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Supplements.

In [A] we had to $o_{\backslash }^{1}p_{C\uparrow 1}d$ $c^{)}:^{\sim},s(\backslash \{1ti$ (-tlly on the theorems $()ft_{J}^{\neg}atlt-$

macher which allows us fo $(1_{(}\backslash scri1)\llcorner^{\tau}t\}_{\rceil^{\prime_{\backslash }}}$ . situation of a real scrni-simple
Lie algebra in its $coml$ ) $lex$ form by $i^{\backslash }|)_{c}^{\prime}11_{\backslash t}^{:_{\tau}}1_{-}^{\prime}u\neg a^{i}$ of the $con(()[)t$ of a
particular rotation. $1V(\backslash h_{(}\backslash v_{L^{\backslash }}i_{1}\iota t_{1^{\wedge}}o$ ( $1uc_{\backslash }\llcorner\backslash d$ in $\lfloor A\rfloor]$ ). 112 this $1_{\dot{c}}\iota tt_{t1}$ .

concept in an appa $1^{-}c^{Y}r$) $tlyc!i^{r}e\wedge nt$ way fronl the $0_{\wedge}^{-}\grave{1}o1^{\cdot}i_{L^{r}}i_{l1_{t}^{\prime}1}11y(t\backslash ivc\cdot tl$

by Gantrnach $\prime s$

. But the $(^{\backslash }C\downarrow uiv_{\iota^{\prime}}\iota 1_{=}\backslash ncy(^{\backslash t}1,\backslash ot1\iota c(tlC_{\iota}^{_{\backslash }\iota|})ts$ is $jus^{1_{\vee}}i$ fied by
another theorcIn of Gantmacher, so that $\iota ve$ could avail $ours_{t_{-}}\cdot 1v_{1^{1}}s$ of
his thcorelns. $fI\backslash ,$ $\triangleright 1(\backslash obt(\prime iini$ ([ thcse $th_{!}-\cdot or(\backslash |\urcorner 1_{?}^{\backslash }-$ after lon $\sigma\sim$ con-
siderations on the $auton\rceil O1^{\cdot}p1_{1}isIns$ of \v{c}l colnplex $S^{(}lt\iota i$ simple $Li(\backslash $ algcbra.
In these circumstances, we $s^{\backslash }t$ ) $\mathfrak{J}.[1I$) $ 1^{\cdot}O^{s_{\backslash }}/^{v}t\}_{1\{}\rangle$

$1C^{\backslash }\subset\prime 111\backslash ’ i$ $S_{\sim}^{\vdash_{c}}rrti_{Ilt_{\neg}^{\urcorner}}$
. from our

definition of the $p_{\mathfrak{c}}^{\prime}$} $rtic_{\rightarrow}\iota Iar$ rotation, $t_{t}^{\backslash _{\backslash }}\uparrow(\backslash $ required $\iota\cdot$ (\rangle $sults$ . This will
make us free from the $t1\urcorner(\backslash 0\iota\cdot c\iota n^{c\backslash }\backslash $

’ of ( $\backslash a\iota_{i\mathfrak{n}\prime}c_{\vee’\rightarrow 1(-i^{\wedge}}^{1}\backslash $ uscd irl $tll^{t\backslash }$. prcvious
paper [A].

Let $\tilde{\mathfrak{G}}$ bc a complex semi-simple Lie algebra with the canonical
basis

$h_{1},$ $\cdots$ $h_{l},$ $c_{\alpha},$ $e_{-\alpha},$
$\cdots$

and $\mathfrak{G}_{u}$ the unitary restriction of ($\backslash $}
$\sim$

with $resp^{\prime\backslash }ct$ to this basis (see $\lfloor A$ ].
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p. 109). The vectors $h_{1},$
$\cdots,$

$h_{l}$ span a Cartan subalgebra ij and the
elements of $\mathfrak{H}$ whose adjoint mappings in $\tilde{\mathfrak{G}}$ have only real eigenvalues
form the real part $\mathfrak{H}$ of S. $\mathfrak{H}$ contains the roots $\alpha=-[e_{a}, e_{-\alpha}]$ and
has the inner product induced by the fundamental bilinear form of $\tilde{\mathfrak{G}}$.
A rotation is defined as an orthogonal transformation in $\mathfrak{H}$ which
permutes the roots among themselves. Therefore, it permutes clearly
the hyperplanes $E_{a}=\{\lambda;(\alpha, \lambda)=0\}$ in $\mathfrak{H}$ among themselves and hence
it permutes the connected components of the set $\mathfrak{H}-\bigcup_{a}E_{a}$ among

themselves. Then, according to our definition, a particular rotation is
a rotation which maps one of these connected components onto itself.
On the other hand we know that if such a connected component is
restricted by the hyperplanes $E_{\alpha_{1}},\cdots,$ $E_{\alpha_{l}}$ and is defined by the ine-
qualities $(\alpha_{1}, \lambda)>0,$

$\cdots,$
$(\alpha_{l}, \lambda)>0$ then the roots $\alpha_{1},$ $\cdots,$ $\alpha_{l}$ constitute

a fundamental basis in the rootsystem, that is, they form a basis in $\mathfrak{H}$

with the property that each root $\alpha$ is expressed in the form $\alpha=p_{1}\alpha_{1}$

$+\cdots+p_{l}\alpha_{l}$ where $p_{i}’ s$ are integers either all $\geqq 0$ or all $\leqq 0^{t)}$ From
this fact we may see that a particular rotation is a rotation which
permutes the roots in a fundamental basis among themselves.

PROPOSITION 1. A rotation is a particular rotation if and only if
it leaves fixed a regular element of $\tilde{\mathfrak{G}}$ contained in $\mathfrak{H}$.

PROOF. A regular element of $\tilde{\mathfrak{G}}$ contained in $\mathfrak{H}$ is an element for
which all roots do not vanish, i.e., $(\alpha, \lambda)\neq 0$ for all roots $\alpha$ . Now, if
a rotation is particular, it permutes the roots $\alpha_{1},\cdots,$ $\alpha_{l}$ in a fundamen-
tal basis among themselves and hence it leaves fixed the element $\lambda$

determined by the equations $(\alpha_{1}, \lambda)=\cdots=(\alpha_{l}, \lambda)=c,$ $c$ being a real
number $\neq 0$ . By the property of a fundamental basis $\lambda$ is surely a
regular element. Conversely, if a rotation leaves fixed a regular
element, then it maps the connected component containing this element
of the set $\mathfrak{H}-\bigcup_{\alpha}E_{\alpha}$ onto itself. By definition the rotation is a particu.

lar rotation.
Our next step is to build up relations between an involutive

automorphism of the unitary restriction $\mathfrak{G}_{u}$ and a particular rotation.
For an involutive automorphism $S$ of $\mathfrak{G}_{u}$ we set $\mathfrak{G}_{1}=\{x+Sx;x\in \mathfrak{G}_{u}\}$

and $\mathfrak{G}_{-1}=\{x-Sx;x\in \mathfrak{G}_{u}\}$ . Then the real subspace $\mathfrak{G}=\mathfrak{G}_{1}+\sqrt{-1}\mathfrak{G}_{-1}$

of $\tilde{\mathfrak{G}}$ is a real semi-simple Lie algebra. We have studied in [A] a real
semi-simple Lie algebra in this form, according to a theorem of Cartan.
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Further, in order to research the structure of $\mathfrak{G}$ , we had to impose
there some assumptions on $S$. In what follows we do not distinguish
an automorphism of $\mathfrak{G}_{u}$ and its unique extension onto G. Then, the
assumption which we had to set in [A] p. 112 is as follows: $S$ leaves
invariant $\mathfrak{H}$ and induces a particular rotation in $\mathfrak{H}$ This assumption
was assured there by theorems of Gantmacher, but it can be also
justified by the following proposition because any automorphism con-
jugate to $S$ determines a Lie algebra isomorphic to $\mathfrak{G}$ . Here and in
the following two automorphisms are said to be coniugate if there
exists an inner automorphism of ($\mathfrak{G}_{u}$ by which one of them is trans-
formed into the other.

PROPOSITION 2 An involutive automorphism $S$ of ($\mathfrak{g}_{u}$ is coniugale
to an automorphism which leaves invariant the Cartan subalgebra $\mathfrak{H}$

and induces a particular rotation in its real part $\mathfrak{H}$ .
PROOF. As is well known, $\mathfrak{G}_{u}$ is the Lic algebra of the compact

connected Lie group $G_{u^{0}}$, the so.called adjoint group of $\mathfrak{G}_{u}$ , and any
maximal abelian subalgebra contains a regular element of $\mathfrak{G}_{u}$ so that
this subalgebra coincides with its normalizer. Now we take a maximal
abelian subalgebra $\mathfrak{A}_{1}$ of the subalgebra $\mathfrak{G}_{1}$ in $\mathfrak{G}_{u}$ and let $\mathfrak{A}$ be a maxi-
mal abelian subalgebra of $\mathfrak{G}_{u}$ containing $\mathfrak{A}_{1}$ For an element $x$ in $\mathfrak{A}$ ,
$x+Sx$ belongs to $\mathfrak{G}_{1}$ and it commutes with any element of $\mathfrak{A}_{1}$ , which
shows that $x+Sx$ belongs to $9t_{1}$ . It follows further that $Sx$ belongs to

$\mathfrak{A}$ as well as $x$ and therefore $\mathfrak{A}$ is left invariant under $S$. By these
facts we show that $J\mathfrak{l}$ is uniquely determined by $\mathfrak{A}_{1}$ . Let $\mathfrak{A}^{\prime}$ be another
maximal abelian subalgebra of $\mathfrak{G}_{u}$ containing $\mathfrak{A}_{1}$ and $y$ an element of
$\mathfrak{A}^{\prime}$ . Then $y^{l}=(y+Sy)/2$ belongs to $\mathfrak{A}_{1}$ a fortiori to $\mathfrak{A}$ , so that if we
see that $y-y^{\prime}$ belongs to $\mathfrak{A}y$ itself belongs to $\mathfrak{A}$ and our assertion will
be proved. To see this, as $y-y^{\prime}$ belongs to $\mathfrak{U}^{\prime}$ and $S(y-y^{\prime})=-(y-y^{\prime})$ ,
it is sufficient that an element $y$ of $\mathfrak{A}^{\prime}$ with the property $Sy=-y$
belongs also to $\mathfrak{A}$ . Let $x$ be an element contained in Qt. Setting
$x^{\prime}=(x+Sx)/2$ and $x^{\prime\prime}=x-x^{\prime},$ $x^{\prime}$ belongs to $\mathfrak{A}_{1}$ and $Sx^{\prime\prime}=-x^{;r}$ . There.
fore, $[y, x]=[y, x^{\prime}\perp x^{\prime\prime}]=[y, x^{r/}]$ and this element belongs to $\mathfrak{G}_{1}$ . More-
over by the identity $[z, [y, x]]=[[z, y],$ $x$]{$-[y, [z, x]]$ we see that $[y, x]$

commutes with any element $z$ of $\mathfrak{A}_{1}$ . Thus $[y, x]$ must belong to $\mathfrak{A}_{1}$

and so to $\mathfrak{A}$ . $x$ being an arbitrary element of the maximal abelian
subalgebra $\mathfrak{A}$ , this shows that $y$ belongs to the normalizer of $\mathfrak{A}$ . Hence
$y$ belongs to $\mathfrak{A}$ . The uniqueness of the maximal abelian subalgebra $\mathfrak{A}$
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containing $\backslash _{\backslash }|t_{1}$ is $p\grave{t}^{-}(|l_{c}^{Y}(|$ .
It follows that $\backslash ’\backslash 1$ ccntains a regular dement of ($t,u$ . Indeed, if $\backslash _{\backslash }$

)
$1_{1}$

contains 110 $1_{\backslash }^{\prime}:\backslash u1’\llcorner\iota\iota^{\prime}t^{\backslash ]_{-})}’\iota l1c^{\backslash }nts^{\backslash }$, cvery element of the abelian $sul\supset group$

$A_{1}$ in $C_{:^{1}\iota^{)}}t_{\backslash }\{\iota n\{1_{t_{-}}^{\prime}!t()(1$ by $\backslash _{\backslash })^{r_{1}}$ has non $corn\iota 1\tau ut_{\iota}$) $ti_{V^{\backslash }}.$ ccntralizel $\cdot$ and there-
$foIe$ it $is^{\backslash }(:on1_{C}’\iota$ incd iil at least two $m_{e}\tau xi\iota na1$ abelian subgroups of $G_{:}^{0}$ .
As $A_{1}$ is a maximal $c\prime tbclia\eta$ $subgron_{\wedge}|$) of the closed connectcd sub-
group $K^{\iota}$

)
$cor1^{\cdot}t^{1}- SO1$ )($ii_{11_{\neg}^{(y}}t_{\backslash }^{j}$ to the subalgebra $(\backslash \backslash )1$ (see [A] p. $10S$ ), it is a

closed abelian subgroup and hence it has a generator. $\Lambda t1ca_{0}\backslash t$ two
maximal abelian $su\ddagger)_{\neg}^{\langle)}roups$ of $G_{:t}^{()}$ containing tilis generator contain the
subgroup $A_{1}$ its.elf. $\prime 1^{\backslash }hi\backslash c\backslash $ implies $t\grave{\downarrow}1_{\backslash }^{t\backslash }$ existence of at least two maximal
abelian $St1_{\grave{y}_{\iota}\{1:_{-,cbrab^{\backslash }}^{r)}}^{\tau}\backslash $ of (($;_{l}c(\rangle 111_{c}ai$ ning $\backslash )\backslash !_{1},$ $w1_{1}ict$) is $\prime j$ conti $\dot{d}\prime diclioII$ .

Now the subspace $’-1\backslash _{\wedge}\tau$ of $\backslash ^{\backslash }-$ is containcd in ( $\forall|_{ll}$ and is a nlaxi-
mal abelian subalgebra of ( $\backslash ;_{\iota}$ . By the ( $:on_{J^{\prime}}u_{\backslash ^{f}}\{atc^{\iota}\iota\}(-Sb^{\backslash }$ of maxilnal abelian
subgroups in thc $c\circ n$ ) $1$) $\dot{!}ct$ group $(_{lt}(|\backslash (t_{Jc}^{Y\backslash _{t}}\iota y$ {ind \v{c}in inner alltomor-
phism $g\supset$ of ( $\forall_{Jl}^{\prime}$ wliich $11ltll$ )$s\sqrt{-1}’$)) onto $\backslash _{\backslash }j(.$

$\backslash q_{(}$ {. $S^{\prime}=P^{-1}SP$ . ’I hen,
since $S$ lcaves $inV_{\dot{C}}1ti_{\epsilon}’\iota l\iota t\backslash _{\backslash }\backslash \prime 1\backslash \backslash _{)^{\backslash }}\prime 1_{1^{\backslash }}a^{\iota}$ cs invariant :1 $\wedge\tilde{J}$ . Extendcd over
($\backslash \sim_{)\llcorner}c_{)^{\backslash }}/1_{t^{\backslash }}avc^{1}s$ invariant $th_{(}1$ Cartan subalg $\backslash ^{\backslash 1_{3}r_{\mu^{1}}^{r}}\prime\prime\sim$ as $\grave{s}\overline{p}$ is spanned by
$\prime_{-\perp}\tilde{\backslash }f$ over con $ n\cdot$)] $’\backslash $ numbers. As such, $th_{C^{\backslash }}$ automorphism $S^{t}$ induces
in the real part $t^{\backslash }\cdot$

) oi $\overline{\mathfrak{H}}$ a rotation $\rho\cdot!$
)

$\backslash |Vhi1_{(}1\iota v_{i_{-}^{\backslash }}h_{c^{1_{\backslash }}}$
, vc- proved above

that $\backslash _{\backslash })_{\downarrow I}$ contains a regular eleinent $x$ of $(\backslash )il\backslash .\vee!t^{1_{\backslash }}ch$ is naturally regular
in $l_{\backslash }\$^{\prime}$). Thc $rt_{\backslash }Q^{\prime}J[arc^{\iota}]_{(}nYt^{\backslash }t\iota t\sqrt{-1}P^{-1},\mathfrak{r}$ is surely $c(n1_{c}^{r}\iota inc$ (1 in $\sigma_{\sim}$) and is
left invarian $t$ under $\rho$ . By $1^{)}ro1$ ) $os^{\backslash }iliol1$ 1, $\rho$ is thcn a particular
rotation. $r_{1}1_{1}i\backslash \backslash :\backslash $, coniplctes thc proof.

Note tllat in the last part of this $p_{I}$ oof we obtain incidentally a
proof of Lemma 7 in [A] p. 114; the ( $1\llcorner^{\backslash }1Itt^{\iota}11tl^{3- 1}x$ is a regular ele-
ment contained in $\sqrt{-1}’\backslash _{1}^{\sim}$, by tlie notation used there.

$I_{\lrcorner}etS$ be an involutive autolnorphism $w1_{1}i_{c_{d}\downarrow 1}^{1}$ leaves invariant the
Cartan subalgcbra $\backslash _{-}$) $a11^{r1}$ induces a $pa_{\grave{\iota}^{-}}ticular$ rotation in its real part
ff). As is mentioned $b_{\iota}^{t}\cdot\underline{r}_{01C}$ Proposition 2 allows us to confine our
attentions to $s^{\tau}$ ch $ai^{\underline{1}}$ automorph‘sm $\lrcorner$

’ in studying a real semi-simple
Lie algebra. However for the actual $d(Y$ of this Lie algebra
we may further impose upon $St^{\tau}\circ e$ assumption that it has a canonical
representation in connection with its inducing particular rotation. We
havc used tllis restriction on $S$ in [A] p. 127 again resting on the
$theore\prime Ans$ of Gantmacher. In the following we prove this fact from
our standpoint.
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Assume that a particular rotation $\rho$ is involutive, which is thecase of the one induced by an involutive a $\iota_{-}1tomor;-$}$hism$ of ($b_{1/}$ . For
brevity, we denote $\rho(\lambda)$ by $\lambda^{*},$ $\lambda b\zeta^{Y}ing$ an $(^{1]s}(m\prime Y\backslash I\tau t$ of $f\gamma\wedge$ We may
designnte by ( $t_{1}$ , $\cdot$ .. , (($\prime s’\xi_{1},$ $\xi_{1^{\backslash :}}$ , $\cdot$ .. , $\xi,.,$ $\xi_{r^{\prime}}\backslash .$ , where ( $ 1_{i}=\rangle$

$i^{\backslash \cdot\backslash }$ , $th\backslash \cap$ roots in a
fundamental basis which are permutcd by $\rho\subset\urcorner ln^{r}$) $ng$ themsclves. $\tau_{1^{\prime}e}^{r\vee}$

denote by $\nabla_{\sim}\tau_{1}$ thc $subspzc_{(}\backslash of\uparrow$) $cons\dot{\iota}sting$ of $\cap 1_{(}\backslash ments\lambda$ $\ulcorner\backslash \backslash t!ch$ that
$\lambda^{*}=\lambda$ . It is easily secn that $\zeta\urcorner 1$ is the linoar subspacc of $\}_{\backslash \tau dc\underline{f}_{1\uparrow(}^{\backslash }\backslash d}^{\sim}$ by
the $(^{\backslash }quations(\xi_{1}, x)=(\xi_{Q}\backslash :_{1}, ’\backslash )$ , – , $(\xi,., ’\backslash )=(\xi_{r}, ))$ . $W1_{1}i1\cap,$ $accorciinf_{\backslash }$ to a
theorem of $Gantmac_{-}h_{\backslash }e^{1}r$

$\rho d_{(}\iota t(^{)}r\iota nin(1suni\mathfrak{c}$ ]$uelyt$ ] $\backslash (\backslash t\prime mtt)motp\downarrow\tau ismS_{()}$

defined as follows: ) $)_{(1}$ induces the $pa\iota^{\wedge}ti\cap ular$ rotation $’$) in $\backslash _{\sim}^{\sim}$) which
defines its $\dagger$ )( $\backslash haviol$. in $:$)$J$ , a $r\iota(1\backslash \backslash _{y}r_{(}\backslash s_{t^{\backslash }}t$

(1) $s_{i1_{(}}^{\tau}C_{f}-.\cdot$
.

where the $numbel\cdot S\mu_{\alpha}$ arc eqtlal to 1 for ( $Y=(\gamma_{\rceil}$ $\cdots$ , $(t_{c}^{\prime,\xi_{1},f_{\dot{1}^{\backslash }}}$ , $\xi,$

$,$

$\xi\backslash $,
and are $d_{()}t_{t1}\cdot mincd$ for $oth\backslash \cdot$ roots ( $1^{\prime}$ bv th $(\backslash follo\iota vinq1)r|t1ci_{1)}1_{(}\backslash $ . In
general an $\prime rutol\mathfrak{n}orl\tau!\iota$ isnu which leaves $in\backslash $)ariant ) $i_{11}d_{ttCt}\backslash s$ a rotatien
$\rho$ in SJ and talqes the form (1) ) Then th $(\iota num1)_{c}\cdot rsj^{l_{1}}$ are $tliqu_{1}\cdot 1y$

deterniined by $tt_{lt^{\backslash }}ir\tau^{\gamma}\gamma 1tt^{\backslash }Sfol$ roots $(t^{\prime} in a fundan)^{t)}1)t_{\backslash }\gamma 11_{J}^{\backslash }\gamma si\backslash sa(:cord-$

ing to the $f()1^{\cdot}lYltla(1$

(2)
$\mu_{(1i}/\iota a^{-}$ ]

$’\mu_{\alpha\}\}\}}=1V_{N_{\alpha/i}^{\alpha P}}\cdot.\cdot..\mu_{\alpha}\mu_{t^{3}}$

by $vir(|_{\vee}\iota c^{1}$ of I.cmlna 4 in [A] p. 110. In cther words, an auto.
morphim of this type is uniquely determincd by $t_{!}l^{r\backslash }$ rotation and by
its effects on the $\cap igernv\iota^{\backslash }ctorse_{\alpha}$ for roots in a fund $i’\iota m(ntal$ basis. We
may $s_{t}\circ e$ also $1_{1}\backslash !y$ this principle $t_{!\downarrow\gamma}^{1}\backslash ,.tS_{i}$

) is an $ir\rceil_{\backslash }tt\grave{\cdot}V$( al-ltoinorphism.
Our purpose stat. $dal$)$ove$ is now fu $\tau\cdot ni_{S^{\backslash }l(}\tau d$ by the $\{ol1_{0^{Y}}.ving$

$PROI^{\supset}OSI^{\prime}\Gamma IOV’\}$ . An $i_{l^{\eta}lJ}ol_{l}\prime li\iota fea!l^{\prime}.;\gamma(\prime p/\prime ic_{l}n?S()f_{t^{1)_{ll}}}^{\prime}$ is coniugate
to an $a\iota rtomor\beta hi\backslash \backslash \backslash m$ of the forfn

$S,\backslash )(^{\backslash }xp(ad1-1\lambda.0)$

wherc $S_{0}$ is the $a\iota rt’$} $morphisl/l\ell\ell l:iq\iota tcly$ $dct_{t^{\prime}’}rmfncJ$ by an involutive
particular rolation $\rho$ and $\lambda,\backslash $ is an $cl_{(j}ncnt$ of % fxcd $ r\prime n.\prime Jer\rho$ .

PROOF. By Proposition 2, we may assume that $\iota\zeta i1_{(}\rangle$

$av(\cdot s$ invariant
the Cartan subalge\dagger )ra $\backslash ^{\underline{\backslash _{\backslash }}},$) and $i_{I1}d_{tlC\zeta^{\backslash \wedge}}$, an involutive particular rotation
$\rho$ in its real part $\sigma_{\sim}$). We apply the notions $d\cdot t_{\wedge}\tau\backslash $ above for this
particular rotation $\rho$ . We may set
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$s_{e_{\alpha}=\nu_{a}e_{\alpha*}}$ .
Then the numbers $\nu_{\alpha}$ satisfy the relations obtained from (2) by replac $\cdot$

ing $\mu$ with $\nu$ . Moreover, since $S$ leaves invariant the unitary restric $\cdot$

tion $\mathfrak{G}_{u},$ $\nu_{-\alpha^{=}}\overline{\nu}_{\alpha}\sim$ and consequently $|\nu_{\alpha}|=1$ . On the other hand, since
$S$ is involutive $\nu_{\alpha}\nu_{\alpha*}=1$ and $\nu_{\alpha*}=\overline{\nu}_{\alpha}$ . Therefore $\nu_{\alpha}=\pm 1$ for the roots
$\alpha$ with the property $\alpha^{*}=\alpha$ , especially for $\alpha=\alpha_{1},$ $\cdots$ , $\alpha_{s}$ . We show in
advance that we may assume the equalities $\nu_{\xi_{j}}=\nu_{\xi_{j}^{*}}=1(1\leqq j\leqq r)$ .
In fact, since the vectors $\xi_{j}-\xi_{j}^{*}$ are linearly independent and since
$|\nu_{\xi_{j}}|=1$ we can find an element $\lambda$ in $\mathfrak{H}$ satisfying the equations

$\exp(1^{/=}\ddagger(\xi_{j}^{\$ 6}-\xi_{j}, \lambda))=\nu_{\xi_{j}}$ $(1\leqq j\leqq r)$ .

Taking the complex conjugate of both sides we have then

$\exp(1^{/}\overline{-1}(\xi_{j}-\xi_{j^{\$}}^{\Delta}, \lambda))=\nu_{\xi_{j}^{*}}$ $(1\leqq j\leqq r)$ .
Consider the inner automorphism $U=\exp(ad_{t}/\overline{-1}\lambda)$ of $\mathfrak{G}_{u}$ . The
automorphism $U^{-1}SU$ leaves invariant $\tilde{\mathfrak{H}}$ and induces the particular
rotation $\rho$ in $\mathfrak{H}$ as well as $S$. By the choice of $\lambda$ and by the relations
among $\nu_{\alpha}S$ we see further that the numbers $\nu_{\xi_{j}}$ and $\nu_{\xi_{j}^{*}}$ for $S$ are all
replaced by 1 for $U^{-1}SU$. Transferring to $U^{-1}SU$ if necessary, we
may assume from the beginning that $\nu_{\xi_{j}}=\nu_{\xi_{j}^{\star}}=1(1\leqq i\leqq r)$ for $S$.
We prove under such restrictions that $S$ has the canonical representa-
tion required ‘in the proposition.

$S$ and $S_{0}$ are commutative. To observe this, consider the auto.
morphisms $SS_{0}$ and $S_{0}S$. Both of them reduce to the identical $ro\ddagger a-$

tion $\rho^{2}$ in $\mathfrak{H}$ and hence they fix each element of $\tilde{\mathfrak{H}}$ . Outside of ij

$SS_{0}e_{\alpha}=\nu_{a*}\mu_{\alpha}e_{a}$ ; $S_{0}Se_{\alpha}=\nu_{\alpha}\mu_{\alpha*}e_{\alpha}$ .
The numbers $\mu_{\alpha}$ for the roots in the fundamental basis being equal to
1 by the definition of $S_{0}$ , under the conditions $\nu_{\xi_{j}}=\nu_{\xi_{j}^{*=1}}(1\leqq j\leqq r)$

we see that $\nu_{\alpha*}\mu_{\alpha^{=}}\nu_{\alpha}\mu_{\alpha*}$ for every roots $\alpha$ in the fundamental basis.
Then, as we have remarked before, two automorphisms $SS_{0}$ and $S_{0}S$

coincide: $SS_{0}=S_{0}S$. An immediate consequence of this relation is that
$S_{0}$ maps the l-eigenspace $\mathfrak{G}_{1}$ of $S$ into itself. Therefore $SS_{0}$ maps $\mathfrak{G}_{1}$

into itself, too.
Now the proposition will be proved if we show that the auto.
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morphism $S_{0^{-1}}S$, or what amounts to the same, its inverse automorphism
$SS_{0}$ takes the form $\exp(ad_{1^{/}}\overline{-1}\lambda_{9})$ with an suitable element $\lambda_{0}$ in
$\mathfrak{H}_{1}$ . By the results just obtained on $SS_{0}$ this last assertion is assuredas soon as we prove the following

LEMMA. Let $A$ be an automorphism of $\mathfrak{G}_{u}$ . If A lea $j$es fixedeach element of $\tilde{\mathfrak{H}}$ and $lf$ $A$ maps $\mathfrak{G}_{1}$ into ilself, $A$ has the form
$\exp(ad\sqrt{-1}\lambda_{0})$ with an elcment $\lambda_{9}$ in $\mathfrak{H}_{1}$ .

PROOF. Since $A$ leaves fixed each element of $\mathfrak{H}$ , we may set
(3)

$Ae_{\alpha}=\kappa_{a\}}e_{\alpha}$ .
The complexification of $\mathfrak{G}_{1}$ , that is, the linear subspace $\hat{\sigma}_{\$^{\prime}}$ of $\tilde{\mathfrak{G}}$ spannedby $\mathfrak{G}_{1}$ over complex numbers, obviously consists of $element^{1}sx+Sxx\rightarrow\tilde{\mathfrak{G}}$

and therefore it is spanned by $\mathfrak{H}_{1}$ and by the linearly $independ^{c}ent$

vectors $e_{\alpha}$ and $c_{\xi}+\nu_{\xi}e_{\xi*}$ where $\alpha$ are the roots with the properties
that $\alpha^{*}=\alpha$ and $\nu_{\alpha}=1$ and $\xi$ the representatives of each pair $\xi,$ $\xi^{*}$

$(\xi\neq\xi^{*})$ . Since $A$ leaves invariant (($\bigvee_{1}\sim_{j}$ as well as $\mathfrak{G}_{1},$
$A(e_{\xi}+\nu e )$

$=\kappa_{\xi}e_{\xi}+\kappa_{\xi-x-\nu_{\xi}e_{\xi\#}}$ belongs to $\tilde{\mathfrak{G}}_{1}$ and it must be a scalar $multip1^{\xi}e\epsilon_{of}$

$e_{\xi}+\nu_{\xi}p_{\xi^{3}\epsilon}$ . Therefore $\kappa_{\xi}=\kappa_{\xi*}$ and especially $\kappa_{g_{j}}\kappa_{\mathcal{E}_{j}}(1_{--}\leq j..\leq r)$ . On
the other hand, the numbers $\kappa_{\alpha}$ in (3) have the analogous propertiesas the numbers $\nu_{\alpha}$ for $S$. For example, $|\kappa_{\alpha}|=1$ . Then we can findan element $\lambda_{0}$ in $\mathfrak{H}$ satisfying the equations

$\exp(1^{/}\overline{-1}(\alpha_{i}. \lambda_{0}))=\kappa_{\alpha_{j}}$ $(1\leqq i\leqq s)$ ,

$\exp(1/\overline{-1}(\xi_{j}, \lambda_{0}))=\kappa_{\xi_{j}}$ ,

$\exp(/\overline{1}(\xi_{j}^{*}, \lambda_{0}))=\kappa_{\xi_{j}^{*}}$ $(1\leqq i\leqq r)$ .
By

$\kappa_{\xi_{j}}=\kappa_{\xi_{j}^{*}}$ we may assume here that $(\xi_{j,\lambda_{0}})=(\xi_{j}^{*}, \lambda_{0})(1\leqq j\leqq r)$ .
Then $\lambda_{0}$ belongs to $\mathfrak{H}_{1}$ , as is remarked earlier. The automorphism
$\exp(ad\sqrt{-1}\lambda_{0})$ of $\mathfrak{G}_{u}$ leavcs fixed each element of $\mathfrak{H}$ as well as $A$ and
by the choice of $\lambda_{0}$ it gives the same effects as $A$ to the eigenvectors
$e_{a}$ for the roots in the fundamental basis. Hence $A=\exp(ad_{1^{/}}\overline{-1}\lambda_{0})$

by the same reason as before, which proves the lemma.

Corrections.
The following corrections should be made in the paper [A].
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1. The proof of Lemma 12 on p. 117 is not complete. However,
as we have remarked there, this lemma is a weaker form of the
lemma proved abovc in the present paper.

2. In $\backslash .\backslash _{\backslash }4$ , we have applied our rcsults to compute the automor.
phisms of eacli $re31fo$rm of the complex simple Lie algebra $A_{n}$ .
There it sirould be assumed that $Il>2$ . In the case $n=1$ the particu-
lar rotation $\rho ^{1}$ defined on p. 127 is th,. identical transformation in $\mathfrak{H}$

and we noed some $t_{i_{\wedge}^{i}}\cdot viaImodI_{|icatio\cdot\dot{|}\sim 1\sim S}^{\mathcal{L}}$ Wc $m^{\prime}1y$ see that there are
essentially two real {$0\dot{l}ns$ of $A_{1},$ $t_{1}1$ Lie algebras of the unimodular
unitary group and of $f_{11}e$ real unimedular group both of degree 2,
which have $1^{\cdot}t^{\backslash }S\beta^{r\backslash }ctively$ no or one typical outer automorphism.

3. $E:l_{(}^{\prime}1ta$ ; p. $10_{\backslash }3$ , line 3 from $1$ )$elow$ , read “ Cartan [2]) instead
of $\iota$ ‘ Cartan $\lceil 3$ ] “ ; p. 110, line 11, reacl “

$(()^{\prime}\alpha)$
“ $in\backslash \backslash tcad$ of “

$(\beta, \beta)$
“ ;

p. 116, $lin$ ( $\backslash 22$ , read $‘‘\backslash ^{\urcorner}-\gamma$ ingtead of $\underline{\backslash ^{-\urcorner}}.$

) p. 130, line 9, read
‘
$ n=2f-\rceil$ “ $in^{}tc^{\iota^{\prime}},td$ of ’‘ $n=2f\dashv 1$ “‘.

$\mathcal{T})_{(}\tau pat\cdot fm(nt$ of $N^{\prime}Iathematics$ ,

Osaka University.

Notes
1) See H. Weyl: The structure and representation of continuous groups. Lectures at

the Institute for Advanced Study, Princeton, 1934-1935, p. 166.
2) See F. Gantmacher: Canonical representation of automorphisms of a complex semi-

simple Lie group. Rec. Math. N.S., vol. 5 (1934), 101-144; p. 129, Theorem 20; p.
130, Theorem 21. We note that these theorems are direct consequences of the
structure theory for a complex semi-simple Lie algebra and are outside of our present
considerations, though the theorems of this type profit us largely in the previous
paper [A].

$*)$ $\prime r$ he writer thanks 1o $bTl$ . I. $S_{1}ta1_{\backslash }^{r}e$ who $1\sigma i_{t}\cdot 1dly$ remarks him that Prop. 2 follows
from the original definition of a $p$ .rrticular rotati $on$ of $C_{J}$ antmacher also in a simple
$\ln^{r}1nn\neg r$.
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