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A simple proof of Dirichlet principle.

By Masatsugu Tsuj1

(Received June 21, 1954)

1. In the usual proof of the Dirichlet principle, the solvabilty of
the Dirichlet problem is not assumed. But since this can be proved
simply by Perron’s method, if we assume this, then we can prove the
Dirichlet principle simply, which we shall show in the following lines.
First we shall prove two lemmas.

LEMMA 1. Let w(z) be continuous in a ring domain 4 : 0< p<|z| <1
and have piece-wise continuous partial derivatives of the first order and
its Dirichlet integral D [w]=D[w] be finite. Let u(z) be harmonic
in p<|2|<1 and continuous in p=|2|<1, such that u(z)=w(z) on
|zl=p and |z|=1. Then ‘

Dlu]<D[w].
Proor. Let in p<ll|2|<1,

u(2)=u(re®)=A log »+ a, +§ (apr*+a-xr~*) cos k6

+§1(bkrk+ b_r*) sin k6, (1)
where
2r . 2 . .
Gy= - S () do= 1j w(e?)de, )
2 Jo 2@ Jo
1 2n X 1 2r .
arta_p= -j u(e?) cos kO df = — S w(e®) cos k6 d6 , ) (2)
T JO T JO
1 2r . . 1 2r . .
bp+b_,= —S u(e) sin kO df= .‘j w(e) sin k6 d6 ,
m JO T JO : J
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2n 2
A log p+ay= *21750 u(PeiO)da—_— —21750 W(Peig)de , )
2= i 2r .
arpt+a_p k= —~1—j0 u(pe®) cos kO do= —l—jo w(pe®)cos kO db, ) (2/)
aw ar
2x 2
brpt+b_pp=t= .Lj w(pe®) sin ko do= Lf w(pei®) sin k6 do .
T JO T Jo /
We put

u,(2)=Alog r+ a,+ :Z; (apr*+a_,r~*) cos k6 + kzn; (bpr®+b_pr~*)sin k0, (3)
then 4u»=0 and

Oun _ A + ﬁ k(apr*'—a_,r %) cos kO + i k(bpr*t—b_pr % 1) sin k6,
o r k=1 k=1

so that
2 1 ”n ”
L[ “unten) 0N gg—ra,a+ 3 M- a2+ S RE—B2),
T JO or k=1 k=1
and by (2)

z . i 2 ) ” 2 .
ir w(e) 0%n€) 4o Aj w(e)do+ S k(ay—a_y) »Lj w(e) cos kA do
4} ' k=1 a JO

T JO ar ar
n 2r ) ” ”n
+ E k(bk—‘b-k) J—j w(e“’) sin k6 dQZZGoA + Z k(ai—'dz_k) +z k(bi_bz_k) ,
k=1 T JO k=1 k=1
whence follows
52”(w(et‘0)— sa(e)) 0%n€”) ga—g .
0 or
Similarly we have

jzﬂ(w(pe"")—un(pe“’)) ﬁ—?f!a(g@— pdé=0.

Hence by the Green’s formula, we have D [w—u,, u,]=0, so that
D Jw]l=D [u,]+ DJw—u,]> D [us1=D ],

where 4’: p<<p1<|2|< p,<1, hence if we make n— « and then p,— p,
pi—1, we have D[u]< D[w].

Similarly we can prove

LEMMA 2. Let w(z) be continuous in |z2|<1 and have piece-wise
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continuous partial derivatives of the first order and its Dirichlet integral
D[w] be finite. Let u(z) be havrmonic in |z|<1 and continuous in
12| <1, such that u(z)=w(z) on |z|=1. If w(z) is not harmonic in
|21<1, then Dlu]<D[w]l
2. Now we shall prove the following Dirichlet principle.
THEOREM 12 Let F be a compact Riemann surface, whose
boundary I" cousists of a finite number of disjoint Jordan curves {I';},

k
I 7:2117"' Suppose that there exists a function wyz) on F, which is

continuous on F and has piece-wise continuous partial dervivalives of
the first ovder and its Dirichlet integral Dp[w,)=D[w,] is finite.

Let ¥ be the family of functions w(z), which have the same pro-
perties as wy(z) and w(z)=wlz) on I’, and put

d:ing Dlw].
Then there exists a harmonic function w(z)el on F, such that
Dlul]=d.

Proor. By the definition of d, there exists w,e®, such that
D[w,]—d. Let I’} be an analytic Jordan curve on F, which lies in a
small neighbourhood of I’;, such that 1I';, I"; bound a doubly connected
domain 4; on F, where 4;, 4, (i=Fj) are disjoint. Let #(z) be harmonic
in 4;, such that #.,=w, on I'. and I';, We map 4; conformally onto
a ring domain V;: p;<|¢|<1 on the ¢-plane® and consider #i(z) and
wx(z) as functions of ¢ in V; and apply Lemma 1, then since the

Dirichlet integral is invariant for conformal mapping, we have
D, [4,]<D,[w,]. Hence if we put @W.(2)=ui(z) in 4; (=12, k)

and W,(z)=wy(z) in F— il‘d,-, then D[#,]<D[w,], so that D[i,]—d.

1) H. Weyl: Die Idee der Riemannschen Fliche. Leipzig-Berlin (1923) p. 86.

2) R. Courant. Dirichlet priaciple, conformal mapping and minimal surfaces. New
York (1950).

3) This can be made simply as follows. Let w;(2) be the harmonic measure of
, 0w;
I; ov
respect to 4;. Let »;(2) be the conjugate harmonic function of w;(2) and f;(2)=

ZT_t (w; @)+ —1 %;(2)). Then by z=e~fi2), 4; is mapped conformally on V; .
7

I, with respect to 4; and S ds=a; >0, where v is the outer normal of I‘; with

z

o
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Hence we may assume that
wy(z) is harmonic in 4; (=12, -, k). (1)

We put wa(2)=v4(¢) in V;: p;<I¢]<{1, then since wv,(§)—vi§) is
harmonic in V; and vanishes on |¢|=1, it is harmonic in V;+V;:

pi<|&1<1/p; and
Dy, .y va—vi]=2D , [ws—wi]= 2D [wal+2v D;;[ib*,;]D;[wi,]? D, [w]),

hence DV‘.,LT,I.[U,,—v,] is bounded for =1, 2, --- and since v,—v;=0 on
|¢|=1, we can select a partial sequence from #, which we denote by #
again, such that »,—uv; and hence v, converges uniformly in V;+V;.
Hence returning to the z-plane,

lim w,(2)=w(z) uniformly in 4; (z=1,2,---, k). (2)

nso

-k
w(z) is harmonic in 21 4; and is continuous on 7’ and w(z)=w,(z)=wz)
on I'. Let v; be an analytic Jordan curve in 4;, which separates
I';, I'; in 4; and let F, be the connected Riemann surface, bounded
k
by > ;. Then by (2)

i=1
Dp-plw]= LIE DF—F(‘[wn] . (3)

Let @,(2) be harmonic in F, such that @,=w, on v; ((=1,2, -, k).

Since by the hypothesis, w,(z) is harmonic on v; and ¢,—w,=0 on v;,

@,—w, and hence @, is harmonic in a neighbourhood U; of +; so

that -2%?2 is continuous on vi, where » is the outer normal of ;.
ov

Hence

Dy [ =3 —g,) 9P1_ ds=0
Fy Wy — Py, ¢n]—z5 (wn ¢n) S=V,
i=1J7; ov

so that
D @] <DgJw,). (4)

By (4), we see easily that Dy, [pn—w,] is bounded for »n=1,2,---.

Since ¢,—w,=0 on v; and w, converges uniformly on v;, ¢,—w, and
hence @, converges uniformly in U;, so that @, converges uniformly in
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k . - -
F,+ > U;. Hence if we put lim ¢,(2)=¢(2), then @(z) is harmonic in
i=1 n->oc

k
Fy+ Ek}U,- and ¢(z)=w(z) on §1: v; and DF0[¢]:1im DFO[%], so that
i=1 i= nroe

by (4), :
Dg,[¢]1< lim Dp, [w,]. _ (5)

7->oe

Hence if we put #(z)=¢(2) in F, and wu(z)=w(z) in F—F, then by
(3), (5), D[u]<1lim D[w,]=d, so that D[u]=d. wu(z) is continuous in

k
F, u(z)=wyz) on I and is harmonic in F, except on Zl}'y,-. We shall
k
prove that #(z) is harmonic on >)v;. Suppose that x(z) is not har-
) i=1

k . - -
monic at a point z, on D)v;. Let 4 be a circular disc about z, which
i=1

is contained in F, and »(z) be harmonic in 4, such that v=# on the
boundary of 4, then by [Lemma 2, D [v]<D/[«], so that if we put
#(2)=0(2) in 4, u(z)= u(z) in F 4, then D[u]<D[u]=d, which is absurd.

Hence #u(z) is harmonic on Zry,, q.e.d.

3. Let F be a closed or an open Riemann surface spread over
the z-plane and a disc |z|<<R be contained in F. Let 0<a<R and

x . _ .
S(z)= x2+ -+ in IzlgR,Z—‘xHy, ™)
then ZS =0 on |z|=a, where p is the normal of |z|=a.
14

Let w(z) be a function defined on F, then we define w*(z) by
w*(2)=w(z)—S(z) in |z|<a

=w(z) outside of |z|]<a.

)

Let § be the family of w(z), which is continuous on F, except at z=0,
where w(z)—S(z) is continuous and has piece-wise continuous partial
derivatives of the first order on F—{0} and the Dirichlet integral
D Jw*]=D[w*] is finite. We see easily that {§ is not an empty set. Let

d=in§ Dlw*].
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THEOREM 2. There exists a harmonic function u(z) on F—{0},
such that
Dlu*]=d.

Proor. First we assume that F'is an open Riemann surface. By
the definition of d, there exists w,ef§, such that D[w}]—d. Let
a<a;<a<R and u,(z) be harmonic in U: a,<|z|<a, such that
u,=w, on |z|=a, and |z|=a,, then by Lemma 1, D{«,]< D {w,], so that
if we put #,(2)=u,(2) in U, @,(z2)=w,(z) in F—U, then D[w} 1< D[w}],
so that D[w}]—d. Hence we may assume that

w,(z) is harmonic in U: a;.<|z|<a;. (D

Let K: |z|§-‘%& and vx(z) be harmonic in K, such that

v,=w,—S on |z|= ﬁ‘—’ztf? (2)
and put

u,(2)=v,(2)+S(z) in K, (3)
then

ur(2)=v,(2z) in |z|<a.
We shall prove that

D 1< Dfwy]. (4)
Put
PA2)=w,(2)—S(z) in K, (5)
then
?a(2)=w;(z) in |z2|<]a.

#,(2) is continuous in K and @,=v, on |z|= 915"2—77927, hence by [Lemma 2,

Dlv, | <Dl p,]. (6)

Let K;: iz]<a and K;: a<|z|< "1;"2., then K=K,+K,, so that

4) H. Weyl. L.c. 1). Hurwitz-Courant : Funktionentheorie. Berlin (1929).
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Dyl v 1= Dg[u; 1+ Do, =Dy [v,]+ DrJva+ S]=Dg,[v,]+ Dg[v,]
+ Dg[S1+2Dg[v,, SI=Difv,]+ Dg[S1+2Dg[v,, S,
Dy wy 1= Dx[w;; 1+ D[ w,]= Dg[@n]l+ Dx[p,+ S]
=Dy p.]+ Dg[S1+2Dg[9,, S],
hence by (6)

Dxlwn1—Dxlu; 1= Dg[pnl— Dglv,]+ 2Dg[ 9y —0n, S1 22Dk, [@,—Vay S1.

Since S(z) is harmonic in K, %> =0 on |z|=a and by (2), (5),
v
»,—v,=0 on |z|= —Ci‘—;rﬁ», we have Dg[@,—v,, S]=0, so that

Dilwi1—Dx[#i1=0, or Dyulutl<Dxlw?].

Now by (1), w,(z) and S(z) are harmonic on |z|= gi'ztﬂ and by (2)

vp—(w,—S)=0 on |[z|= ﬁ’:é'l@, so that »,—(w,—S) and hence
v,(z) is harmonic in |z{< %—@+8 (7)

for a suitable 8§ >0.
We may assume that 2,(0)=0. Since by (5), (6), the Dirichlet integral

of v, in |zl<ﬂ—;ﬂ+8 is bounded for »=1,2,--- and v,(0)=0, we

can select a partial sequence from 7, which we denote by » again,
such that

lim 2,(z)=v(2) uniformly in [z]|< glfztgl +38, | (8)

so that by (3), if we put
u(z)=l£m u,(2)=v(z)+ S(z) in K, (9)

then by (4), o
Dglw*]< lim Dglw;]. (10)

noo
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#(2) is harmonic in O<|z|<~gl;ﬂ+8. Let KEFcF,< - F,—F

be an exhaustion of F, where F, is a compact Riemann surface, whose
boundary 1, consists of a finite number of analytic Jordan curves.

Let v¥,(z) be harmonic in F,— K, such that ¥,=w, on |z,=_ﬂ_2‘t£g

and 67%':0 on /[°,. Since ¥,,—w,=0 on lzlzg%@- and w, is har-
' 4

monic on |z|= al—;qz , ¥,—w, and hence v, is harmonic on |z|=_———al';“2 ,
so that ga\—"l is continuous on lzl=£¥';i2—, hence by the Green’s for-
v .

mula Dp”‘K[w,,—\#,,, ¥,1=0, so that

DFn—K[‘Pn]gDFn-K[wn]SDF-K[wn] . (11)

Since ¥,—(v,+S)=V,—w,=0 on |z|= grzt@ and v, converges uniform-

ly in |z|<] —@—gﬂ +38 and by [(11), Dg_-x[¥,]is bounded for n=1,2, -,

we see that
lim ¥,,(2)=vY(2z) uniformly in the wider sense in #—K, (12)

hence from [(11),
Dp_g[¥]1<lim Dp_glw,]. (13)

72> 00

a+ta

y(2) is harmonic on F— K and ¥=v+S in |z|= Hence if we

put u(z)='v(z)+S(z) in K, u(z)=v(z) in F—K, then u(z) is continuous
in F—{0} and harmonic in F—{0}, except on |z|= %ﬂ and from

(A3), Dl»*]1<lim D[w,}]=d, so that D[u*]=d. We can prove as before

nreo

ata

that #(z) is harmonic on |z|= Hence the theorem is proved,

if F is an open Riemann surface. If F is a closed Riemann surface,
we take off a point z, (=0) from F and put Fy=F—{z}, then F; is an
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open Riemann surface. We construct the harmonic function #(z) for
F,, then since the Dirichlet integral of #(z) in a neighbourhood of z,
is finite, #(z) is harmonic at z,, Hence the theorem is proved.

Mathematical Institute,
Tokyo University.
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