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An operator-theoretical integration
of the wave equation.

By Kosaku YoOsSIiDA

(Received Jan. 30, 1956)

§ I. Introduction and the theorem. We consider the Cauchy
problem for the wave equation in m-dimensional euclidean space E™:

an D _Au,n), w0, =fx), w092,
& +bi(x) 0
0X0X; ox;

iy i

A= a"f(x) —I—C(x)’ x=(x1,---, xm) .

The problem is equivalent to the matricial equation

(L.1y vaﬁ(u(t, x)) _ (0 I) (u(t, x)) ’ (u(O, x)) _ (f(x)) ,

at \v(t, x) A 0/ \v(t, x) v(0, x) B g(x)

and we may apply the theory of semi-group of linear operators” to
the integration in the large of (1.1), by considering, in a suitable
Banach space, the ¢ resolvent equation”

((g (})—n‘l(gl g)) (:f)z(g) for large |n|, (n=integer)

and obtaining the estimate

(1.3) () =a+inm(F)

where B is a positive constant independent of #, f and g. The ir-
relevance of the sign of » implies that

(1.4) (21 ({)

1) E. Hille: Functional Analysis and Semi-groups, New York (1948).
K. Yosida: On the differentiability and the representation of one-parameter semi-
group of linear operators, J. Math. Soc. Japan, 1 (1948), 15-21.
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generates a group {7,}_.¢,c. such that

(1.5) T, @3) = (zzf((tt,’ 3)

yields a solution of (1.1) when the initial functions {f(x), g(x)} are
prescribed appropriately.

In this way we may prove the solvability of the Cauchy pro-
blem in the large of (1.1) without appealing to the classical Cauchy-
Kowalewski existence theorem or to the Laplace-Fourier transform
theory®. Our result reads as the

THEOREM. Let (i) the coefficients ai/(x), bi(x), c(x) are real-valued
C~ functions and let :

(1.6)  max (sup |a@/(x)|, sup|di(x)], sup |c(%)], supj_a‘; (x)i’
x x X X k
| 9bi(x) ! ' aza'J(x)
su =1n< oo

Let (i1), moreover, there exist posztwe constants N and p such that
(1.7) p2EZai(EE =N DE.

Then there exists a positive constant B such that, for sufficiently small
positive constant o, the Cauchy problem for (1.1) is solvable in the
following sense: For any pair {f(x),g(x)} of C~ functions such that
(A*)(x), (A*g)(x) and their first partial derivatives are square integrable
over E™ (for all k=0,1,.---), the equation (1.1) admits a C> solution
u(t, x) satisfying the estimate

(1.8)  ((#—a,Au, u)+ ot y(u,, ,))"* <exp(Blt]) (f—a,Af, )+ a8 gN'?,
(h, k) denoting, as usual, the inner product

(1.9) (h, k)= SEm h(x)k(%)dx, dx— dx,dx,--dx,, .

2) Cf. J. Schauder: Der Anfangswertproblem einer quasi-linearen hyperbolischen
Differentialgleichungen, Fund. Math. 24 (1935), 213-246, and J. Leray: Symbolic Calculus
with Several Variables, Projections and Boundary Value Problems for Differential Equa-
tions, Princeton (1952). The two authors ingeneously make use of the Cauchy-Kowalewski
existence theorem in their treatment.
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Before proceeding to the proof of the theorem, we must prepare
some lemmas concerning the elliptic differential operators A and its
formal adjoint A*:

(1.10) (A*f) (x)= ox > (@/(x) (%)) — - o (b'(x%) f(x)) +c(x) f() -
xaxj 0x;

1

§2. Lemma 1 (concerning the partial integration). Let
H be the space of real-valued C- functions f(x) for which

en = (§ x| (2 )a)”,

and let H, be the completion of H with respect to the norm ||f]|.
Let similarly H, be the completion of H with respect to the norm

@2) Ifll=(§ 7oas]

We have thus introduced two real Hilbert spaces H, and H,, and H
and H, are || ||,-dense in H,.

LEMMA 1. Let f,g=H, and let Af=H, Then we have

« : .; Of og oa’7 of
2.8 Af, g)=— ij 9 Y8 dx— o¢” Y9 od
(2:9) ( fg) S Ema ox; 0x; S gm 0X; 0X; gax

+S b’ faf;gdxntg cfgdx,

Em axi Em

viz. we may, in (Af, g), partially integrate the terms containing the
second orvder derivatives as if the integrated terms arve nought.

Proor. By (1.6), Af&H, and the fact that f and g both belong
to H, we see that a"f%‘g is integrable over Em, We have, by
X,0% ;

Fubini’s theorem,

2 = 01 2
S ai _OF | gdx—lim S S dxz-"dme wi O gdx,
gm 0x0x; d1e 0X,0%; .

-0 €1 3 J
g1 >—o

and

Sslaij,,j?_?f@ o g dx1 = [alj gf g]xl:aq_ { Qal_ali afﬂ &% dx

636,»6.76;‘ x . xX1=¢€1 €1 ) ax axl !

€1 7
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81 §ali af d } 86; . 62f
-\ 7 e gdx, i+ ai. “J _gdx
S ox, ox, g% :‘,;‘2#2 0x,0%; &%

€1 €1

=K,(8,5 € Xoy-++5 X,,,) +£,(8 )y €5 Xy ey X,,,) +16,(85 €15 Xpyevy X,,) «

By (1.6) and Schwarz inequality we have

(S“’ dezdxm ©,(8,, €, Xosy xm)} =

jJ — o0

7 Z,J (S - Siaf@!z’g;.”’ xm),!gdxf-.dxmx S _: Sg(Sl, Xyyory X,)° dxz...dxm) "

J

+similar terms pertaining to e, instead of 3.

We have, by Fubini’s theorem,
S grdx= Smdx1 Sm Sg(xl,-.-, x,) dx,---dx,, .

E —oo

Hence we see that

limSTu Sg(xl,---, x,)’ dx,---dx,,=0

when x, tends to co (or —co) without taking the values of x, which
form a set of finite measure. The same reasoning applies also when
we replace g by 9f/ox;, Therefore there exist two sequences {&®)

and {e{¥} such that

(2.4) lim S‘” S,cl(sgw, B, x,y0--, %) diye--dr, = 0.
3R oo =

E(lk)"’—‘”

On the other hand, we see, remembering (1.6) and the fact that
f, & 0g/ox, and 9f/ox; belongs to H, that

;im S S"2(81’ €1y Xgyr*y X)) dx,---dx,
1 -— 00

13 Sadadiad

S [ o o
EM ox; 0x, ox, 0x; :

" exists and is finite. Therefore
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S a Bjaf gdx=«,+ ]Egn Sm SK3(3(lk), e(®, x4, %,,,) AX,---dX
E™ 8

ROTS

—00Y — o0

Thus
3(k) .
1 ai 9 f gdx

) 1
RORSES 0x,0x;

is integrable over the domain defined by —co <<x;< oo (1=2,--+, m).
Hence

k= lim S st(agkg e, 2,00, %,) A%, d,

B(Ik)—wo —ee
KO-
1
. oo . 0 6€k) a
= lim lim S desmdxm‘g dng > ai- f gdxl} .
FIONRSI N €a RORSES 6x6
SO
However
PO ‘ \
[ ‘:S de > afi——a—Lgde
ROBERLESE 0x,08;
"(k of =t (% .. 9f @ % oa¥ o
(" e £ f g (" O 0 gy, (%007 OF ggp ]
5(1k) xg=eg  Jeg 6x ax €2 6x2 axj

o 5,
+S Ss > @i of gdx dx,.
Q)

eairjl,2 ax, ;

By (1.6) and Schwarz inequality, we have

V5 fonean o 2 g,

6f oo 12

énz (S S( ) dx, dxg---dxmxg SgQa'x1 dxgu-dxm)

Since 0f/ox, and g both belong to H, we see, as in the case of [2.4),
that there exist two sequences {8{?} and {e{?} such that
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oo o1 af -Tn=5:gl)
lim S des---dxmg [a2f g] dx, =0
3Doew Yoo o ox; xa=e{P)
Do
2
uniformly with respect to 8, and ¢, We have also, by (1.6) and the
fact that of/ox, o6g/ox, all belong to H,

2 O 080 o g
ox; 0x, ox, ox;

o0 o
lim lim S---deg---dxmg dxls (-a
6Ek)—>oo 62—»00 - 00 eg) €2

egk)—v— o0 gg =00

= Sw S ( —a¥y ,_afﬁ ag‘ — «aazi ‘,afﬂ g) dxldxm .
ox; 0x, 0x, 0x;

- oo

Therefore

S aii of gdx=— (S ai of og. dx)
Em 3xtax] Em ior j=1,2 6x, ax]'

_ ( S 0a of gdx)
gm iorj=1,2 axi axj

agk) Bgl) .

> @i O gdx, d,.

+ lim lim Sw de3---dxmg S
NORRORS i ox,0x;

Egk) — =00 eg”—»— oo

Repeating the same argument we obtain [2.3).
REMARK. If f,g=H and if A*fcH, we may, in (A*f, g), partally
integrate the terms containing the second order derivatives as if the

integrated terms are nought:
oai ffagﬁ dx

2.8) (A%, g)=~S ai o 08 4. S oat 108
E™ i i

—S b‘fﬂgiderS cfgdx.
E™ Xi E™
COROLLARY. There exist a positive constant « and, for sufficiently
small a>0, positive constants v and & such that, .
f—aAf, f) if fcH and AfcH,,

(
@5  slifli= =@+an IfIE
(f—aA*f, f) if f&cH and A*fCH,,
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|(f—aAdf, 8)| if f,gcH and AfcH,,
(2.6) = QA -+an)|ifll« gl
| (f—aA*f, g)] if f,gcH and A*fcH,,
@7 [(Af,2)—(f, A2)|<«|Ifll,- llgll,  if f,g=H 4nd Af, Ag=H,
PROOF. (2.5)-(2.6) may be proved by (1.6)-(1.7) and (2.83)-(2.3)
remembering the inequality
2a |ab| < a (ela)>+<7']b]Y), (¢ and ¢>0),
since f and g both belong to H,. Similarly we obtain (2.7) from

“Af)—(f, Ap-—{ |2 giﬁgj g
E™ ) 2

R . of _ obi
4+ =L fg-2bi L g T dx.
axiaxj fg ang ax, fg
The right hand side is obtained by and the expression obtained
from corresponding to (f, Ag) in which we have partially in-

tegrated the terms containing the factors like fx (8g/0x;).

§ 3. Lemma 2 (concerning the existence of solutions of
u—n‘*Au=f). We invoke to Milgram-Lax theorem® for the proof
of the Lemma 2 below. For the sake of completeness, we here give
the full statement of the theorem together with its proof.

MILGRAM-LAX THEOREM. Let a bilinear functional B(u,v) defined
on the Hilbert space H, satisfy the conditions :

(3.1) | B, )| <" [|ue]l, « [v]],, 0<<¥/ <o,
(3'2) 3'Hullf§.3(%’ u)y 0<<d oo ’

Then, to any v=H, there corrvesponds a uniquely determined v*=SvcH,
such that

(3.3) (%, v),=B(u,Sv) for all u—H, ((#,v), denotes the inner product
n H),
(3.4) & | Svll, < llvll; .

3) P.D. Lax and A.N. Milgram: Parabolic Equations in “ Contributions to the Theory
of Partial Differential Equations ”’, Princeton (1954), 167-190.



86 K. Yosipa

ProOOF. Let {v,v*} be a pair of elements of H, for which we
have (u,v),=B(u#,v*) for every u—H, v* is determined uniquely by
v, since B(u,v*)=0 for all u—H, implies

3'””*|l§“’§B(U*s v*)zof

Moreover, the operator S(v*=Sv) is continuous and holds good
since

&' || Svlli = B(Sv, Sv)=(Sv, v), < ||Svl|, « || 2], .

Thus the domain D(S) of the operator S is a closed linear subspace
of H. Assume D(S)z=H, Then there exists w,&=H, such that

(3.5) (w,, v),=0 for every ov=D(S) and |[lw,||Z=0.

We consider the linear functional F(z)=B(z,w,) on H,. It is a
bounded functional since

| F(2)|=|B(z, w))| < 7' ||zll, « llw, I,

and hence, by Riesz theorem, there exists w;—H, such that F(z)
= B(z, w,)= (2, w;),, Therefore w,=D(S) and Sw;=w, This is a con-
tradiction, because of and [3.2):

8,”7'09 ”ng(ww w,) = (wy, w;),=0.

Therefore D(S)=H, and the theorem is proved.

LEMMA 2. Let a positive number o, be chosen so small that the
Covollary of the Lemma 1 is valid for 0<a < «a, Then, for any func-
tion f(x)cH, the equation

(3.6) u—aAu=f O<a=a,)

admits a uniquely determined solution wu, (x)&H.
PrROOF. Let us define a bilinear functional

ﬁ(u, V) =(u—aA*u,v)

for functions #, v H satisfying A*»<—H,. From the Corollary of the
Lemma 1, we have

3.7 | B, v)| <L+ an) Wuell, - Nloll,,  8|lu|)2< B, u) .

A
Hence, by continuity, B(#,v) may be extended to the bilinear func-
tional B(u,v) defined on H, satisfying
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8.7y | B(u, v) | < (1 +av) |lull,« |lv]l,, Sl|lu|li=<B,un).
Consider the linear functional F(x)=(u,f) defined on H,. It is a
bounded functional since

[, NI lull, <Nl fllo=1lnll, « 11l

and hence, by Riesz theorem, there exists a uniquely determined
v=ov(f)&H, such that (%, f)=(#, v(f)),. Thus, by Milgram-Lax theorem,
we have
(3.8) (%, )= B(u, Sv(f)) for all ucH,.

Let # run over C= functions with compact supports, and let
v,=H be such that

lim [|v, —Sv(f)|l,=0.

71 oo

Then

B(u, Su(f))=1im B, v,) = 1limB(u, v,) = lim (— aA*u, v,)

= (u—ocA*u, S?)(f)) ’
since the norm || ||, is larger than the norm {| [[,, Hence
(3.8) (, )= (u— aA*u, Sv(f)) .

f(x) being any C= function with compact support and (I—aA*) being
an elliptic differential operator with C= coefficients, we see, by L.
Schwartz theorem?, that »,=Sv(f)=H, is a C~ solution of [8.6).

The proof of the uniqueness of the solution of [8.6). Let a
function #—H satisfy

u—aAu=0,

Then Au belongs to H and hence to H,. Thus, by the Corollary of
the Lemma 1, we obtain

O=(w—aAu,u) =3||u||}, viz. u#=0.

§4. Proof of the Theorem. We first prove the
LEMMA 8. Let the integer n be such that \n='| is sufficiently small.

4) L. Schwartz: Théorie des Distributions, Paris (1950), 136.
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Then, for any pair {f, g} of elements —H such that AfcH, the re-
solvent equation

02) (6 2] 3} (2] = (Z)

admits a uniquely determined solutions {u,v}, u and v_H, satisfying
(4.1)  ((#—a,Au, u) +a,(v, v))* < (1 +B|n'|) (f— a,Af, f) +a,(g )",

with a positive constont B independent of n and {f, g}.
.PrROOF. Let #,&H and v,=H respectively be the solutions of

u,—n’Au,=f and v,—nAv,—g.
The existence of such solutions was proved in the Lemma 2. Then
u=u,+n'v,, v=n"'Au +v,

satisfies (1.2).
The proof of (4.1). We first remark that

Au=n(v—-g)cHC H, and hence Av=n(Au—Af)CH,.

Therefore we may apply the Corollary of the Lemma 1. Thus, by
(1.2),

(f—a,Af, ) =w—n"'"v—a,Au—n"'v), u—n"'v)
= (u— o, Au, u) —2n""(u, v) + an""'(Au, v) + an='(Av, u)
+n Y (v—a,Av, v)
and
a8 8)=a,v—n'Au,v—n"'Au)
=, (v, v) — amn~ (v, Au)— an~'(Au, v) +an -2 (Au, Au)
inﬁply that there exists a positive constant B satisfying
(f— 2 Af, f) + (& &) = (u—a,Au, u) + a,(v, v)
—a,|n7'| | (Av, u) — (Au, v)| - 2|n"| | (, V)]
=1+8|n"')7? (2 — a,An, u) + a,(v, v))

for sufficiently large |n]|.
The above estimate for the solutions {#, v} belonging to H shows
that the solutions are uniquely determined by {f, g}. Q. E. D.
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The product space H,® H, of vectors

4.2) (Z)z{u,v}’, where #—H, and vcH,,

is a Banach space by the norm

43) (%) =1 o)1= (= tyAat, )+ a0, o).

Let the domain D(A) of the operator

(4.4) o — (?4 (‘;)
be the vectors {u,v}'&H,® H, such that
u,v—=H and Awm—n'v)cH,, v—n'AucH.
Thén, the shows that the range of the additive operator
(g 9) —n~'9 coincides with the set of vectors {f, g}’ in the

Moreover, it is easy to see that the set of such vectors {f, g}’ is
|| |]-dense in the Banach space H®H, Hence we have the

COROLLARY. The smallest closed extension U of the operator U is
such that the operator

(4.5) S—n-— (g (}) A, (n—integer),

admits, for sufficiently large |n|, everywhere (in H,Q H,) defined inverse
S, = (S—n"A)"! satisfying
(4.6) I3 l=Q+8In]).

Hence, by the semi-group theory” and the irrelevance of the sign
of n, there exists a uniquely determined group T,:

(4.7) T,(f ) _strong lim exp (¢ ‘%Tg«,,)(f )

g 1 —roo g
of linear bounded operators 7', on H® H, into H,® H, such that
(4.8) T,T.=T,, (— oo <t,s<c), T,—the identity I,

@9)  IT/liSexp (8It]), strong lim T, (] ) =7.,(]),
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(4.10) if (:g’: ) is in the domain of the ¢ infinitesimal generator ” 2,

we have strong lim »Y(T,,,—T) (ie‘:) =§T,(£) =T,%A (;;) .

h—0

Now, by the assumption of the Theorem),
4.11) AcH and AtgeH (E=0,1,--).

Hence we see that

4.12) ﬁk(g) =2’Ik(£)EHI®H0 (k=0,1,--),

viz. the vector {f, g}’ is in the domain of the every power of A
Therefore, by (4.10), the vectors

u(l, x)\ _p [f(%)
(“13) (5, 9) = Tl46)
are in the domain of every power of A and
Sre (%, %)
(50 3)

belongs to H®H, Therefore, the *distribution ”
(4.14) U,. ¢=S u(t, x) (x) dx (the testing functions @ run over
EmM

C= functions with compact supports)
is such that, for every k=0, 1,--., the ¢ distribution ”
(4.15) A+ U,

is the ¢ distribution” defined by a function which is locally summable
(in the truth, this function belongs to H,). A being an elliptic diffe-
rential operator with C> coefficients, we see, by a theorem due to
L. Schwartz®, that «#(¢, x) is a C> function in x.

Thus (i, x) is, for fixed ¢, not only belongs to H, but also belongs

5) L. Schwartz: Théorie des Distributions, II, Paris (1951), 47. Actually, the theorem
is proved for the case when A-=the Laplacian. However, since the proof is based upon
the fact that the parametrix of the iterated Laplacian 4% becomes more smooth as %
becomes large, the theorem may be extended to general elliptic differential operator A
with C= coefficients.
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to H. Hence the value at (¢, x)=(, x,---, x,,) of u(l, x) is determined
without ambiguity. We also see, from [4.7), that this function (¢, x)
is measurable in (£, x). And, by the estimate [(4.9), we see that the
function #(t, x) is locally summable in # —x space. To this function
we may apply every power of A and hence every power of

(4.16) d,,=the strong second order derivative with respect to ¢,
and
4.17) (8 ,)" u(t, x) = Aku(t, x) (B=0,1,--).

This we see by (4.10) and the fact that holds good for our
initial functions {f, g}’. Thus the ¢ distribution ”

(4.18) Uyr= SEmSlu(t, x) ¥(t, x) dxdt (the testing functions y run over

C~ functions in (¢, x) with compact supports)

is such that, for any k=0,1,.--, the ¢ distribution ”
(4.19) ' ( 2;2_ +A)kU=(2A)kU

is a “distribution” defined by a locally summable function in (Z, x).
The operator

(44
ot*

being elliptic in (¢, x), we see, again by making use of Schwartz
theorem®, that #(f, x) is a C~ function in (¢,x). Thus it is easy to
see that «(f, x) is a C= solution of (1.1).

Finally the inequality (1.8) is identical with the estimate |[|T,]||

=exp (B|t]) in [4.9).

REMARK 1. We may prove
(1.8Y (Aru— o, Ax*'u, Aru) + o (Aru,, Aru))?
=exp (B]t]) (AY —a,A*'f, A*f) +a(A*g, A¥Q)'"*, (k=0,1,--),

since (A*u) (t, x) is the solution of the original wave equation (1.1)
with the initial condition

(Au) (0, x) = (A*f) (), (A*u) (0, x) = (A*g) (%),
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to be obtained by our method.
REMARK 2. The above obtained solution u(f,x) together with
v(t, x)=u,(t, x) satisfy, by (4.10) and (4.9),

w20 (D8] (o) (W 3] o e o,

[543) 4]0 0 1=
(b2 1zexpiaith (J3) -

As was proved by E. Hille”, such solution is unique since the re-

solvent Snz(ﬁ‘f—n“g)“ exists and satisfies (4.6) for sufficiently large
||, n denoting integers.

I

Department of Mathematics,
Tokyo University.

6) A note on Cauchy’s problem, Ann. Soc. Polonaise de Math., 25 (1952), 59.
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