expressed as follows:
$F(x_{1}, x_{2}, x_{3}, x_{4})=c_{1}(x_{1}, x_{2})(x_{3}, x_{4})+c_{2}(x_{1}, x_{3})(x_{2}, x_{4})+c_{3}(x_{1}, x_{4})(x_{2}, x_{3})$ .

If moreover, $F$ is skew-symmetric with respect to $x_{3},$ $x_{4}$ , then

$F(x_{1}, x_{2}, x_{3}, x_{4})=c\{(x_{1}, x_{3})(x_{2}, x_{4})-(x_{1}, x_{4})(x_{2}, x_{3})\}$ .

4) In [1], the components of this tensor are denoted by $e_{i_{1}i_{2}\cdot\cdot d_{\eta}}$ .
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REMARK 1. By means of analogous discussion, it is shown that theorems
1,2 are also valid for tensor invariants of Lorentz groups $i$ . $e$ . a linear
group of $n$ variables consisting of linear transformations leaving invariant
a quadratic form of type

$j\mathfrak{r}_{1}^{2}+\cdots+x_{r}^{2}-x_{r+1}^{2}-\cdots-x_{n}^{2}$ .
Also, for complex tensor invariants of complex orthogonal group $O(n, C)$ ,
theorem 1,2 are valid. Of course the condition $p\leqq n$ is necessary for all
these cases.

REMARK 2. If we use results concerning ‘ vector invariants’ of ortho-
gonal groups stated in Chap. II of H. Weyl [3], then, the proof of theorem
1 will be extremely simplified. In fact, the $F_{\rho}’ s(\rho\in A_{p})$ span $V_{2p}^{0}(O(n))^{*}$ for
every $p$ (not only for $p\leqq n$ ) by virtue of theorem $(2.9.A)$ of [3]. Hence the
linear independence of $\{F_{p}\}$ was sufficient for the proof of theorem 1. We
remark also we have for any $n,$ $p$ .

(8) $\tilde{\nu}_{n}^{(2p)}\leqq(2p-1)(2p-3)\cdots 3\cdot 1$ .
Also for $p>n$ every element $F$ of $ V_{p}^{0}(SO(n))\#$ is of the form

$F(x_{1},\cdots, x_{p})=F_{1}(x_{1},\cdots, x_{p})+\sum_{(i)}F_{2}^{(i)}(x_{i_{1}},\cdots, x_{i_{p- n}})\cdot[x_{i_{p-n+1}},\cdots, x_{i_{p}}]$

where $i_{1},\cdots,$ $i_{p}$ is a permutation of 1, $\cdots$ , $p$ , and $F_{1}\in V_{p^{0}}(O(n))^{k},$ $F_{2}^{(i)}\in V_{p^{0}-n}(O(n))^{g}$ .
(cf. [3], loc. cit.)

4. Now let $\tilde{V}$ be an n-dimensional complex vector space with positive
definite hermitian form $(x, y)$ . We consider the following subgroups of
$GL(\tilde{V})$ ;

The unitary group
$U(n)=$ { $\sigma\in GL(\tilde{V});(\sigma x,$ $\sigma y)=(x,$ $y)$ for every $x,$ $y$ in $\tilde{V}$ } ,

The special unitary group
$SU(n)=\{\sigma\in U(n);\det(\sigma)=1\}$ .

Now $\tilde{V}$ can be regarded as a $2n$-dimensional real vector space. We
denote this vector space by $V$. As a set, $V$ coincides with $\tilde{V}$. Then every
linear transformation $\sigma$ of $\tilde{V}$ defines a linear transformation $\sigma^{\prime}$ of $V$, and
the homomorphism $\sigma\rightarrow\sigma^{\prime}$ is an into isomorphism from $GL(\tilde{V})$ into $GL(V)$ .
Thus we regard $GL(\tilde{V})$ as a subgroup of $GL(V)$ . Then $U(n),$ $SU(n)$ also
become subgroups of $GL(V)$ . These subgroups are called the real represen-
tations of $U(n),$ $SU(n)$ . In the following we consider only real represen-
tations of $U(n),$ $SU(n)$ , so we denote also by $U(n),$ $SU(n)$ the real represen-
tations of $U(n),$ $SU(n)$ .

We denote by $\Omega_{0}(x, y),$ $\Omega_{1}(x, y)$ the real and imaginary parts of the
hermitian form $(x, y)$ respectively:

$(x, y)=\Omega_{0}(x, y)+\Omega_{1}(x, y)i$ .
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Then, as is easily seen, $\Omega_{0}$ (resp. $\Omega_{1}$ ) is a symmetric (resp. skew-symmetric)

real valued bilinear form on the real vector space $V$. Moreover, $J2_{0}(x, y)$ is
positive definite. So we can define the orthogonal group $O(2n)$ over $V$ with
respect to $\Omega_{0}(x, y)$ . Then it is easily seen that

$U(n)\subset SO(2n)$ .
Thus $V$ and $V^{*}$ are equivalent representation spaces of $U(n)\subset GL(V)$ .
Hence, concerning tensor invariant of $U(n),$ $SU(n)$ , we may consider only

$V_{p^{0}}$ as in the case of $O(n)$ .

5. Before stating analogues of theorems 1,2 for $U(n)$ and $SU(n)$ , we
shall consider the real representation of symplectic group.

Let $\tilde{V}$ be an n-dimensinal vector space over the field of quaternions
$Q=R+Ri+Rj+Rk$ $(i^{2}=j^{2}=k^{2}=-1, ij=-ji=k, jk=-kj=i, ki=-ik=j)$ . We
shall denote by $GL(\tilde{V})$ the group of all linear transformations of $\tilde{V}$ over $Q$ .

Let $(x, y)$ be a mapping from VX $\tilde{V}$ into $Q$ which satisfy the following
conditions:

(9) $\left\{\begin{array}{l}(\alpha x+\beta y,z)=\alpha(x,z)+\beta(y,z) (\alpha,\beta\in Q\cdot.x,y,z\in V)\\(x,y)=(\overline{y,x)}\\(x,x)>0 foreveryx\in\tilde{V},x\neq 0\end{array}\right.$

where $\overline{q}$ means the conjugate of a quaternion $q=\alpha+\beta i+\gamma j+\delta k,$ $i.e$ .
$\overline{q}=\alpha-\beta i-\gamma j-\delta k$ .

Then the symplectic group $sp(n)$ with respect to the ‘ metric form ’ $(x, y)1s$

defined as a subgroup of $GL(\tilde{V})$ as follows:

$sp(n)=$ { $\sigma\in GL(\tilde{V});(\sigma x,$ $\sigma y)=(x,$ $y)$ for every $x,$ $y$ in $\tilde{V}$ }.

Now, as in n’4, $\tilde{V}$ can be regarded as $4n$-dimensional real vector space.
We shall denote this real vector space by $V$. As a set, $V$ coincides with
V. Then every element $\sigma\in GL(\tilde{V})$ defines a linear transformation $\sigma^{\prime}\in GL(V)$ ,
and $GL(\tilde{V})$ can be regarded as a subgroup of $GL(V)$ using the into isomor-
phism $\sigma\rightarrow\sigma^{\prime}$ . Then $sp(n)$ can be regarded also as a subgroup of $GL(V)$ .
This subgroup is called the real representation of $sp(n)$ . In the following
we consider only real representation of $sp(n)$ , which is also denoted by $sp(n)$ .

We denote by $\Omega_{0}(x, y),$ $\Omega_{1}(x, y),$ $l2_{2}(x, y)$ , and $\Omega_{@}(x, y)$ the coefficients of
1, $i,$ $j,$ $k$ in the ‘ metric form ’ $(x, y)$ respestively:

$(x, y)=\Omega_{0}(x, y)+\Omega_{1}(x, y)i+\Omega_{2}(x, y)j+\Omega_{3}(x, y)k$ .
Then, as is easily seen, $\Omega_{0}(resp. 42_{1}, \Omega_{2}, \Omega_{3})$ is a symmetric (resp. skew-sym-
metric), real valued bilinear form on the real vector space $V$. Moreover,
$l2_{0}(x, y)$ is positive definite. So we can define the orthogonal group $O(4n)$
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over $V$ with respect to $\Omega_{0}(x, y)$ . Then it is easily seen that
$sp(n)cSO(4n)$ .

Thus $V$ and $V^{*}$ are equivalent representation spaces of $sp(n)\subset GL(V)$ .
Hence, concerning the tensor invariants of $sp(n)$ , we may consider only $V_{p}^{0}$

as in the case of $O(n)$ .
REMARK. The vector space $\tilde{V}$ can be also regarded as a $2n$-dimensional

complex vectorspace $\tilde{V}_{c}$ . Then $GL(\tilde{V})$ and $sp(n)$ can be regarded as sub-
groups of $GL(\tilde{V}_{c})$ . Now ‘ metric form ’ $(x, y)$ in $\acute{T}^{\prime}$ can be written as follows:

(10) $(x, y)=\Phi_{0}(x, y)+\Phi_{1}(x, y)j$

where $\Phi_{0}(x, y)=\Omega_{0}(x, y)+\Omega_{1}(x, y)i$ and $\Phi_{1}(x, y)=\Omega_{2}(x, y)+\Omega_{3}(x,y)i$ are complex
numbers. Then $\Phi_{0}$ is a positive definite hermitian form on $\tilde{V}_{c}$ . Then, $sp(n)$

is contained as a subgroup of $GL(\tilde{V}_{c})$ in the special unitary group $SU(2n)$

over $V_{c}$ with respect to $\Phi_{0}(x, y)$ . Thus the following relation holds for real
representations of $sp(n),$ $U(2n)$ .

$sp(n)\subset SU(2n)\subset U(2n)\subset SO(4n)$ .
Now we consider $V_{p^{0}}(Sp(n))^{\kappa}$. Put

(11) $\kappa_{n}^{(p)}=\dim V_{p^{0}}(Sp(n))\#$ .
As in (2), we have

(12) $\kappa_{n}^{(2p-1)}=0$ .
THEOREM 3. If $p\leqq n$ , we have

(13) $\kappa_{n}^{(2p)}=4^{p}\cdot(2p-1)(2p-3)\cdots 3\cdot 1$ .
PROOF. For every $\rho\in A_{p}$ (cf. the proof of theorem 1 as to the definition

of $A_{p}$), and for every $\alpha_{1},$ $\alpha_{2},\cdots,$ $\alpha_{p},$
$(0\leqq\alpha_{i}\leqq 3)$ , we denote by $F_{\rho}^{\alpha_{1}\cdots a_{p}}$ the follow-

ing $2p$-form on $V$ :
$F_{\rho}^{a_{1}\cdots a_{p}}(x_{1},\cdots, x_{2p})=\Omega_{0j_{1}}(x_{k_{1}}, x_{k_{1}^{\prime}})\Omega_{\alpha_{2}}(x_{h_{2}}, x_{k_{2}^{\prime}})\cdots\Omega_{\alpha_{p}}(x_{k_{p}}, x_{k_{p^{\prime}}})$

where $\{k_{j}, k_{j^{\prime}}\}=\rho^{-1}(j),$ $k_{j}<k_{J^{\prime}}(i=1,\cdots,p)$ . The $sp(n)$-invariance of $(x, y)$ im-
plies that of $42_{\alpha}(0\leqq\alpha\leqq 3)$ , so $F_{\rho}^{\alpha_{1}\cdots\alpha_{p}}$ is also $sp(n)$ -invariant. Now, to prove
(13), it is sufficient to show that these $F_{\rho}^{\alpha_{1}\cdots\alpha_{p}}s$ form a base of $ V_{p^{0}}(S_{p}(n))\#$.
As is seen easily by induction on $n$ , there exists a base $e_{1},\cdots,$ $e_{n}$ of $\tilde{V}$ such
that $(e_{i}, e_{j})=\delta_{ij}(1\leqq i, j\leqq n).p$ Then $\{\epsilon_{i}e_{j}\}(0\leqq i\leqq 3,1\leqq j\leqq n)$ is a base of $V$, where
$\epsilon_{0}=1,$ $\epsilon_{1}=i,$ $\epsilon_{0}=j,$ $\epsilon_{3}=k$ . Now we note that the following relations hold:

(14) $\left\{\begin{array}{l}\Omega_{s}(\epsilon_{s}e_{q},e_{r})=\delta_{qr}\\\Omega_{s}(\epsilon_{\iota}e_{q},e_{\gamma})=0\end{array}\right.$

$(0\leqq s\leqq 3,1\leqq q, r\leqq n)$

$(0\leqq s\neq t\leqq 3,1\leqq q, r\leqq n)$ .
Now let us select for every $\rho\in A_{p}$ an ordered system $e_{\rho}=\{e_{j1},\cdots, e_{j_{2p}}\}$ of type
$\rho$ in the sence of n’3. This is possible by the assumption $p\leqq n$ . Then we
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denote by $e_{\rho}^{\alpha_{1}\cdots a_{p}}$ the following ordered system consisting of $\{\epsilon_{t}e_{s}\}$

$e_{\rho}^{\alpha_{1}\cdots\alpha_{p}}=\{e_{a_{1}}e_{k_{1}}, e_{k_{1}^{\prime}}, \epsilon_{a2}e_{k_{2}}, e_{k*}’,\cdots, \epsilon_{\alpha_{p}}e_{k_{p}}, e_{k_{p}^{\prime}}\}$

where $\{k_{j}, k_{j^{\prime}}\}=\rho^{-I}(j),$ $k_{j}<k_{j^{\prime}}(1\leqq j\leqq p)$ . Then we have by (14)

(15) $F_{\rho}^{\alpha_{1}\cdots a_{p}}(e_{\rho^{\prime}}^{\beta_{1}\cdots\beta_{p}})=\delta_{\rho\rho\prime}\delta_{a_{1}\beta_{1}\beta_{2}}\delta_{a_{2}}\cdots\delta_{\alpha_{p}\beta_{p}}$ ,

for $\rho,$ $\rho^{f}\in A_{p}$ and $0\leqq\alpha_{i},$ $\beta_{i}\leqq 3$ . From (15) the linear independence of $\{F_{\rho}^{a_{1}\cdots\alpha_{p}}\}$

follows as in the proof of theorem 1.
Next we must show that any $F\in V_{2p}^{0}(Sp(n))^{\mu}$ is a linear combination of

the $F_{p}^{a_{1}\cdots a_{p}}s$ . To show this, it is sufficient to prove the following lemma as
in the proof of theorem 1.

LEMMA. Let $ F\in V_{2p}^{0}(Sp(n))\#$ and

$F(e_{\rho}^{a_{1}\cdots\alpha_{p}})=0$

for every $e_{\rho}^{a_{1}\cdots\alpha_{p}}(0\leqq\alpha_{i}\leqq 3, \rho\in A_{p})$ . Then $F=0,$ $i.e$ .
(16) $F(\epsilon_{h_{1}}e_{\iota_{1}}, \epsilon_{h_{2}}e_{l_{2}},\cdots, C_{h_{2p}}^{\backslash }e_{\iota_{2p}})=0$

for every $0\leqq h_{i}\leqq 3,1\leqq l_{j}\leqq n$ .
PROOF OF LEMMA. We distinguish several cases.
Case 1. $\{l_{1}, l_{2},\cdots, l_{2p}\}$ contains a subset $\{k_{\alpha}, k_{\beta},\cdots, k_{\gamma}\}$ consisting of odd

number of elements such that for every $j\epsilon \mathbb{E}\{\alpha, \beta,\cdots, \gamma\}(1\leqq j\leqq 2p)k_{j}\not\in\{k_{\alpha},$ $k_{\beta}$ ,
$k_{\gamma}\}$ . Then we see as in the case 1 of the proof of theorem 1 that the

left hand side of (16) is equal to zero.
Now define $\chi\ell_{j}(j=1,2,\cdots,p)$ and $\mu$ just as in the proof of theorem 1.

Then as in theorem 1, the proof reduces to the following
Case 2. $\mu=2$ . Then $\{e_{l_{1}},\cdots, e_{\iota_{2p}}\}$ is of type $\rho$ for some $\rho\in A_{p}$ . We may

limit ourselves only to the typical case $\rho^{-1}(1)=\{1,2\},$ $\rho^{-1}(2)=\{3,4\},\cdots,$ $\rho^{-J}(p)$

$=\{2p-1,2p\}$ . Then we have to show
(17) $F(\epsilon_{h_{1}}e_{1}, \epsilon_{h_{2}}e_{1}, \epsilon_{ha}e_{2}, \epsilon_{h_{4}}e_{2},\cdots, \epsilon_{h_{2p-1}}e_{p}, \epsilon_{h_{2p}}e_{p})=0$ , $(0\leqq h_{i}\leqq 3)$ .

There is a $\sigma\in Sp(n)$ such that

$\sigma e_{1}=\epsilon_{h_{2}}^{-1}e_{1}$ , $\sigma e_{2}=\epsilon_{h_{4}}^{-1}e_{1},\cdots,$ $\sigma e_{p}=\epsilon_{h9,\lrcorner}^{-1}e_{p}p$

Then the left hand side of (17) is equal to

$F(\epsilon_{h_{1}}\epsilon_{h_{B}}^{-1}e_{1}, e_{1}, \epsilon_{h_{\delta}}\epsilon_{h_{4}}^{-1}e_{2}, e_{2},\cdots, \epsilon_{h_{2p-1}}\epsilon_{h_{2p}}^{-t}e_{p}, e_{p})$

which in turn is equal to $\pm F(e_{\rho}^{a_{1}\cdots\alpha_{p}})$ for some $\alpha_{1},\cdots,$ $\alpha_{\iota}$ . So it is equal to
zero by our assumption. Thus the proof of the lemma is completed, and
theorem 3 is also proved.

EXAMPLE 3. $p=2,$ $n\geqq 2$ . $ V_{4}^{0}(Sp(n))\#$ has the following base consisting of
48 elements
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(18) $\left\{\begin{array}{l}F_{\rho_{l}}^{a\beta}(x_{1},x_{2},x_{3},x_{4})=\Omega_{a}()\\F_{\rho}^{a_{2}\beta}(x_{1},x_{2},x_{3},x_{1})=\Omega_{a}(x_{1},x_{3})\Omega_{\beta}(x_{2},x_{4})\\F_{\rho}^{a\beta}(x_{1},x_{2},x_{3},x_{4})=\Omega_{a}(x_{1},x_{4})\Omega_{\beta}(x_{2},x_{3}).\end{array}\right.$ $(0\leqq\alpha, \beta\leqq 3)$

To determine a base of the subspace $V_{4}^{0}(Sp(n))_{[3,4]}^{\#}$ of $ V_{4}^{0}(Sp(n))\#$ consisting
of $ F\in V_{4}^{0}(Sp(n))\#$ such that

$F(x_{1}, x_{2}, x_{3}, x_{4})=-F(x_{1}, x_{2}, x_{4}, x_{3})$ ,

we apply the alternation operator $A_{34}$ on every $F_{\rho^{a_{i}\beta}}$ , where

(19) $(A_{34}F)(x_{1}, x_{2}, x_{3)}x_{4})=F(x_{1}, x_{2}, x_{3}, x_{4})-F(x_{1}, x_{2}, x_{4}, x_{3})$ .
Then

(20) $\left\{\begin{array}{l}A_{34}F_{\rho_{l}^{\alpha 0}}=0,A_{31}F_{\rho_{l}^{a\beta}}=2F_{\rho_{l}}^{\alpha\beta} (0\leqq\alpha\leqq 3,1\leqq\beta\leqq 3)\\A_{s}4_{\rho_{2}^{\alpha\beta}\rho_{3}^{\alpha\beta}\rho_{2}^{a\beta}\rho^{\alpha_{\$}\beta}}F=-A_{4}dqF=F-F\prime.\end{array}\right.$

Thus $4\times 3+16=28$ elements $F_{\rho^{a_{1}\beta}}(0\leqq\alpha\leqq 3,1\leqq\beta\leqq 3),$ $F_{\rho^{\alpha_{2}\beta}}-F_{\rho^{a_{\epsilon}\beta}}(0\leqq\alpha, \beta\leqq 3)$ form
a base of the subspace $V_{4}^{0}(Sp(n))_{[3,4]}^{\#}$ of $V_{4}^{0}(Sp(n))^{\kappa}$ .

6. Analogous theorems hold for the real representations of $U(n),$ $SU(n)$

(cf. n’4). Put
(21) $\tilde{\mu}_{n}^{(p)}=\dim V_{p^{0}}(U(n))\#$

and
(22) $\rho_{4_{n}^{(p)}}=\dim V_{p^{0}}(SU(n))\#$ .

Then we have like (2), (3)

(23) $\tilde{\mu}_{n}^{(2p-1)}=0$

and
(24) $/\ell_{2n}^{(2p-1)}=0$ .

THEOREM 4. If $p\leqq n$ , then we have
$\tilde{\mu}_{n}^{(2p)}=2^{p}\cdot(2p-1)(2p-3)\cdots 3\cdot 1$ .

THEOREM 5. (i) If $p<n$ , then $\mu_{n}^{(p)}=\tilde{\mu}_{n}^{(p)}$ . (ii) If $p=n$ , then $g\ell_{n}^{(p)}=\tilde{\mu}_{n}^{(p)}+2$ .
These theorems are analogously proved as theorems 1, 2, 3, namely, we

can define $F_{\rho}^{\alpha_{1}\cdots a_{p}}(\rho\in A_{p}, \alpha_{i}=0,1)$ just as in theorem 3. Then these $2^{p}(2p-1)$ .
$(2p-3)\cdots 3\cdot 1$ forms are linearly independent and span $V_{2p}^{0}(U(n))^{p}$ . We only
remark about (ii) of theorem 5. Let us fix an ortho-normal base $e_{1},$ $e_{2},\cdots,$ $e_{n}$

of $\tilde{V}$ (n-dimensional complex vector space with positive definite hermitian
form $(x, y))$ . Then for $x_{i}\in\tilde{V}(i=1,\cdots, n)$ we define $[x_{1}, x_{2},\ldots, x_{n}]_{R}$ and $[x_{1},\cdots, x_{n}]_{I}$

as follows:
(25) $[x_{1},\cdots, x_{n}]_{R}=rea1$ part of $\det(\xi_{i}^{j})$ ,

(26) $[x_{1}.\cdots, x_{n}]_{I}=imaginary$ part of $\det(\xi_{i^{j}})$



Some remarks on tensor invariants of $O(n),$ $U(n),$ $Sp(n)$ . 155

where $x_{i}=\sum_{i=1}^{n}\xi_{i}^{j}e_{j}(i=1,\cdots, n)$ . Then $[x_{1},\cdots, x_{n}]_{R}$ and $[x_{1},\cdots, x_{n}]_{I}$ are in $ V_{n}^{0}(SU(n))\#$ .
It is easily seen as before that the base of $V_{n}^{0}(U(n))\#,$ $[x_{1},\cdots, x_{n}]_{R}$ and $[x_{1},\cdots$ ,
$x_{n}]_{I}$ form a base of $ V_{n}^{0}(SU(n))\#$.

EXAMPLE 4. $p=2,$ $n\geqq 2$ . $ V_{4}^{0}(U(n))\dagger$ has the following base consisting of
12 elements:

(27) $\left\{\begin{array}{l}F_{\rho_{l}}^{\alpha\beta}(x_{1},x_{2},x_{3},x_{4})=\Omega_{\alpha}(x_{1},x_{2})\Omega_{\beta}(x_{3},x_{4})\\F_{\rho}^{a_{n}\beta}(x_{1},x_{2},x_{3},x_{4})=\Omega_{\alpha}(x_{1},x_{3})\Omega_{\beta}(x_{2},x_{4})\\F_{\rho}^{\alpha_{s}\beta}(x_{1},x_{2},x_{3},x_{1})=\Omega_{\alpha}(x_{1},x_{1})\Omega_{\beta}(x_{2},x_{3}).\end{array}\right.$
$(\alpha, \beta=0,1)$

The subspace $V_{4}^{0}(U(n))_{[3,4]}^{g}$ of $ V_{4}^{0}(U(n))\#$ consisting of $F\in V_{4}^{0}(U(n))^{\mathfrak{p}}$ which is
skew-symmetric with respect to $x_{3},$ $x_{1}$ is also determined as in example 3.
Namely, $2+4=6$ elements $F_{\rho}^{\alpha_{1}1}(\alpha=0,1),$ $F_{\rho}^{\alpha_{2}\beta}-F_{\rho}^{a_{8}\beta}(\alpha, \beta=0,1)$ form a base of
the subspace $V_{4}^{0}(U(n))\#_{[3,4]}$ (cf. [2]).

7. Let $\tilde{V}$ be an n-dimensional complex vector space with positive
definite hermitian form $(x, y)$ , and $\tilde{U}$ an r-dimensional complex subspace of
V. Then we denote by $U(n)_{r}$ the subgroup of $U(n)$ given by

(28) $U(n)_{r}=$ { $\sigma\in U(n);\sigma x=x$ for every $\chi$ in $\tilde{U}$ }.
Put

(29) $\tilde{\mu}_{n,r}^{(p)}=\dim V_{p^{0}}(U(n)_{r})\#$

$i$ . $e.\tilde{\mu}_{n.r}^{(p)}$ is the dimension of the space of invariant tensors of type $(o,p)$

under (the real representation of) the group $U(n)_{\gamma}$ . In the following we
shall show that the determination of $t^{\ell_{n,r}^{(p)}}$ is reduced to that of $\mu_{n-r}^{(1)},$ $\mu_{n-r}^{(2)},\cdots$ ,
$\tilde{\mu}_{n-r}^{(p)}$ .

Let $\tilde{W}$ be the orthogonal complement of $\tilde{U}$ :
$\tilde{W}=$ { $x\in\tilde{V};(x,$ $y)=0$ for every $y$ in $\tilde{U}$ }.

Then $\tilde{W}$ is an $(n-r)$-dimensional subspace of $\tilde{V}$ and
$\tilde{V}=\tilde{U}+\tilde{W}$ (direct sum).

Every $\sigma\in U(n)_{r}$ induces a unitary transformation $\sigma^{\prime}$ on $\tilde{W}$, and $\sigma\rightarrow\sigma^{\prime}$ is an
onto isomorphism from $U(n)_{r}$ onto $U(n-r)$ (the unitary group of $\tilde{W}$). Let
$V,$ $U$ and $W$ be real vector spaces associated to $\tilde{V},\tilde{U}$ and $\tilde{W}$ respectively.
Then we have obviously $V=U+W$ (direct sum). Taking into consideration
that we have identified $V,$ $U$ and $W$ with their dual spaces respectively, we
obtain by a well-known rule of tensor product the following decomposition
of $V_{p^{0}}$ into direct sum of subspaces:

(30) $V_{p^{0}}=X_{0}+X_{1}+\cdots+X_{p}$

where
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(31) $\ovalbox{\tt\small REJECT} X_{1}^{0}.=.W^{0}.\bigotimes_{X_{p}=Wp^{0}}\ldots\bigotimes_{W_{W}X_{2}=W}\cdot\bigotimes_{U}\bigotimes_{U+}W\bigotimes_{W}U\bigotimes_{U}\cdots\otimes X=U_{p}\bigotimes_{=}^{U}\otimes\cdot.\cdot\otimes\cdots\bigotimes_{W\otimes\cdots\otimes^{U+}}^{U}\otimes\otimes W\otimes^{U+_{\otimes U\otimes\cdot\otimes U\otimes W\otimes W}}=_{U}.\otimes.\cdot\otimes U\ldots U^{+U..\bigotimes_{+\cdot+}\cdots\otimes U..\otimes W}$

where every tensor product consits of $p$ factors. Then $V_{p}^{0}(U(n)_{r})^{\oint}=$

$\sum_{q\leftarrow 0}^{p}X_{q}(U(n)_{r})^{*}$ . Now since $U(n)_{r}$ leaves invariant every element of $U$, we

have easily

(32) $(W_{s^{0}}\otimes U_{t^{0}})(U(n)_{r})^{g}=W_{s^{0}}(U(n)_{r})\#\otimes U_{t^{0}}$ .
Then the dimension of the left hand side of (32) is equal to $\tilde{\mu}_{n-r}^{(s)}(2r)^{t}$ . Since
$X_{q}$ is a direct sum of $\left(\begin{array}{l}p\\q\end{array}\right)U(n)_{r}$-invariant subspaces each of which is equi-

valent as a representation space of $U(n)_{r}$ to $W_{q^{0}}\otimes U_{p^{0}-q}$ , we have

(33) $\dim X_{q}(U(n)_{\gamma})\#=\left(\begin{array}{l}p\\q\end{array}\right)\tilde{\mu}_{n-r}^{(q)}\cdot(2r)^{p-q}$ .

Thus we arrive finally at the following
THEOREM 6.

(34) $\tilde{\mu}_{n,r}^{(p)}=\sum_{q=0}^{p}\left(\begin{array}{l}p\\q\end{array}\right)\tilde{\mu}_{n-r}^{(q)}\cdot(2r)^{p-q}$ , $\tilde{\mu}_{n-r}^{(0)}=1$ .

We remark that above consideration contains not only the determination of
$\tilde{\mu}_{n,r}^{(p)}$ , but also that of a base of $ V_{p^{0}}(U(n)_{r})\#$ , as is explained in the following.

From (32) we see that, if $(f_{\lambda}),$ $(g_{/},)$ form bases for $W_{s^{0}}(U(n)_{r})^{\mathfrak{p}},$ $U_{t^{0}}$ respec-
tively, then $(f_{\lambda}\otimes g_{\mu})$ form a base for $(W_{s^{0}}\otimes U_{t^{0}})(U(n)_{\gamma})\#$ . For example, taking
$p=4,$ $s=t=2$ , we exhibit bases for $U(n)_{r}$-invariants of $W\otimes W\otimes U\otimes U$ and of
$W\otimes U\otimes W\otimes U$. For simplicity we assume $n-r\geqq 1$ . Let $(u_{1},--, u_{2r})$ be a base
of $U$ over the field of real numbers. Then $(u_{i}\otimes u_{j})_{1\leqq i.j\leqq 2r}$ form a base for
$U\otimes U$. On the other hand, $W_{2}^{0}(U(n)_{\gamma})^{8}$ has the following base (since $n-r\geqq 1$)

by theorem 4:
$l2_{0}(x_{1}, x_{2})$ , $\Omega_{1}(x_{1}, x_{2})$ .

Then the following $2x(2r)^{2}$ elements

(35) $F_{ij}^{\alpha}(x_{1}, x_{2}, x_{3}, x_{4})=\Omega_{\alpha}(x_{1}, x_{2})\Omega_{0}(u_{i}, x_{3})\Omega_{0}(u_{j}, x_{4})$

$(\alpha=0,1;i,j=1,2,\cdots, 2r)$

form a base of $(W_{2}^{0}\otimes U_{2^{0}})(U(n)_{r})\#$ .
REMARK 1. Let $(v_{1},\cdots. v_{r})$ be a base of $U$ over the field of complex num-

bers. Then $(v_{1},\cdots, v_{r}, iv_{1},\cdots, iv_{r})$ is a base of $U$ over the field of real numbers.
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Then, using the relation
$\Omega_{0}(iv, x)=-\Omega_{1}(v, x)$

we have, instead of (35), following base.

(36) $F_{st}^{1\alpha\theta r(x_{\rfloor},x_{2},x_{s},x_{4})=\Omega_{\alpha}(x_{J},x_{2})\Omega_{\beta}(v_{s},x_{3})\Omega_{\gamma}(v_{t},x_{4})}$

$(\alpha, \beta, \gamma=0,1;s, t=1,2,\cdots, r)$ .
REMARK 2. Theorem 6 has analogues for $O(n),$ $SO(n),$ $SU(n),$ $Sp(n)$ . De-

fining similarly $\tilde{\nu}_{n,r}^{(p)}$ , ”
$p)_{\gamma}\beta_{n.r}(p)\kappa_{1,\gamma}^{(\rho)}$ we have in fact

(37) $\tilde{\nu}_{n,r}^{(p)}=\sum_{q=0}^{p}\left(\begin{array}{l}p\\q\end{array}\right)\tilde{\nu}_{n-r}^{(q)}\cdot r^{p-q}$ ,

(38) $\nu_{n,r}^{(p)}=\sum_{q=0}^{p}\left(\begin{array}{l}p\\q\end{array}\right)\nu_{7p-\gamma}^{(q)}\cdot\gamma^{p-q}$ ,

(39) $\mu_{n,r}^{(p)}=_{q}\underline{\rangle_{=0}p_{\urcorner_{\mathfrak{l}}}}\left(\begin{array}{l}p\\q\end{array}\right)f4_{n-r}^{(q)}\cdot(2r)^{p-q}$ ,

(40) $\kappa_{n.r}^{(p)}=\sum_{q=0}^{p}\left(\begin{array}{l}p\\q\end{array}\right)\kappa_{n-r}^{(q)}\cdot(4r)^{p-q}$ .

The determination of bases is also done analogously.
EXAMPLE 5. $p=4,$ $r=1,$ $n\geqq 3,$ for $U(n)_{\gamma}$ .

$\tilde{\mu}_{n,1}^{(4)}=2^{4}+\left(\begin{array}{l}4\\l\end{array}\right)\tilde{\mu}_{n-1}^{(1)}\cdot 2^{3}+\left(\begin{array}{l}4\\2\end{array}\right)\tilde{\mu}_{n-1}^{(2)}\cdot 2^{2}+\left(\begin{array}{l}4\\3\end{array}\right)\tilde{\mu}_{n-1}^{(3)}\cdot 2+\tilde{\mu}_{n-1}^{(4)}$

$=2^{4}+24\tilde{\mu}_{n-1}^{(2)}+\tilde{\mu}_{n-1}^{(4)}=76$ .
Base of $ V_{4}^{0}(U(n)_{1})\#$ : Let $u$ be a (complex) base of $\tilde{U}$, then

base of $U_{4}^{0}$ : $F_{\alpha\beta r\delta(x_{1},x_{2},x_{3},x_{4})=\Omega_{\alpha}(u,x_{1})\Omega_{\beta}(u,x_{2})\Omega_{\gamma}(u,x_{3})\Omega_{\delta(u,x_{4})}}$

$(\alpha, \beta, \gamma, \delta=0,1)$

$(\alpha, \beta, \gamma=0,1)$

base of $(W_{4}^{0})\#$ : $\left\{\begin{array}{l}F_{\rho_{l}}^{\alpha\beta}(x_{i},x_{2},x_{3},x_{4})=\Omega_{\alpha}(x_{1},x_{2})\Omega_{\beta}(x_{3},x_{4})\\F_{\rho_{2}}^{\alpha\beta}(x_{1},x_{2},x_{3},x_{4})=\Omega_{\alpha}(x_{1},x_{3})\Omega_{\beta}(x_{2},x_{4})\\F_{\rho}^{a_{\$}\beta}(x_{I},x_{2},x_{3},x_{4})=\Omega_{\alpha}(x_{1},x_{4})\Omega_{\beta}(x_{2},x_{3}).\end{array}\right.$ $(\alpha, \beta=0,1)$
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To find a base of the subspace $ V_{4}^{0}(U(n)_{1})_{[3.4]}\#$ of $ V_{4}^{0}(U(n)_{1})\#$ consisting of
skew-symmetric forms with respect to $\chi_{3},$ $\chi_{4}$ , we only need to apply the
alternation $A_{34}$ with respect to $x_{3},$ $x_{4}$ on these bases. Then we have

$\dim V_{4^{0}}(U(n)_{1})_{[3,4]}\#=32$ $(n\geqq\backslash ’)J)$ .
EXAMPLE 6. $p=3,$ $r=1,$ $n\geqq 4$ , for $SO(n)_{\gamma}$ .

$\nu_{n,1}^{(3)}=1+\left(\begin{array}{l}3\\1\end{array}\right)\nu_{n-1}^{(1)}+\left(\begin{array}{l}3\\2\end{array}\right)\nu_{n-1}^{(2)}+\nu_{n-1}^{(3)}$ .
Thus,

$\nu_{n,1}^{(3)}=|$
$45$

$(n\geqq 5)$

$(n=4)$ .
For $n\geqq 5,$ $ V_{3}^{0}(SO(n)_{1})\#$ has following base ($u$ being a base of $U$ )

(41) $\left\{\begin{array}{l}F_{0}(x_{1},x_{2},x_{3})=(u,x_{1})\cdot(u,x_{2})\cdot(u,x_{3})\\F_{1}(x_{1},x_{2},x_{3})=(u,x_{1})\cdot(x_{2},x_{3})\\F_{2}(x_{1},x_{2},x_{3})=(u,x_{2})\cdot(x_{1},x_{3})\\F_{3}(x_{1},x_{2},x_{3})=(u,x_{3})\cdot(x_{1},x_{2}).\end{array}\right.$

For $n=4,$ $ V_{3}^{0}(SO(4)_{1})\#$ has as base besides $F_{0},$ $F_{1},$ $F_{2},$ $F_{3}$ in (41) the following

(42) $F_{4}(x_{1}, x_{2}, x_{3})=[u, x_{1}, x_{2}, x_{3}]$ .

8. Now we shall give formulas of $\nu_{n}^{(p)},\tilde{\mu}_{n}^{(p)},$ $g\ell_{n}^{(p)},$ $\kappa_{n}^{(p)}$ for any $n,p$ .
Let $G$ be a compact group and $(\rho, U)$ a representation of $G$ . Then $as^{\backslash }$

is well-known, the dimension $\gamma$ of the space of invariants of $G$ in the
representation $(\rho, U)$ is given by

$ r=\int_{G}\chi_{\rho}(0)d\sigma$

where $\chi_{p}(\sigma)$ is the character of the representation $(\rho, U)$ and the Haar

measure $ d\sigma$ of $G$ is normalized by $\int_{G}d\sigma=1$ .
When $G$ is one of the classical compact Lie groups $SO(n),$ $SU(n),$ $U(n)$ ,

$Sp(n)$ and $f(\sigma)$ is a class function on $Gi$ . $e$ . $f(\tau\sigma\tau^{-1})=f(\sigma)$ for every $\sigma,$
$\tau$ in $G$ ,

then the value of the integral $\int_{G}f(\sigma)d\sigma$ is calculated by the following

formula (cf. Weyl [3], Chap. VII or [4], ‘ expos\’e ‘ n’21)

$\int_{G}f(\sigma)d\sigma=\frac{1}{w}\int_{H}f(h)\Phi(h)dh$

where $H$ is a maximal torus of $G$ and $dh$ is a Haar measure of $H$ such that

$\int_{H}dh=1$ ,
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and the function $\Phi(h)$ is given by

$\Phi(h)=\prod_{a}(e^{a_{()}}h-1)$ ,

the product being extended for all non-zero root forms $\alpha$ of the complex
form $\zeta\downarrow^{c}$ of the Lie algebra $\mathfrak{g}$ of $G^{5)}$ and $w$ is the order of the Weyl group
of $\mathfrak{g}^{c}$ . $\alpha(h)$ is defined by

$ad(h)=e^{a()}hE\alpha_{i}$

where $E_{o\}}$ is a root vector for the root $\alpha$ .
Let us consider in particular $SO(2n+1)$ . Then the root forms are

$\pm\lambda_{i}(1\leqq i\leqq n);\pm(\lambda_{i}-\lambda_{k}),$ $\pm(\lambda_{i}+\lambda_{k})(1\leqq i<k\leqq n)$ . A maximal torus $H$ consists
of matrices of the form:

$h=1\dotplus\left(\begin{array}{lll}cos\theta_{1} & -sin & \theta_{1}\\sin\theta_{1} & cos\theta_{1} & \end{array}\right)\dotplus\cdots\dotplus\left(\begin{array}{lll}cos\theta_{n} & -sin & \theta_{n}\\sin\theta_{n} & cos & \theta_{n}\end{array}\right)$

and we have

$\Phi(h)=2^{n^{2}}\prod_{i\Leftarrow 1}^{n}(1-\cos\theta_{i})\prod_{i<k}(1-\cos(\theta_{i}-\theta_{k}))(1-\cos(\theta_{i}+\theta_{k}))$ .
Now the character $\chi(h)$ of the representation of $SO(2n+1)$ on $(o,p)$-tensors
is given by

$\chi(h)=(1+2(\cos\theta_{1}+\cdots+\cos\theta_{n}))^{p}$

and the order $w$ of the Weyl group is given by

$w=2^{n}n$ !.
Thus, putting

$F(\theta)=F(\theta_{1},\cdots, \theta_{n})=\cos\theta_{1}+\cdots+\cos\theta_{n}$ ,

$G(\theta)=G(\theta_{1},\cdots, \theta_{n})=\prod_{i<k}(1-\cos(\theta_{i}-\theta_{k}))$ ,

$H(\theta)=H(\theta_{1},\cdots, \theta_{n})=\prod_{i<k}(1-\cos(\theta_{i}+\theta_{k}))$

we have the following formula:

(42) $\nu_{2n+1}^{(p)}=\frac{2^{n^{2}}}{(2\pi)^{n}2^{n}n!}\int_{0}^{2\pi}\cdot\int_{0^{\pi}}^{9}(1+2F(\theta))^{p}G(\theta)H(\theta)\prod_{i=1}^{n}(1-\cos\theta_{i})d\theta_{1}\cdots d\theta_{n}$ .

Analogously we obtain the following formulas:

(43) $\nu_{2n}^{(p)}=\frac{2^{n()}n-1}{(2\pi)^{n}2^{n-I}n!}\int_{0^{\pi}}^{2}\cdot\cdot\int_{0^{\pi}}^{2}2^{p}F(\theta)^{p}G(\theta)II(\theta)d\theta_{1}\cdots d\theta_{n}$ ,

(44) $\tilde{\mu}_{n}^{(p)}=\frac{2^{n\underline{(}n_{2}\underline{-1)}}}{(2\pi)^{n}n!}\int_{0^{\pi}}^{9}\lrcorner\int_{0^{\pi}}^{2}2^{p}F(\theta)^{2?}G(\theta)d\theta_{1}\cdots d\theta_{n}$ ,

5) The root forms are considered with respect to the Cartan subalgebra of $\mathfrak{g}^{c}$

associated to $H$.
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(45) $\mu_{n}^{(p)}=\frac{2^{n(n_{2}-1)}}{(2\pi)^{n-1}n!}\int_{0}^{2_{K}}\cdot\cdot\int_{0}^{2\pi}2^{p}F^{*}(\theta_{1},\cdots, \theta_{n-1})^{p}G^{*}(\theta_{1},\cdots, \theta_{n-1})d\theta_{1}\cdots d\theta_{n-I}$ ,

where $F^{*}(\theta_{1},\cdots, \theta_{n-1})$ and $G^{*}(\theta_{1},\cdots, \theta_{n-1})$ are given by

$\left\{\begin{array}{l}F^{*}(\theta_{1},\cdots,\theta_{n-1})=F(\theta_{1},\cdots,\theta_{n-1},-\theta_{1}-\cdots-\theta_{n-1})\\G^{*}(\theta_{1},\cdots,\theta_{n-]})=G(\theta_{1},\cdots,\theta_{n-1},-\theta_{1}-\cdots-\theta_{n-1}),\end{array}\right.$

(46) $\kappa_{n}^{(p)}=\frac{2^{n^{2}}}{(2\pi)^{n}n!}\int_{0^{\pi}}^{2}\cdot\cdot\int_{0}^{2\pi}4^{p}F(\theta)^{p}G(\theta)H(\theta)\prod_{i=1}^{n}(1-\cos^{2}\theta_{i})d\theta_{1}\cdots d\theta_{n}$ .

EXAMPLE 7. Let us calculate (42) $\sim(46)$ for small values of $n$ :

$\nu_{3}^{(p)}=\frac{1}{2\pi}\int_{0}^{2n}(1+2\cos\theta)^{p}(1-\cos\theta)d\theta$

$=\overline{r}^{]}[J^{\backslash }=0p_{2}\left(\begin{array}{l}p\\2j\end{array}\right)\left(\begin{array}{l}2j\\j\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}p\\2j-1\end{array}\right)\left(\begin{array}{l}2j\\j\end{array}\right)[\frac{p+1}{\sum_{j=1}^{2}}]$

$\nu_{2}^{(2p)}=\frac{1}{2\pi}\int_{0^{\pi}}^{2}2^{2p}\cos^{2p}\theta d\theta=\left(\begin{array}{l}2p\\p\end{array}\right)$ , $(\nu_{2}^{(2p-1)}=0)$ ,

$\nu_{4}^{(2p)}=\frac{1}{(2\pi)^{2}}\int_{0^{\pi}}^{2}\int_{0^{\pi}}^{2}2^{2p}(\cos\theta_{1}+\cos\theta_{2})^{2p}(1-\cos(\theta_{1}-\theta_{2}))(1-\cos(\theta_{1}+\theta_{2}))d\theta_{1}d\theta_{2}$

$=\frac{1}{2}\{\sum_{j=0}^{p}\left(\begin{array}{l}2p\\2j\end{array}\right)\left(\begin{array}{l}2j+2\\j+1\end{array}\right)\left(\begin{array}{l}2p-2j\\p-j\end{array}\right)-\sum_{j=1}^{p}\left(\begin{array}{l}2p\\2j-1\end{array}\right)\left(\begin{array}{l}2j\\j\end{array}\right)\left(\begin{array}{l}2p-2j+2\\p-j+1\end{array}\right))$ ,

$\tilde{\mu}_{1}^{(2p)}=\nu_{2}^{(2p)}$ ,

$\tilde{\mu}_{2}^{(2p)}=\sum_{j=0}^{p}\left(\begin{array}{l}2p\\2j\end{array}\right)\left(\begin{array}{l}2j\\j\end{array}\right)\left(\begin{array}{l}2p-2j\\p-j\end{array}\right)-\frac{]}{4}\sum_{j=1}^{p}\left(\begin{array}{l}2p\\2j-1\end{array}\right)\left(\begin{array}{l}2j\\\dot{j}\end{array}\right)\left(\begin{array}{l}2p-2_{\dot{j}}+2\\p-j+1\end{array}\right)$ ,

$l_{2}^{(2p)}=2^{2p-1}(2^{2}\left(\begin{array}{l}2p\\p\end{array}\right)-\left(\begin{array}{l}2p+2\\p+1\end{array}\right))$ ,

$\kappa_{1}^{(2p)}=\rho\ell_{2}^{(2p)}$ (Note that the real representations of $sp(1)$ and $SU(2)$

coincide.)

The College of General Education,
University of Tokyo.
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