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The linear equivalence theory of cycles and cycles
of dimension zero on abelian varieties.

By Atuhiro HIRAI

(Received, March 10, 1955)

The theory of linear equivalence relation in the algebraic geo-
metry has been hitherto developed principally for divisors on varie-
ties. In the present paper an attempt is made to generalize this
theory to the case of cycles of arbitrary dimensions. In §1, we shall
define such equivalence and show that all properties announced by
A. Weil in his book “ Foundations of Algebraic Geometry ” as neces-
sary properties of such equivalence are satisfied.

Linear equivalence of two cycles X, Y will be denoted by X~Y.
Functions f(X) (generally with rational integral values) of cycles
with the property: ¢ X~Y implies f(X)=£Y)’ will be called linear
invariant. TFor instance, the ranks of complete linear systems or the
indices of speciality of divisors on a curves are linear invariant.

In §2, we shall deal with cycles a of dimension zero on a
product variety of complete non-singular curves I';,1<7<#, and
introduce a linear invariant /(a) in generalization of the rank of
complete linear system in case n=1.

In §3, we consider cycles a of dimension zero on an abelian
variety. Using the result of §2, we define a linear invariant /(a)
and B;(a), 1<i<n. We define further the index d and the pseudo-
genus g of an abelian variety. /(a) can be written in the form:

l(a)=d"(deg a)” +d"~'B,(a)(deg a)" ! +.-- +-d*~iB,(a)(deg a)" % +---

+-.--+8,(a), and if deg a is sufficiently large, 8;(a) becomes a constant
(—1y (7)) (g—1).

In §4, we prove the birational invariance of these I(a), 8,(a), g,
and d.

As to the notations and terminologies, we follow the usage in

Weil [1], [2], [3]
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§ I. Linear equivalence relation

We shall first define a linear equivalence relation between cycles
.of arbitrary dimensions of a variety U.

DEFINITION. Let X be a cycle of dimension » on a variety U of
dimension n,7+1=<#n. We call X linearly equivalent to zero, and

write X~0 on U if X can be written in the form }mjaiA,.-(go,-), where
=1

@, are m functions on U, A; are m subvarieties of U, of dimension
7+1, and @; are m rational integers. If X,Y are two cycles of
dimension # on U and X—Y~0, then we write X~Y and call X, Y
linearly equivalent to each other on U.

In order to deduce some properties of cycles, which are linearly
~equivalent to zero, we need the following lemmas.

LEMMA 1. Let V be a subvariely of a variety U, and ¢ be a
function on V. Then there exists a function \, which induces ¢ on V.

PrROOF. Let %k be a common field of definition of U, V, and @;
let M, N be generic points of U, V respectively over %, then @(N) is

an element of k(IN), and it can be written in the form f((]\z\/;f))a, where
&LV,

N, is a representative of N, énd f(X), g(X) are polynomials with
coefficients in k. N, is a generic point of a representative V, of V.
Let U, be the representative of U and M, the representative of M.

"Then M, is a generic point of U, and z= f((l‘]‘?)) is an element of
LM,

k(M) : because the denominator of z is not zero. Therefore there
-exists the function Y on U, defined over %, such that Y(M)=z, and
. obviously this function y induces @ on V.

LEMMA 2. Let V be a simple subvariety of U, of dimension 7.
We suppose that every simple subvariety of V is simple on U, and
every simple subvariety of U, contained in V is simple on V. We
suppose further morve that every simple subvariety of U of dimension
v—1 contained in V, has a representative in the fixed representative U,
~of U. Let @ be a function on U, defined along V. Then there exists
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a function @ on U satisfying the following conditions: (9).V=(p).V
and (@),+V, (@)..V have no common component.

PrOOF. Let £ be a common field of definition of ¢, U, and V,
which is algebraically closed. Let M, N be generic points of U,V
respectively, and ¥ be the function induced by @ on V. As y(N)=

@(N) is an element of A(N), ¥(N) can be written in the form f((%”)n ,
&

where N, is the representative of N in U,, and f(X), g(X) are poly-
nomials with coefficients in & The function  is defined along every
simple subvariety of V, of dimension »—1, (cf. Weil [1] VIII prop.
5) and from the assumption, every such a subvariety of V and so its
generic point has a representative in U, and accordingly f£f(X), g(X)
do not take zero at the same time at representives of generic points
of every simple subvariety of V, of dimension »—1 in U,. If we

put z-= f((AA%)) , where M, is the representative of M in U, then z
g

is an element of k(M), and it defines a function @ on U over k.
This function ¢ satisfies the required conditions. Namely, with re-
spect to the first assertion, it is obvious from the definition of @ and
Weil [1] VIII th. 4. As for the second assertion, we shall show the
absurdity of the assertion that (#),-V and (®).+V have a common
component C. Under this assumption, it would follow from Weil [1]
VIII th. 1, the function @ is not defined along C.

Let P be a generic point of C over k; then it has the repre-
sentative P, in U,, and we have f(P,)=0, g(P,)=0. But it is im-
possible since C is also simple on V. This prove our lemma.

LEMMA 3. Let U be a non-singular variety, V a complete non-
singular variety, and A a subvariety of dimension v, of UxV whose
projection A’ on U is itself non-singular.

Let @ be a function on U <V, which induces a function, other than
constant zero, on A. If the projection, of A on U does not have the
dimension v — 1, then there exists a function y on U, such that pr,A.(p)
=A"«(¥).

PrROOF. The function 6 on A’ < V induced by @ is obviously not
a constant zero. As A’'xV,and Ux V are non-singular, we have, by
virtue of Weil [1] VII th. 18 cor., A«(®@)=(A+(0))4 xy Where () .y
means the intersection-product on A’xV and therefore we have:
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DYy A(P)=p7 1A (0)) 4oy

If [A: A']1=0, then from our assumption follows that the dimen-
sion of A’ is strictly smaller than that of A.(®), thus we have
D74 As(9)=0. .

This means that pr;A«(®) can be considered as the intersection
of A’ and a divisor of a constant function on U.

If [A:A’] is not zero, then there exists a function » such that
P74 A«(8)=(n), by virture of Weil VIII th. 7, as A is simple on
A'xV. From lemma 1 and Weil VIII th. 4, there exists a func-
‘tion Y on U, such that (7)=A"« ).

Therefore we have pr A« (p)=A"+«().

PROPOSITION 1. Let U and V be two wvarieties, and X a cycle
of U, which is linearly equivalent to zero on U. Then X <V is linearly
‘equivalent to zero on U< V.

PROOF. By linearity of the product of varieties, we may assume
that the cycle X is of the form (@)+A, where @ is a function on U,
.and A is a subvariety of U. Let 2 be a common field of definition
of U, V,A, and @; let M<xN be a generic point of UxV over k&,
where M, N are the generic points of U, V respectively. Then there
exists a function ¥ on Ux V, defined over k, such that Yy (M x N)=
(M), and (¥)=(@)xV, by Weil [1] VIII th. 1 cor. 1. As (p)+A is
defined, ((@) < V)+(A < V) is also defined. Therefore we have ((@)+A4)
XK V=((P)x V) (AxV)={)(Ax V).

PROPOSITION 2. Let U be a non-singular variety, and V a sub-
variety of U, which is itself non-singular. Let X be a cycle of U,
which is ~0 on U. If there exist m functions @;,, m subvarieties A,

and m integers a,, such that zmja,-A,--(cp,-)zX, and A;«V,(4A;(®),)+V,

(A;+(®)).)+ V are defined for every i, then the cycle X-V~0 on V.
Proof. As A; V,({(®),*A4)V, (®).+A)V are all defined, we

have X+ V= (2 a:Ap (@) V= (3 aA: (9, 2 @A (9)2) V=3 aA;e
@)+ V=3 a(A;+ (@))« V=304, (#),+ V)= S+ (9 V) =

ﬁ_‘:aiA,--((%)o- Vw(q)i)m-V):ﬁla,-A[((cp,-)-V), by Weil [I] VII th. 10 and
its cor. Let y; be a function induced by @; on V, then we have
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X-V:ﬁa,.Ai-(\[ri). From the assumption that U and V are both
1=1

non-singular, we have by virtue of Weil VII th. 18 cor., X V=

S @A (¥) =3 a((A;+V)+ () y» where the right side means the inter-

1=1 i=1

section-product of (A.V) and (¥,) on V. This proves our proposition.
To show a corollary of this proposition, we introduce the follow-
ing definition.
DEFINITION. Let X be a cycle of dimension 7, ~0 on a variety

U of dimension #,7+1<mn, so that X:ﬁa,.A,--(%), where a; are m

i=1
rational integers, @, are m functions on U, and A; are m subvarie-
ties of dimension »+1. If A; are all non-singular varieties, then X
will be called linearly equivalent to zero on U in strong sense, and
we shall write X~0 on U, X~Y on U will mean X—Y=0 on U.
COROLLARY. Let U be a non-singular variety, V a subvariety
of U, which is itself non-singular, and X a cycle of dimension », ~0

on U, sothat X :2”_] a;As(@;,) and A; are non-singular. Suppose further-

more that every subvariety of U of dimension v contained in some A;
has a vepresentative in a fixed representative U, of U. If AV,
(A;+(®)v are defined for every i, then XV ~0 on V.

PrROOF. From lemma 2, there exist m functions ®; on U, such
that A;«(®)=A;+(®,), and A;*(®), A;+(®;).. have no common com-
ponent.

Therefore the fact that (A;«(®))+V is defined implies that
(A;«(®))V,(A,+(®@,).)+ V are both defined for every i, and our corol-
lary follows from proposition 2.

PropPOSITION 3. Let U be a variety, and Y a cycle on U. Let X
be a cycle of U, which is ~0 on U, so that it can be written in the
form ﬁaiA,.-(ga,.), in such a way that A; Y, (A;,+(®),)Y, and (A;s

1=1
(®).)* Y are defined. Then X+Y~0 on U.
This is an immediate consequence of Weil II th. 10, and its cor.
COROLLARY. Let U be a non singular variety and Y a cycle on
U. Let X be a cycle of dimension v on U, which is =~0 on U so that

it can be written in the form ;"V_,‘a,-A,m(qni), where A; are themselves
=1
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non-singular. Suppose that every subvariety of dimension v of U, which
is contained in some A;, has a representative in a fixed representative
U, of U Then, if A;+Y and (A;«(®,)+Y are defined for every i,
XeY~0 on U.

PROOF. By lemma 2, there exist m function %;, such that A;«(®))
=A;«(p), and A;+(P,),, A;*(®P;).. have no common component. (A;s
(@),)+Y and (A;«(®,)..)Y are defined at the same time as (4;«(®;) Y,
and our corollary follows from proposition 3.

PROPOSITION 4. Let U be a non singular variety and V' a complete
non-singular variety. Let X be a cycle on U x V' of dimension v, which

is ~0 on UxV, so that it can be written in the form iaiA,--(qn,-),.
=1

where the projections A; of A, on U are also non-singular. If the
dimensions of A are not equal to r, then pr,X=0 on U.

PROOF. From lemma 38, there exist m functions +, such that
pry A« (@p)=A;+(¥;). Then, by the linearity of algebraic projection,

we have pr, X= i a; A (¥)).

COROLLARY. Let I' be a non-singular curve, and V a complete
non-singular variety. Let X be a cycle of dimension zevo, which is ~0
on I'<V. Then pry; X~0 on T.

PrOOF. By linearity of algebraic projection, we may assume
that X has a form A+(®), where A is a subvariety of I'xV of
dimension 1 and ¢ is a function on I'xV. If the projection of A on
I' has the dimension 1, our corollary follows immediately from pro-
position 4. If the projection of A on I' has the dimension zero, the
subvariety A is of the form Px B, where P is a point of I', and B
is a subvariety of V. As (@)«(PxB) is defined, by Weil [1] VIII th.
4, @ induces the function ¥ on PxB. Let k2 be a common field of
definition of B, v, I, and V, and Px @ a generic point of Px B over
k. Let 6 be a function on B defined over E(P) by 6(Q)=v(PxQ),
and let A, A, be graphs of v, § respectively. Then we have A,=
Px A, and hence, from Weil [1] VIII th. 4, we have (@)+«(Px B)=
D7y Ays (T XV<O)=Pxpr, Ay« (Vx0). On the other hand, deg
Ay« (Vx0)=0 follows from Weil [1] VII th. 13. Hence we have
D7 ((P) « (P x B)=0.

PROPOSITION 5. Let U be a variety of dimension n, V. a complete
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non-singular variety, and X a cycle ~0 on U, so that it can be written
in the form X =ﬁ(<p,)-A,-. Let W be a subvariety of dimension n of
i=1

U<V with the projection U on U. If W«(X < V), and every W+(A;x V)
are defined, and all the components of W+(A; < V) are all non-singular
and have the projection A; on U for every i, then we have pr, WX
X V)~0 on V.

PROOF. As W.(A;x<V) is defined, (W+(A;x V))+((®;) x V) is also
defined. In fact, if it were not defined, then one of the components
of W«(A,;<V) should be contained in one of the components of (®,)
x V. In considering the projection on U, we see that A; is contained
in some component of (@;). But this is impossible since A;«(@, is

defined. Therefore we have W.(Xx V):ﬁ We(A; < V)e(@) x V)

=§ (We(A; x V) (() < V), and pr, WX x V)~O follows from pro-
i=1

position 4.

§ 2. Product varieties of complete non-singular curves

1. Let I'; 1<i<mn be n complete non-singular curves. In this
§, we have a generalization of Riemann-Roch theorem on a product
variety I',<..-<I', of these curves I'; in view. From now on we
take the universal domain £ as a field of constant functions.

DEFINITION. Let @ be a function on I',x..-x<I', defined over a
field £ over which I',x-.-xI', is defined, and let M x..-x M, be a
generic point of I',x..-xI', over k. Then there exists a uniquely
determined function Pr, defined over k(M,,.--,M;_,,M,, ,---, M) such
that ¢, (M)=@ (M,x.--<M,) (cf. Weil [1] VIII prop. 6). We call
Pr, the restriction of @ on I',.

Let a be a cycle of dimensjon zero on I',x..-xI',, and L(a) the
set of all functions @ on I',x-.-xI',, such that (¢Fi)> —a; for every
i, where Pr, is the restriction of @ on I';,, and a; is the projection of
a on I,

PROPOSITION 1. Let I',,---,T", be n complete non-singular curves,
and a a cycle of dimension 0 on I', < ---xI',. Then L(a) is a 2-module.

PrOOF. This is an immediate consequence of the fact that (@
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+ fl’)rz. =Pr, + \I’ri and (C¢)ri = c¢ri°

LEMMA 1. Let V,,---,V, be n varieties and 6; a function on V;
for every i. Then there exists a function ¢ on V,x-.-xV,, whose
vestriction on V,; has the same divisor as that of 6; for every i.

PrROOF. Let £ be a common field of definition of 6,,---,6,, and
V-V, and let M, x-..xM, be a generic point of V x...xV, over
the field ., where M, is a generic point of V., If we put z,=6,(M)),
z; is an element of k(M)), and its product w=z---z, is an element of
k(Mv"’) Mn)-

Then there exists a function @ on V,x..-xV,, such that (M, x
-+ xM,)=w. By definition, Py, is defined over the field A(M,,---, M,_,,
M., -,M). Butas M,.--, M, are independent over &, M, is a generic
point of V, over the field k(M -, M;,_,,M,,,, M,). Therefore the
functions ¢, on V; defined by C,»(Z\/I,-):z,- over the field (M-, M,_,
M., .-, M) are constant functions on V; for all j==¢, and ®; can be
written in the form ¢@,=¢,---&;_.§;--§,*6;. Therefore the divisor
of @, is the same as that of 6.

From now on, we denote the rank of the module L(a) over 2 by
l(a), and the rank of the complete linear system L(a;) on the curve
I'; by l(a;) where a; is the projection of a on I'; '

n

ProrposiTION 2. Let I',---,I", be n complete non-singular curves
and a a cycle of dimension zero on I' <---xI,, then we have l(a)=
l(a)---L,(a,), where qa; is the projection of a on I,

Proor. Let k be a field of definition of I' x-.--xI',, over which
a is rational, then every a; is also rational over k. Therefore there
exist /,(a;) functions 6; defined over k on I',, such that they form a
basis of L,(a;). By lemma 1, there exists a function on I',x ... xTI,,
whose restriction on I'; has the same divisor as 6!, and is a constant
on I'y(j=ki). We denote this function by the same notation. If we
put @, ., =0;.--67, then every ;.. is an element of L(a); because
(P, i, r;)=(0},---0% ), )=(0;,). And these /(a,)---/,(a,) functions are
linearly independent over £2. In fact, if these functions were not §
linearly independent over £, then there should exist /(a,)---J,(a,)
elements c¢; .; of 2, being not all zero, such that >j¢c;.; #; . ;. =0.
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C; ..;
For instance, if we assume ¢, . ,==0, then o =—-> "1"n P »
iF €y n
Jp1
_ — J1™ i _ 7.1'“7.71 1 2 n
AP, =0ip, O r = =2 " AP Iy = — 10 O p - 07 0,
1 1 nl i Cro 11y’ I %1 Cr J1 J9l'y InT
J 1 ¥l

where (@,..)r, 0. are restriction of @,., 8 on I'; respectively. As
‘1 t
every 0}2,---,0;1" are all constants other than zero, then we have

2 ...0n
01 . Z Cj]"'jn 0]21“1 einrl 01
ir,— 7 . T A 2 n Aly*
¥t G Uip 00,
Ju¥

But this is impossible because 6; are linearly independent over £2.
Finally we prove that L(a) is spanned by these /(a)---/,(a,) func-
tions. For this purpose, we use the induction with respect to the
dimension n of I' x...xI,. If n=1, it is obvious. We assume
this is also true for the case of dimension #—1. Let @ be a function
on I',<.---xI', belonging to L(a), and K a field of definition of ¢
containing k. Let M, <...- xM, be a generic point of I, x...xTI', over
K. Then w=@(M,---M,) can be written in the form 3¢z, where ¢;
are linearly independent elements of K(M)) over K, and z, are ele-
ments of K(M,---,M,). . In fact, let @, be a restriction of ®» on

ry<..x<r,, and >a,A,+>b;B; a reduced expression of (9.,
where every component of > a,4, has the projection I'yx<..-xT;_,
XTI Ko XTI, on TyX oo X T X Ty X---xXI',, and every component
of > byB; has not a projection I'yx -+ XTI, X, XX, on I'yX--
XTI XLy X x T, for fixed &. Then we have (@,).s(M,x---xM,_,
XF,-XM_,_IX ot XMn) = (ZaazAw) ¢ (MX "o ><]‘[z‘~1><Iji><]‘4'i+1>< oo XMn)'
As left side is equal to the cycle M,x .-+ XM, X(Pip )X M, X"
3
xM,, and as Pir,=Prp, We have, from the assumption, (3] e, A4,)«(M,
@
Koo XM X T X My X oo X M) <M X ~oo XM < af X M, % -+ x M,
where a; is the positive part of a, This shows that every component
of XJaA) e (Myx< oo xM;,_ xI';xM,;,,x---xM) is algebraic over
@

K(MZ!"',M—I?M+1""’Mn)' Let MZX"'XM—IXQiXM+1X'“><Mn be
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.a component of A, (M, xM,_ xI';xM,, x<---<xM)), then it is a
generic point of A, over the algebraic closure of K(M,). Let D be
a locus of M, x ---xM,_ xQ,xM,,, x---xM, over the algebraic closure
K of K, then it contains A. But the dimension of D is the same
that of A, therefore, A,=D, and A, is algebraic over K. As every
-component of (®,).. has the projection I',x.--xXTI', ;X I';,X--+XI, on
I X--XT;_XT;, ,%--xI, for some i, every component of (¢)). is
_algebraic over K. As (9,). is rational over K(M,), it is also rational
over K. In fact, let ¢ be an automorphism of K over K. As K(M,)
is a regular extension of K, K(M)NK—=K. Hence o can be extended

to an automorphism of K(M, over K(M,. Therefore (®)). is
invariant by every automorphism of K over K. Let (¢).=>aA,
be the reduced expression of (®,)., and P, a generic point of A, over

‘the algebraic closure K(M,) of K(M,. Then a, is a multiple of
[K(M, P,): K(M)].. As K(P) and K(M,) are independent over K and
.as K(M)) is a regular extension of K, K(P,) and K(M,) are linearly
disjoint over K. Therefore we have [K(M, P,): K(M)].=[K(P,) : K].
And this shows that (¢,).. is rational over K. Hence, by the same
method of proof of Weil VIII th. 10, there exist ?, z, such that ¢,
are linearly independent elements of K(M,) over K, and z; are ele-
ments of K(M,,---, M,) and w can be written in the form w-—=>]1%z,
Every ¢, defines a function &, on I',x-.--xI', such that &M, x<.--
<~ M,)=t;, and every z, defines a function 7, on I, x--- < I', such that
(M, < ---xM,)=z,, Then the function ¢ can be written in the form
p=>1&m, and we have @, => &, 7, (1==1). Every =, is defined
over K(M,,---, M,_,, Mﬂ,---,zMn) and ‘;‘-;r.:t,1 are linearly zindependent
over K(M,,---,M;_,, M, ,,---, M). Hencez we have, from Weil [1] VIII

?

th. 10, (njri)>—ai‘for every i==1, because a; is rational over K(M,,
T M’—v M+17"') Mn)'

If the elements z; are linearly independent over K, then we
have (§,r,)> —a, by the same theorem. If z; are not linearly inde-
pendent over K, for instance, only #» elements z,---,z, are linearly
independent over K, then the other elements z can be written in

r+p

.
the form zr+ﬂ:§1 c,.:2 where c,; are elements of K.

Hence we have w:i)(tl—kz} ¢t )2, If we denote ¢,+>]c,t,.,
. A=1 ] “
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anew by the same £, again, and the function defined by this new {,
over K again by £, then we have (&,;)> —a,, from the fact that q,
is rational over K, and Weil [1] VIII th. 10.

Therefore the restriction of £, on I', have the form &, =2 ¢;; 0}
and we have £,=>¢;;0;.

AS M, x.xr, 1S an element of L(arﬂx...xrn) where ar ..xr, 1is the
projection of a on I',x---xI',, we have from the assumption induction
mpgx...xrn:z] Cijy-s, 05, +07 , and then we have nA:ZcUQ...jnHi---G;?n.

Therefore we have @=3¢&m7,=>] C&hclfa-"/ne},”'efﬂn:2cAflcUn‘pil"-fn'

Hence the module L(a) is spanned by /(a))---/,(a,) functions

PrOPOSITION 3. Let I',---,I'", be n complete non-singular curves
and a,b be two cycles over the product variety I' > ---x T, such that
a~"b, then we have I(a)-=1I(b).

PrROOF. From the cor. of proposition 4 of §1, and the fact that
the product of complete varieties is also complete, we have pir.a—b
~0 on I'. Therefore, /,(a;)=1,b,) for every i, and our propos'ition
follows from proposition 2.

The value /(0) of zero cycle 0 is 1. For, let @ be an element of
L), arid K be a field of definition of @, and M,x..-xM, be a
generic point of I' »...xI', over K. Then w=@(M, x-.-xM,) is an
element of K(M,, M,,---, M,_,, M, ,---, M) for every i, namely w is an
element of the intersection of » fields K(M,,---, M,_,, M,,,,---, M)). As
M,---, M, are independent over K, and as K(M,,-.-, M,) is a regular
extension of K, the intersection N\ K(M,---, M;_,, M,,,---, M,) is K.

Therefore the function @ is a constant, and we have /(0)=1.

THEOREM 1. Let I' x..-xI', be a product variety of n complete
non-singular curves I';. If a degree of a cycle a of dimension zero on
I x-.-xT, is sufficiently large, then l(a) is a polynomial of a degree
of cycle a with integral coefficients, independent of a.

PrOOF. By Riemann-Roch theorem, there exists an integer N;
for every I';, such that if the degree of a cycle b is larger than N,
then /(b)=deg b—g;+1, where g; is the genus of I, Let a be a cycle
of I'yx..-xI, of dimension zero, whose degree is larger than the:
maximum of N/s, then we have /(a;)=deg a,—g;+1 for every i, where
q; is the projection of a on I, From prop. 2, we have
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l(a):f:I1 (deg a;,—g;+1)=(deg a)*+(—1) @nl (g;—1)) (deg a)*~!
+e (=D (gil—l)---(g;j—l)) (deg a)"‘f+--~+(—1)"[:Il(g,~~
If we put ¢,=(—-1) 2(g;—1),--+, ¢, =(—1)" fl (g;—1), we have

l(a)=(deg a)" +c¢,(deg a)*7'+--- +c, (%) .

COROLLARY. The genera of curves I'; arve determined by the coef-
ficients ¢+, c, of polynomial (*). .

ProOOF. Let g; be genus of curves I';, then (g;—1) is a root of
‘the polynomial x"+c¢x*"'4..-+c,.

2. Hereafter we shall confine ourselves to the case where the
genera of I'; are the same. Let I',---,I", be n complete non-singular
curves which have the same genera, and let »; be a function on
I';xI'; such that v, (»;)=1 where 4, is the diagonal of I';xI;, By
lemma 1, for everzy set of » functions w,,---, w, defined above, there
exists a function @ of I'yXI', XI'yxXI'yx.--xI',xI',, such that (o, ,r)
=(w,;) for every i. Let 2 be a common field of definition of w ‘and
' <I' x--xTI',xTI',, X; a variety of the form I' xXI' x.-.-xI';_,xXI;_,
K A; K Dppy X Dy X ox I, and let My <M x---xM, <M, be a ge-
mneric point of I' xI' x---xI',xI', over the field k.

As the projection of X; on I', <X I' X o X ;o X Ty XDy X Ty X
xI',«xTI, is not the wvariety I',x<I' x-. /<F]__1><I’7_1><I’]+1><I“]+1><
xI',xTI, it j==i. Therefore we have X,.-(M1><]W;><---><]W]._1x1\4;_1
KXy My X MG < xX M, < M,)=0. If we put X:ﬁX,., then

i=1

X+(0)—X) is defined. In fact, if X<((v)—X) were not defined, then
there would exist a component of X, such that it is also a component
of ((w)—X). If we assume that X, is such a component of X,
then the integer d:le_(w) is other than 1. But the intersection
product (w)e (M, <X M;x< oo XM, X M;_ X I'; < Tix M, < M, < -« x M,
><M’) is defined, and has the form dM <M x---x M, 1>\M 1><A

M, <M x<---xM, <M,+Z, where Z is a cycle which does not
contam M <M< oo XM < M _ < d; < M < M <o x M, x M, as its
component. Thus we have v"i(wfi"l"i) ==d. But this contradicts to our

assumption.
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Let Z be a cycle of the form Z:i)Mlngx---xM_lxM_lxI’i«
=1

XL <M <M, > xM, <M, and Y a cycle of the form Y=
m—1)g M, <xM;x--xM, <M, where g is the common genus of I';.
Then the intersection-product X.((w)—X)+Z is defined. From now
on, the cycles with the same form as these cycles Z, Y, we call (£)-
cycles, (Y)-cycles. The projection of X«((w)—X)+Z—Y on the product
variety I',xI',:<..-«I', of the 1st, 8rd,.--, (2#—1)-th components of
' xI' x-..-xI,«I', will be called a canonical cycle of dimension
zero on I' <X I'y.-- X T,

The projection of a canonical cycle on the curve I'; is the cano-
nical divisor on I, The definition of canonical cycle depends not
only on the function », but also the cycles Z and Y; we have how-
ever:

PROPOSITION 4. Let t, and f, be any two canonical cycles on
I' x...xI,. Then there exist two canonical cycles ¥, and ¥, such that
t, £, are isomorphic to £, t, respectively, and t,~%, on I' < -.-xI,.

PrROOF. From the definition, there exist fields &, £/, and functions
w,, 0, defined over k, B respectively, and cycles Z,Y,; Z,, Y, defined
by using the fields &, &’ respectively, such that

f1 :prl‘lx---xrn(X' ((C‘)j)“X)'Zl—Yl) ’
f? :prl“lx-nxl“n(X'((Q)Q)ﬁX)'Z;’_ Y2) .

Let K be a composite of £ and # and Z,,Y, a (Z)-cycle and a
(Y)-cycle over K.

Then there exist two isomorphism ¢, and o,, such that Z3=2Z2,
Z2=7,, Y=Y, and Y?:=Y,. If we put f;:prrlx...xrn(X-((col)—X)oZ3
Y,), and f;:prrlx...xpn(X-((wz)—X).ZS—Y3), then these f; and f, are
canonical cycles, and we have f;‘lz(prplx...xrn(X-((ml)—X)-Z3—Ys))flM
=B rpeenr (X (@) =X)+Z,—Y), and o= (prppnr, (X+ (@) —X)Z,
—Y)))” :prl‘lx»-xI‘n(X° (0,) = X)Z,~Y)).

On the other hand, we have X+((w,)—X)+Z,—Y,— X« ((0,)—X)+Z,
_Y3:X‘((C')1)_X) Z3_X((C‘)2)—X)’23:X‘ ((a’l)_(@z))'Z3:X'(0)1/(‘)2)'Z3
=(X+Z,)+(w,/w,). Operating P¥ryxxr, ON both side of this equation,
we have f—f;~0, from prop. 4 of §1.
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Now we get the following theorem:
THEOREM 2. Let I',x---<I', be the product variety of n complete
non-singular curves I';, which have the same genus g. Then we have

l(a)=(deg a)" +B,(a) (deg a)*~" +-- +B;(a) (deg a)* ™" +--- +B,(a) .
BA0) =3 (—(g—1)7 (*=}#) Hii—j, o), and

H(i, )= 1T, ;(t—0)),

wherve t is a canonical cycle of dimension zero on I' | x---xTI,,1II j]...ji(f
—a) s the projection of t—a on I XX Ty, l([ljl...]-i(f~a)) ts the rank
of the module defined on I x.-xI; by ]IJ-1,..ji(f—a), and the last sum

1s taken over all the combinations of i elements from the set (1, 2,---, n).

PrROOF. From proposition 2, and theorem of Riemann-Roch, we
have

Uo) =TT (deg o~ g+ 1+7,(ay) ,

Whefe a; is the projection of a on I';, and every 74(a; is the index
of speciality of a;, on I'., If we put Bi(a)=2> TI (r]-k(a]-k)~g+1),

() 7

then we have l(a):zn‘l B,(a) (deg a)»~. Every B;(a) can be written in
=0

the form; Bi(a):i (""'j+f)(~(g~—1))fH(i—j, a), if we put H(, a)=
J=0

(Z‘S l(lel...]-i(f —a)).
COROLLARY. 1. Let t be a canonical cycle, then we have
It)y=g", BH)=()(—g+1), and degt=2g—2.

This is an immediate consequence of prop. 2 and th. 2.

COROLLARY. 2. If a and b are two cycles of dimension zero, such
that a~b on I' x---xTI,, then we have

Bi(a)=RBb) for every i, and deg a=degh.

PROOF. Let a;,b, be the projections of a,b on I'; respectively;
then we have a;,—b,~0 for every j. (cf. § 1. prop. 4 cor.). Let »,a)),
7j(b;,) be indices of speciality of a,b; respectively, then we have
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7i(a;)=7;0;), and consequently H(i, a)-=H(i,b). Hence we have B,(a)
=B,b). Therefore we have deg a=degb, from th. 2.

Two canonical cycles of dimension zero of the form DY xxr,
Xe[(0)—X]+Z —~Y,, 1)7’r1,<...,<rnX-[(co)vX]-Z2—Y2 with the same X[(w)
—X] will be called equivalent to each other. Every class of canoni-
cal cycles by this equivalence relation is called a subcanonical class
of dimension zero.

Now we introduce pseudo-differentials on I, x.--xI', as follows.

Let ®,,---,®, be the additive groups of differentials on I',---, I,
respectively. ©; forms a module over the field of functions on I
(cf. Weil [2]). Let ® be the direct sum of D,-.-,D,. Then D can

n

be considered as a module over the field of functions on I',x...xT,,
for the operation by a function ¢ on I' x-.-xTI',, on ® being defined
by ¢(al+---+an):(pr’-al+---+<p,«n-a’n where a,&D,.

We call an element a:i a; of this module ﬁ):i D, a pseudo-

differential on I' x ... xT,.

PROPOSITION 1. Let a= Za,, o = Z o) be two pseudo-differentials
on I' x---xTI',. Let w, be two functzons on F, X I'; such that a;={w},

. ={w?} (cf. Weil [2] p. 21), and put p,— {{C')j; . By lemma 1, there
Q)l

exist two functions o, o' such that (a)r xr, )= (®,), (a)r xr, )= (w;) for every i.
Let furthermore £, ¥ be two canonical cycles deﬁned by

f:prrlx...xr (Xe[(0)—X]+Z-7), f':prrlx...xr (X [(0)—X]Z-Y).

Then we have f--¥t - = (D7 p, .- XTI, X+Z)+(p), where @ is a function
on I' x-.-xI', such that (¢ri)—(¢,)
PrROOF. From the definition, we get by a simple calculation

V=M x---xM,_ x(@)xM, x---xM, By lemma 1, there ex-
ists a function @ on I',x-..xI', such that (@,)= (9, for every i.

Then we have f—f’:prnx...xpn (X<Z)+(p) with this ¢
Therefore, for every pseudo-differential «, there corresponds a

canonical class ¥ uniquely.
Let @ be a function on I'; x..-xI',, and M, x..-xM, and M,x -
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x M, be independent generic points of I',x..-xI', over a common
field of definition of @ and I',x<...xI,.

Let qoai(ZW,-, M) be a function on I';xI'; defined over K(M,, M,
M—n M—n M-n: M;'+1,"', Mn, M;) by ¢ai(M7 M):¢(M1 X e X M x M
XM oo X M) — (M, X oo X M, x M, M., > ---xM,) and let «a; be
the pseudo differential on I'; determined by ¢, (M;, M)). Then we
define the pseudo differential of @ as > «; and dénote it by do.

PROPOSITION 2. Let @,vy be two functions on I')x<---xI',. Then
we have d(@ +V)=dp +dyr, d(pyr) =Ydp 1 pdi.

This follows immediately from the definition and Weil [2].

§ 3. On abelian varieties

We shall now deal with cycles of dimension zero on an abelian
variety.

THEOREM 1. Let A be an abelian variety of dimension n, then
there exist n complete non-singular curves I',,---,I',, which ave sub-
varieties, of A, such that the set of all points of the form > x; coincides
with A, where every x; is a point of curve I'; (cf. Weil prop. 80).

PrROOF. As A is an abelian variety, it is imbedded in the pro-
jective space PV (Chevalley [1]). Let L,=LN-»*! be a generic linear
variety of dimension N—#n+1 in PN over the field k, over which A
is defined. Then A.L, is defined and by virtue of theorem of Bertini
(Matusaka [1], Zariski [1]) A-L, is a curve I',, which is, like A,
complete and non-singular (Weil [4], Nakai [1]).

Now we assume that there are » complete non-singular curves
r,.., I, on A such that the variety Y, spanned by I',,---, I, has the
dimension 7.

Let &, be a field of definition of A and Y,, containing k. Let
L,., be a generic linear variety of dimension N—#n-+1 in PN over &,
and let I',,, be the intersection product of A and L,,,. Then I',,, is
a complete non-singular curve. We shall show that I',,, is not

N ,
contained in Y, if ==n. Let 2 u,;X;=0 1<<i<n-—1 be the defining

equation of L, ,, then there exists a generic point M of I',,, over
k(u;;) such that M is also a generic point of A over k,. If Y,
contains I',,;, then M is contained in Y,, but as %, is a field of
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definition of Y,, Y, contains the locus of M over k,, namely A. But
this is impossible, unless »==n. Therefore I',,, is not contained in
Y,, and the variety, spanned by I',---,I',,; has the dimension 7+ 1.
Thus we have proved this theorem by induction.

Let A be an abelian variety of dimension » defined over a field
K and PN a projective space in which A is imbedded. Let L,,.--, L,
be n generic linear varieties of dimension N—#n+1 over the field &,
such that all the coefficients of defining equations of L,,..-,L, are
algebraically independent over the field k. Let I'; be the intersection
of A and L;; then every I'; is a complete non-singular curve. We
call the set of these n curves I'; a generic system of curves of A
over k, the set of » generic linear varieties L; a set of generic
linear varieties for {I';}, and a set of coefficients of the defining
equations of L,---,L,, a set of coefficients for {I;}.

REMARK. If {I'},{I';} are two generic systems of curves of an
abelian variety, then I x..-xI', is isomorphic to I'yx..-xTI,. This
follows immediately from the following fact, which is itself easy to
prove.

Now let V be a variety defined over a field k, and X be a cycle
on V, defined over k, with expression X=32 a;A,. (Here and here-

after we call a cycle X on V ‘defined over k’ if every component
of X is defined over k.) Let o be an isomorphism of & on a field %'.
If we put X°=3> a;A?, then X’ is a cycle on V°. We call this cycle

X’ a transform of X by o. If X is rational over k, then X is defined

over the algebraic closure % of k. Let &, and 7, be extensions of o

to isomorphisms of % on %k, then we have X? —X?%, Therefore, as
the transform of X by o does not depend on the choice of extension
o of o, we shall denote it by X’ and call it a transform of X by
o. We shall say also X is isomorphic to X°.

PROPOSITION 1. Let I') be a complete non-singular curve defined
over a field k. Let k, be a field which is isomorphic to k, by an
isomorphism o. Let a, be a rational cycle on I', of dimension zero
over k,, then a,=a? is a cycle on I'y=TI? and we have l(a)=I(a°).

PrROOF. Let @ be a function on I', defined over the field %,, and
M a generic point of I') over k. Let M’ be the corresponding
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generic point of I', over k, If we put @’(M’°)=@(M)°, then @’ is a
function on I', defined over k,, and the divisor of @’ is isomorphic to
that of @. 1In fact, let 4, and 47 be graphs of ¢ and @’, respec-
tively, then we have A7=4, If we put ®=(0)—(co), then we have
(A, e (T % 0)) =A2e (', X @) = A7« ([', X O)=A 0+ (', x0). Hence we get
(@) =07 (A, (T, X O)) =prp(AZ+ (T, X 6)) = (9").

The mapping Y which maps @ to @’ induces an isomorphism of
L(a, k) on L(a,, k,), where every L(a;k;) is the set of all elements
of L(a,) defined over k. But by virtue of Weil [1] VIII th. 10,
l(a,)= rank of L(a,k,), and /(a,)= the rank of L(a,, k,). Therefore
we have l(a,)=(a,). |

PROPOSITION 2. Let I'y,---, ", and T',---, I, be two generic systems
of curves of an abelian variety A over the field k, over which A and
its law of composition ave defined. Let (u) and («') be sets of coeffici-
ents of {I';} and {(I'}} respectively, and let a be a cycle of ', x---xTI',
of dimension zevo, which is rational over the field k(u).

Let o be an isomorphism of k(u) onto k(u') over k, such that
o(I')=T"% for every i, then we have l(a)=I(a%). ;

PrOOF. Let @ be a function on I' x-.-xI', defined over k(u),
M x...xM, a generic point of I x-.-..xI', over k(u), where every
M., is a generic point of I'; over k(x), and ¢’ a function on I'ix-.-
x I, defined over k(') by @’(M; X ---xM)=@(M, x---xM,)’. Then
we have clearly (@)= (@?). Let Pr, be the restriction of @ on I,
and Pt be the restriction of @7 on I'’. Then we have (gorl_)“:(¢);i,).
In fact, as (@)e(M, X< -+ XM, XT;xM; X« xXM)=M x..-x M, %
(¢,~i)xM+1x---an, we have ((@)e(M, X+ X M;_\ XT';x M,,---x M)))°
=(P)7 « (M7 X oo XM XTI My X oo X M) = (@) « (M7 X -« X M7, X T
XM, Ko x MO)y=M? x ... ><1W;-’_1><(¢);l_,)><1\4;-’+1>< -+ X M¢.  Operating
the algebraic projection on both side of this equality, we have (q;r'_)a
:(90};). Thus we have /(a;)=/(a?) where a; is the projection of a on

', Therefore from proposition 2 of § 2, follows I(a)=1I(a°).

Let a be a cycle of dimension zero on an abelian variety A, b a
point of A, and 7, a translation defined by b. Then we denote
T(a) by a,

PRroOPOSITION 8. Let I'),---,I", and I'},---, I",, be two generic systems
of curves of an abelian variety A over the field k, over which A and



198 A. Hirar

the law of composition arve defined. Let a be a rational cycle of di-
mension 0 on A over k. Let F and F' be loci of points M, < ---M, x

i M, and M;x---xM, < i M:; over the fields k(n) and k(u') respectively,
i=1 i=1

where (u), (u') are the sets of coefficients of {(I';}, {I'}} respectively. and
every M, is a generic point of I'; over k(u), while every M, is a generic
point of I': over k(u'). Let t be a generic point of A over k(u). If
we put Q=prp.xp Fo(I X XTyxa), and Qy=prrpw.xp, Fo (X
x I, xa,), then Q, is isomorphic to 0, where t' is a certain generic
point of A over k().

PROOF. Let o be an isomorphism of A(x#) on k(). Then o
transform I", x..-xI', on I')x---xTI",, and this o can be extended to
an isomorphism of k(M,---,M,u) on k(M,---,M,,u’). Let t' be the
isomorphic image of £ by an extension of o to k(t, M,,---, M, u). Then
t' is a generic point of A over k(x#'). We have F’=F' for this o.
In fact, let 4 be a law of composition of A for n elements, then

‘A-(M1><--~><MnxA):Ml><---anxﬁM, and A«(M;x---xM, xA)
:M;><~-><M;,><iM;. Hence we have M;x---xM;x(iM)“:(A.
1=1

(Mx---><M,,><A))"=A-(M1><---><M;,><A)=M{><---><M;><Zn] M;, and

this shows that F’=F'. Thus, we have (F«(I',X---XI',xXa,))=F«I]
X+ x I, xq,), and operating prr,.«.xr , on both sides, we get our
proposition.

/(a,) is determined by a generic system of curves {I'}, a cycle a
of dimension zero, a generic point ¢ of A, and a field k. To show
this dependence on these variables, we denote /(a,) by {({I"},a,t, k).

PROPOSITION 4. Let A be an abelian variety defined over a field k,
a a rational cycle of dimension zero on A over k, a generic system of
curves of A over k, and (u) the set of coefficients of {(I'}}. If t and t
are generic points of A over k(u), then we have I({I'},a,t, k)=I({T"}, a,
v, k).

PrROOF. Let o be an isomorphism of Fk(x,t) on k(x,t’') over k(u),
A the law of composition of A. i

Then we have (A«(axtxA))=(artxa,)=a’xt' x x(a,) =A«(a°
xt'x A)y=axt'xa?. The algebraic projection of this equality on A
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shows (q,)’=a,.

Therefore our proposition follows from proposition 2.

Propositions 2, 3 show that /({I';}, a,¢, k) is independent of choice
of {I'},t. And as for k, the independency of /({I'}, a,t, k) of k is
easily shown from the fact that I({I';}, a,t, k)=I{T"}, a,t, K), where
K is a field containing £k, {I"} a generic system of curves over K
and ¢t a generic point of A over K(x). Therefore I({I'},a,t, k) de-
pends only on a, and we denote it by Z(a).

PROPOSITION 5. Let a and b two cycles of dimension zero on an
abelian variety. If ax~b over A, then we have l(a)=I(b).

PrROOF. Let & be a common field of definition of A and of the
law of composition of A, over which a and b are rational.

Let {I';} be a generic system of curves of A over £ and (#) the
set of coefficients of {I';}, and t a generic point of A over k(u).

Let F be a variety defined in proposition 8, then we have [(a)
=I(@,) and I(b)=Ib,), where @ =p7ryxexy, Fo (' %+ XTI, xa,) and b,
:prrlx...xpnF-(I“lxo--><I’,,><bt).

Now let T, be a translation on A defined by ¢; then we have
a,~b,. Infact, by proposition 1 of §1, a—b~0 implies (a—b)xA=0
on AxA. As the translation T, is everywhere biregular, we have
T,+((a—b)x A)~0, from proposition 38 of §1. Hence a,—b,~0, from
proposition 4 of §1.

By the definition of F and proposition 2 of §1, we have Fe+(I', X
e T, X (a,—b))~0 on I', x---xI', X A.

The cor. of proposition 4 of §1 shows that prr, Fe(I')xX---xTI,
X (a,—b,))~0 on I';, for every i, then our proposition follows from
proposition 2 of § 2.

Now the genus of a curve belonging to a generic system of
curves of A—we shall call it the pseudogenus of A—is a uniquely
determined number depending only on A, i.e. if {I'} and {I";} be any
two generic system of curves of A, then genus of I'; is the same as
that of I'; for every 7,j. In fact, let ¢ be an isomorphism of I'; on
I'’, and a a cycle on I'. Then we have /(a)={/(a’) by proposition 2,
and then Riemann-Roch theorem shows our assertion.

We therefore can speak of the canonical cycles over the product
variety I') x-.-xTI',, and we have the following proposition.
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PROPOSITION 6. Let a be a cycle of dimension zero on an abelian
variety A of dimension n, rational over the field k, over which A and
the law of composition of A are defined. Let (I'} and {I'}} be two
generic systems of curves of A over k and (u) and (4') be the sets of
coefficients of generic systems {I';} and {I'}} respectively. Let further-
morve t, and t' be generic points of A over the field k(u) and k(u')
respectively, and t,t' canonical cycles on I' x..-xI', and TI'ix---xTI,
respectively. If we define a, and a, in the same way as in proposition
3, then we have

IE—a) = —a)).

PROOF. Let t and s be two generic points of A over the field
k(n). Then there exists an isomorphism o of k(#,t) onto k(x,s) over
k(z) which maps ¢ onto s. From the definition, and the th. 9 of
Weil [1] VIII, there exists a canonical cycle f, which can be written
in the form,

b= 33 M, e X Moy X 97 (40 [() — 41X M X
eee Mn _prrlx.,.xrn Y

where M, x<-..-x M, is a generic point of I',x...xI', over the field
k(u,t) and o; is a function defined over the field k(,t).

If we extend o to an isomorphism of k(«,t, M) onto k(u,s, M)
where every M is a generic point of I',, then the image £/ of f, by
o is also canonical.

In fact, & =3 M;x-.-x M., XPrpdis (@) — 41X My oo X M, —

i=1
Prrx.xr, Y= Zn]ij e XM X prrd;e [(of) — 4] ¥ M, X+ xM,—
n i=1

P7r exr, Y.

Therefore /(f,—a,) =t —a7)=I{; —a,)=I(t; —q,). From proposi-
tion 2 of §2, we have /(t—7q,)=If,—7q,), and /(f —a,)=(f; —a,). Hence
we get J(t—a,)=I(t—Tq,).

Let = be the isomorphism of k(%) onto k(') such that 7((u))=(«).

Let f{ be the image of f, by =, then {7 is a canonical cycle of
ryx...xr,. In fact we have
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f?‘-:ilerX "'XMiT IXPVF/A:'[(O),)T“A:]XMil><"'XM;

—pf’pl;x...xrn,YT .

But, as every 47 is the diagonal of I';xI'; and (w,)* is a divisor
of w7, fT is a canonical cycle of I'ix-..-xI,. And we have (f,—a,"
=(ff—d,r). Then by prop. 2, we get I(f,—a)=I(fi—ar). But as ff
is a canonical cycles of I'/x-.-xI,, we have [(f,—a,)=/f;—q,), and
therefore /(' —a-)=I(f'—a,). Hence we have l(f—a,)=It —a,).

This proposition means that the value of /(f—a,) depends only
on the cycle a. If we put therefore r(a)=I(f—4q,), then r(a) depends
only on a.

PROPOSITION 7. Let a and b be two cycles of dimension zero on
an abelian variety. If axb, then we have t(a)=1(b).

This proposition is an obvious consequence of proposition 5.

Let F be a rational mapping of I',x..-I', on A, defined in pro-
position 8, then the number d=[F: A] depends only on A, and does
not depend on the choice of generic systems of curves of A. We
call this number d the index of A.

THEOREM 2. Let A be an abelian variety of pseudogenus g and of
index d, and a a cycle of dimension zero on A. Then we have

l(a)=d"(deg a)" +d"'B,(a) (deg a)** +--- +d""iB(a) (deg a)*~ i+
+/8n(a) ’

B(a)= z‘. (—(g—1))7 (*i+)H(i—j, a)

H(i, a)=2] r(vrjl...,-‘_(a)) ,

where i@ 1S the projection of a on FJ'IX"7><F7',-’ r(m—jl._.ji(a)) s con-

sidered on I'; x---xT;, and the last sum is taken over all the combi-
nations of i elements from the set (1,2,---, n). :
ProOF. Let E be a field of definition of A, over which a is
rational, {I";} a generic system of curves of A over &, () the set of
coefficients of {I';}, and t a generic point of A over k(u). Let @, be
a cycle defined by prrc..r, F«(I' x.--xI',xa,), then we have, by

theorem 2 of §2,
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l(az) = (deg a[)n +181(at) (deg az)n_l e +Bi(at) ¢ (deg a:)n—l +

ot +Bn(a1) ’
B:@) =3 (—(g—1)i"i#)Hi—j,a), and

HG,a)=3 U, .., (£-7),

where f is a canonical cycle of dimension zeroon I' x.--xXTI',. From
the principle of conservation of number, we have dega,=d dega.
From proposition 7 follows B;(a)=28,(a,), and H(s, a)=H(i, d,), and have
our theorem.

COROLLARY 1. Let A be an abelian variety, and a,b two cycles on
A, such that ax<b, then we have

deg a=degb, and B;,(a)=pB"b).

PROOF. From prop. 7, we get B (a)=B«(b). From this and prop.
5 and the above theorem, we have deg a=degb.

COROLLARY 2. Let A be an abelian variely, a a cycle of dimension
zero on A, and B;(a) the function defined above.

If the degree of a is sufficiently lavge, then we have

Bi(a)=(—1) () (g~1).

It is an obious consequence of theorem 2 and prop. 6.

§ 4. Birational invariance

Here we shall prove the birational invariance of /(a), B,(a) the
pseudogenus and the index d of an abelian variety A. From now
on, we assume that every abelian varieties to be considered is con-
tained in a projective space PV

PROPOSITION 1. Let A and A’ be two birationally equivalent abelian
varieties of dimension n. Then there exist generic systems of curves
{I''y and {I'}} of A and A’ respectively, such that every I'; corresponds
to I'; birationally.

Proor. Let T be a birational correspondence between A and A'.
We may assume that A, A’ and T have their representative A,, A,
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and T, in the same representative P, of PN. Let %k be a common
field of definition of A,A’ and T, and x,---,x, are n independent
generic points of A over k2 If we put x,=7(x,), then xi,---,x, are
n independent generic points of A’ over %, and k(x,)=Fk(x,) for every
. Let ufp,-,u”,1<j<N,1<i<N—n+1) be nN(N—n+1) inde-

N
pendent variables over A(x,---,x,). If we put «{®=> %, u{®, then
j=1

uP 0<j<N,1<i<N—n+1)are (N+1)(N—n+1) independent vari-
ables over k for every i, k. Let L, be a linear variety defined by

N .
equations X #¥X =0 (1<{<N-—n+1,0<j<N); then L, is a generic
7=0

linear variety, and A+L,=TI", has a generic point x, over k(u{®). By
the same method, using (#{?)1<j<N,1<i<N-—#n-+1 and x,, we define
generic linear varieties L,, and curves I', =A’«L, which have x, as
a generic point over k(«;®), where u®=u{ for 1<j<N and ¥

N
=2 1} %, ; w¥. Then we have k(x, u?;)=k(x,,u;%). Therefore, I'; cor-
=

responds to I'; birationally for every i¢. As x,---,x, are independent
generic points of A and x,---, %, are independent generic points of
A’ over k, {I';}} and {I';} are generic systems of curves of 4 and A’
respectively over k.

This proposition shows the birational invariance of pseudogenus
of abelian varieties.

REMARK. This curve I'; corresponds to I'; everywhere biregularly
by T for every i, because T is everywhere biregular.

Let A, A’ and T be the same as defined above in prop. 1, let a
be a cycle of dimension zero on A, and o’ a cycle of dimension
zero on A’ defined by o' =pr, T +(axA). ‘

Let K be a field containing k, such that a and o’ are rational
over K. 1If t is a generic point of A over K, then t'=pr, T < A’)
is a generic point of A’ over K.

By prop. 1, there exist generic systems of curves {I'}, (I'}} of A,
and A’ over K, such that I'; corresponds to I'; birationally, and so
I' x..-xI', corresponds to I'{x-.--xI', birationally. Let x x...xx,
and x;x---xx’ be biregularly corresponding generic points of I',x
<o xI', and I'ix---x I, over K, such that x, corresponds to x, bire-

gularly for every ¢. Let B be a locus of xlx---xxnx(ixk)xx[x
k=1
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---xx;x(i‘x’) over k, then B«(I')x.--xI',xa,xI'|x-xI,xA") is
k=1

defined. By Weil [3] th. 9, T can be written in the form T'=T* + g,
where T* is a homomorphism of A into A/, and a is a rational point

over K. As T(x)=T*(x)+a, and T(ix,.):"lZT*(x):a, we have

T(jl x,)= 21 T(x,)—(n—1)a. This proves that K(ﬁl x,) :K(z"1 x)). There-
foxfe we Lave H.(@,xrI;x..-xI,)=a,, where la,:prrlx..‘.xpn Fo(I';x -
XTI, xa,)), 6;,:prrl,x...xrn, Flo(Pix--- XTI, xa,,), t"=t'+(n—1)a and H is
a locus of x, x-.-xx,xx x---xx, over K.

Let @, ;,q,., be the projection of a, @,, on I', I'; respectively, and
H; be a locus of x;xx; over K, then we have

prriH;t (at:ix FI) 26;,1_,- .

Let @ be a function on I';, which is an element of a complete
linear system L(a,;) on I';, and K’ be a common field of definition of
@, I';, T';, and H;; let further y,xy; be a generic point of H; over K/,

where y;, and y; are generic points of I'; and I'; respectively over
K. If we put @'(¥)=9(»,), then ¢’ is a function on I}, and by Weil
VIII th. 7, we have prri,-I-I,.-((q))xI’}):(q)'). As ¢’ is obviously
an element of a complete linear system L(q,.;), the mapping ¢— ¢’
induces an isomorphism of L(g,;) onto L(q,.;), and we have /(d,))

=/(a,. ;). Since, by proposition 2 of § 2, l(a)z["] la,,), l('d’):f[ i(a,. ),
i=1 f=1
we have the following :
PROPOSITION 2. Let A and A’ be two birationally equivalent abelian

varieties. Let a be a cycle of dimension zero on A, and o' the cor-
responding cycle of dimension zevo on A’. Then we have

la)=IUa'), B(a)=RB,(a"), and d=d,
where d and d are indices of A and A’ respectively.

PROOF. A canonical divisor f; on I'; can be written in the form -
prr 4;«((w;)—4;) where 4; is the diagonal of I';xI'; and o; is a func-
tion on I';><I'; such that »,(w;)=1. Let R; be a birational corre-

:
spondence of I';<I'; to I';xXTI';,, and K"’ be a common field of definition
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of w, I'y)xI';, I';xI'; and R, and let y;,xXy,,xX¥;,x<¥;, be a generic
point of R, over K. Let o; be a function on I';x I, defined by
O Yiu X Vo) = @i i1 X Yy0), then v, (@) =1, and we have prr.. R ((;)
—A) X I'yX T'y) = 4)((o;) — 4;). Therefore we have B;(a)=p8,(a’).

As for d and d, K(ix,.):K(i x), and K(x,,---, x,) = K(xi, -+, X))
prove d=d'.
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