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In the present paper we give supplements and  corvections to the
paper mentioned in the title.  We abbreviate this paper by [A]

Supplements.

In [A] we had to depend essentially on the theorems of Gant-
macher which allows us to describe the situation of a real semi-simple
Lie algebra in its complex form by making use of the concept of a
particular rotation. We¢ have introduced in [A] p. 112 this latter
concept in an apparently different way from the one originally given
by Gantrnacher. But the cquivalency of both coucepts is justified by
another theorem of Gantmacher, so that we could avail ourselves of
his theorems. However, he obtained these theorems after long con-
siderations on the automorphisms of a complex semi simple Lie algebra.
In these circumstances, we shall prove heve anew, starting from our
definition of the particular rotation, the required results.  This will
make us frec from the theorems of Gantmacier used in the previous
paper [A]

Let @ be a complex semi-simple Lie algebra with the canonical
basis

/'21, ey, h[,('a,,(’_w,

and @, the unitary restriction of & with respoct to this basis (see [A].
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p. 109). The vectors A, ---, h; span a Cartan subalgebra ® and the
elements of ® whose adjoint mappings in & have only real eigenvalues
form the real part  of . 9 contains the roots a=-—[e¢,, e_,] and
has the inner product induced by the fundamental bilinear form of &.
A rotation is defined as an orthogonal transformation in $ which
permutes the roots among themselves. Therefore, it permutes clearly
the hyperplanes E,={A; (@, A)=0} in $ among themselves and hence
it permutes the connected components of the set $—U £, among

themselves. Then, according to our definition, a particular rotation is
a rotation which maps one of these connected components onto itself.
On the other hand we know that if such a connected component is
restricted by the hyperplanes E, , -, £, and is defined by the ine-

qualities (a;, A) >0, ---, (a;, A) >0 then the roots «, -+, a; constitute
a fundamental basis in the rootsystem, that is, they form a basis in
with the property that each root « is expressed in the form a=p«a,
+ -+ p;a; where p/s are integers either all=0 or all < 0.” From
this fact we may see that a particular rotation is a rotation which
permutes the roots in a fundamental basis among themselves.

PROPOSITION 1. A rotation is a particular rotation if and only if
it leaves fixed a regular element of 8 contained in 9.

PROOF. A regular element of 8 contained in $ is an element for
which all roots do not vanish, i.e, (a, )30 for all roots a. Now, if
a rotation is particular, it permutes the roots «;,--, a; in a fundamen-
tal basis among themselves and hence it leaves fixed the element A
determined by the equations (a;, A)=--=(a;, A)=c, ¢ being a real
number &= 0. By the property of a fundamental basis A is surely a
regular element. Conversely, if a rotation leaves fixed a regular
element, then it maps the connected component containing this element
of the set §— U E, onto itself. By definition the rotation is a particu-

lar rotation. ,

Our next step is to build up relations between an involutive
automorphism of the unitary restriction @, and a particular rotation.
For an involutive automorphism S of &, we set @ ={x+Sx; xe8,}
and G_,={x—Sx; xe®,}. Then the real subspace 8=8,+1"—1 6,
of & is a real semi-simple Lie algebra. We have studied in [A]a real
semi-simple Lie algebra in this form, according to a theorem of Cartan.
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Further, in order to research the structure of &, we had to impose
there some assumptions on S. In what follows we do not distinguish
an automorphism of @&, and its unique extension onto &. Then, the
assumption which we had to set in [A] p. 112 is as follows: S leaves
invariant ® and induces a particular rotation in . This assumption
was assured there by theorems of Gantmacher, but it can be also
justified by the following proposition because any automorphism con-
jugate to S determines a Lie algebra isomorphic to &. Here and in
the following two automorphisms are said to be cownjugate if there
exists an inner automorphism of &, by which one of them is trans-
formed into the other.

PROPOSITION 2.%) An tnvolutive automorphism S of &, is conjugale
to an automorphism which leaves invariant the Cartan subalgebra D
and induces a particular rotation in its real part 9. '

ProoF. As is well known, @, is the Lie algebra of the compact
connected Lie group GY, the so-called adjoint group of @&,, and any
maximal abelian subalgebra contains a regular element of &, so that
this subalgebra coincides with its normalizer. Now we take a maximal
abelian subalgebra %; of the subalgebra &, in &, and let % be a maxi-
mal abelian subalgebra of &, containing % For an element x in ¥,
x+ Sx belongs to @, and it commutes with any element of %;, which
shows that x+ Sx belongs to %,. It follows further that Sx belongs to
A as well as x and therefore A is left invariant under S. By these
facts we show that % is uniquely determined by 2. Let %’ b2 another
maximal abelian subalgebra of &, containing %, and y an element of
2. Then y'=(y+Sy)/2 belongs to %A; a fortiori to %, so that if we
see that y—3’ belongs to % y itself belongs to A and our assertion will
be proved. To see this, as y—3’ belongs to %’ and S(y—y')=—(y—y),
it is sufficient that an element y of %’ with the property Sy=-—y
belongs also to A. Let x be an element contgined in 9A. Setting
x'=(x+Sx)/2 and x"'=x—x', x’ belongs to %, and Sx”"=—x"". There-
fore, [y, x]=[y,x'+x"]=[y, "] and this element belongs to &,. More-
over by the identity [z, [y, x]]=[[z2, ¥]. x]+[y, [2, x]] we see that [y, x]
commutes with any element z of %,. Thus [y, x] must belong to %,
and so to A. x being an arbitrary element of the maximal abelian
subalgebra %, this shows that y belongs to the normalizer of %. Hence
y belongs to %. The uniqueness of the maximal abelian subalgebra %
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containing %; 1s proved.

It follows that ¥, contains a regular clement of ¢,. Indecd, if Yy
contains no regular clements, every element of the abelian subgroup
A, in G! generated by ¥ has non commutative centralizer and there-
fore it is contained in at least two maximal abelian subgroups of GY.
As A, is a maximal abelian subgroun of the closed connected sub-
group K" corresponding to the subalgebra ¢, (see [A] p. 108), it is a
closed abelian subgroup and hence it has  a generator. At lecast two
maximal abclian subgroups of ¢! containing this gencrator contain the
subgroup A, itself. This implics the oxistence of at least two maximal
abelian subalgebras of ¢, containing %;, which is a contradiction.

Now the subspace y =1 % of © is contained in ¢, and is a maxi-
mal abelian subalgebra of ¢5,. By the conjugatencess of maximal abelian
subgroups in the compact group G we may find an inner automor-
phism £ of &, which maps /=1 9 onto % St =Pt SP. Then,
since 8 leaves invariant %, S leaves invariant v —1 . Extended over
G, S leaves invariant the Cartan subalpebra 5, as 9 is spanned by
v —1 % over complex numbers.  As such, the automorphism S’ induces
in the real part $ of $ a rotation p®. While wi have proved above
that v, contains a rcegular element x of 3, which is naturally regular
in &. The rcgular clement =1 P Ly is surcly centained in  and is
left invariant under p. By Proposition 1, p is then a particular
rotation. This complctes the proof.

Note that in the last part of this pioof we obtain incidentally a
proof of Lemma 7 in [A] p. 114; the element P~'x is a regular ele-
ment contained in " — 1 %, by the notation used there.

Let & be an invelutive automorphism which leaves invariant the
Cartan subalgebra v and induces a particular rotation in its real part
9. As i1s mentioned before Proposition 2 allows us to confine our
attentions to such an automorphism 5 in studying a real semi-simple
Lie algebra. However for the actual determination of this Lie algebra
we may further impose upon & the assumption that it has a canonical
representation in connection with its inducing particular rotation. We
have used this restriction on S in [A] p. 127 again resting on the
theorems of Gantmacher. In the following we prove this fact from
our standpoint.
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Assume that a particular rotation p 1s Involutive, which is the
casc of the one induced by an involutive automorphism of ¢&,. For
brevity, we denote p(a) by A%, A being an clement of », We may
designate by «, -+, ey, &, &, -, £, &5, where «;==«}, the roots in a
fundamental basis which are permuted by p among themsclves. We
denote by ©,; the subspace of $ consisting of clements x such that
AY=xa. It is casily seen that $, is the lincar subspace of & defined by
the equations (&, \)=(&%,2), -+, (&, \)=(&5, 7). While, according to a
theorem of Gantmacher?® p determines uniquely the automorphism S,
defined as follows: 5, induces the particular rotation p in 9 which
defines its behavior in », and we sot

(]) Sy Co e Mo Co

where the numbers x4, are equal to 1 for o=, vty N ELET &, &
and are determined for other roots « by the following principle. In
general an automorphism which leaves invariant induces a rotation
p in © and takes the form (1)*. Then the numbors He  are uniquely
determined by their values for roots « in a fundamental basis accord-
ing to the formulace

j\rm P

T M fip
N, s

by virtue of Lemma 4 in [A] p. 110.  In other words, an auto-
morphim of this type is uniquely determined by the rvotation and by
its effects on the eigenvectors ¢, for roots in a fundamental basis,. We
may sec also by this principle that S, is an involutive automorphism.
Our purpose stat«d above is now furnished by the following
PRrROPOSITION 3. An involutive arntomorphism S of {3, is conjugate
to an awtomorphism of the form

(2) Mo tr-a==1 5 proip==

Sy explad | -1 a0

where Sy is the automorphism wuniquely determined by an involutive
barticular rotation p and n, is an clement of 9 fixed :nder p.

ProoOF. By Proposition 2, we may assume that S leaves invariant
the Cartan subalgebra % and induces an involutive particular rotation
p in its real part ©. We apply the notions defined above for this
particular rotation p. We may set
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S@,,: Vo em* .

Then the numbers », satisfy the relations obtained from (2) by replac-
ing g with ». Morcover, since S leaves invariant the unitary restric-
tion ®,, v-.=, and consequently |»,}=1. On the other hand, since
S is involutive v, v,»=1 and »,x=v,. Therefore »,= +1 for the roots
« with the property a™=«a, especially for a=a,, - ,a,. We show in
advance that we may assume the equalities ve, =vgy=1 1,57).

In fact, since the vectors &;—¢; are linearly independent and since
lv,_g]. |=1 we can find an element \ in $ satisfying the equations

exp (v =1 (& —&; A=, 1<i<7).
Taking the complex conjugate of both sides we have then
exp (1 —1 (§;—&F ,\))=wex 1=<7/=<7».

Consider the inner automorphism U=exp(adiy/—1 A) of &,. The
automorphism U ! SU leaves invariant ® and induces the particular
rotation p in  as well as S. By the choice of A and by the relations
among »,’s we see further that the numbers Ve, and vy for S are all

replaced by 1 for U ' SU. Transferring to U~ SU if necessary, we
may assume from the beginning that v,;j:ug;e:l 1L7<L7r) for S.
We prove under such restrictions that S has the canonical representa-
tion required in the proposition.

S and S, are commutative. To observe this, consider the auto-
morphisms SS;, and S,S. Both of them reduce to the identical rota-
tion p? in » and hence they fix each element of $. Outside of $

SSoes=vuy Mo €y So Ses=v, Max Co »

The numbers g, for the roots in the fundamental basis being equal to
1 by the definition of S;, under the conditions v£j=115;f=1 1<,

we see that v,. p.=v. pex for every roots « in the fundamental basis.
Then, as we have remarked before, two automorphisms SS, and S,S
coincide : SS,=S,S. An immediate consequence of this relation is that
S, maps the l-eigenspace &; of S into itself. Therefore SS, maps G,
into itself, too. '
Now the proposition will be proved if we show that the auto-
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morphism S;1S, or what amounts to the same, its inverse automorphism
SS, takes the form exp (ady/=7 a,) with an suitable element ,.in
$,. By the results just obtained on SS, this last assertion is assured
as soon as we prove the following

LEMMA. Let A be an automorphism of &,. If A leaves fixed
each element of B and if A maps &, into ttself, A has the form
exp(ad v/ =1 n,) with an element Ay i1 9.

PROOF. Since A leaves fixed ecach element of D, we may set
3) Ae,=x, e, .

The complexification of @, that is, the linear subspace %, of & spanned
by @, over complex numbers, obviously consists of elements x+Sx,x e,
and therefore it is spanned by 1 and by the linearly independent
vectors e, and e¢;+v; e, where @ are the roots with the properties
that a*=a and »,=1 and & the representatives of each pair §&, £*
(6= £%). Since A leaves invariant G, as well as @, Aleg+vg e,
=n¢ €t rgxve € belongs to &, and it must be a scalar multiple of
€+veex.  Therefore wg=r;, and especially Kp = K 1<7<#). On
the other hand, the numbers «, in (3) have the analogous properties
as the numbers », for S. For example, |«,|=1. Then we can find
an element o in $ satisfying the equations

exp (17 —1{a;, no)) =, 1<i<y),
exp (0 —1(;, n))=x,,
exp (i —1 (&}, no))=regt 1I</<7).

By kg;=wgx We may assume here that (£, n)=(£}, ny) A7)

Then », belongs to ©,, as is remarked earljer. The automorphism
exp(ad 1/ —1 no) of @, leaves fixed each element of & as well as A and

by the choice of i, it gives the same effects as A to the eigenvectors
es for the roots in the fundamental basis. Hence A=exp(ad 1/ —1 )

by the same reason as before, which proves the lemma.

Corrections.

The following corrections should be made in the paper [A]
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1. The proof of Lemma 12 on p. 117 is not complete. However,
as we have remarked there, this lemma is a weaker form of the
lemma proved above in the present paper.

2. In %4, we have applied our rcsults to compute the automor-
phisms of cach real formm of the complex simple Lie algebra A,.
There it should be assumed that 2 > 2. In the case nz=1 the particu-
lar rotation p, defined on p. 127 is the identical transformation in
and we nced some trivial modifications. We may see that there are
essentially two real forms of A, the Lie algebras of the unimodular
unitary group and of the rcal unimoedular group both of degree 2,
which have respectively no or one typical outer automorphism.

3. Eirata; p. 103, line 3 from below, rcad ‘ Cartan [2]” instead
of “Cartan [3]”"; p. 110, line 11, read ““(a, «)” instead of “(B,8)”;
p. 116, line 22, recad “N1:” instead of “X1,”7: p. 130, line 9, read
“2=21-1” instead of “n=2f4+1".

Department of Mathematics,
Osaka University.

Notes

1) See H. Weyl: The structure and representation of continuous groups. Lectures at
the Institute for Advanced Study, Princeton, 1934-1935, p. 166.

2) See F. Gantmacher: Canonical representation of automorphisms of a complex semi-
simple T.ic group. Rec. Math. NS, vol. 5 (1934), 101-114; p. 129, Theorem 20; p.
120, Theorem 21. We note that these theorems are direct consequences of the
structure theory for n complex semi-simple Lie algebra and are outside of our present
considerations, though the theorems of this type profit us largely in the previous
paper [Al

*) The writer thanks to Mr. 1. Satake who kindly remarks him that Prop. 2 follows
from the original definition of a particular rotation of Gantmacher also in a simple
mann-r.
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